This paper examines the behavior of the price of anarchy as a function of the traffic inflow in nonatomic congestion games with multiple origin/destination (O/D) pairs. Empirical studies in real-world networks show that the price of anarchy is close to 1 in both light and heavy traffic, thus raising the following question: can these observations be justified theoretically? We first show that this is not always the case: the price of anarchy may remain a positive distance away from 1 for all values of the traffic inflow, even in simple three-link networks with a single O/D pair and smooth, convex costs. On the other hand, for a large class of cost functions (including all polynomials) and inflow patterns, the price of anarchy does converge to 1 in both heavy and light traffic, irrespective of the network topology and the number of O/D pairs in the network. We also examine the rate of convergence of the price of anarchy, and we show that it follows a power law whose degree can be computed explicitly when the network’s cost functions are polynomials.
When is Selfish Routing Bad? The Price of Anarchy in Light and Heavy Traffic / COLINI BALDESCHI, Riccardo; Cominetti, Roberto; Mertikopoulos, Panayotis; Scarsini, Marco. - In: OPERATIONS RESEARCH. - ISSN 0030-364X. - 68:2(2020), pp. 411-434. [10.1287/opre.2019.1894]
When is Selfish Routing Bad? The Price of Anarchy in Light and Heavy Traffic
Colini-Baldeschi, Riccardo;Scarsini, Marco
2020
Abstract
This paper examines the behavior of the price of anarchy as a function of the traffic inflow in nonatomic congestion games with multiple origin/destination (O/D) pairs. Empirical studies in real-world networks show that the price of anarchy is close to 1 in both light and heavy traffic, thus raising the following question: can these observations be justified theoretically? We first show that this is not always the case: the price of anarchy may remain a positive distance away from 1 for all values of the traffic inflow, even in simple three-link networks with a single O/D pair and smooth, convex costs. On the other hand, for a large class of cost functions (including all polynomials) and inflow patterns, the price of anarchy does converge to 1 in both heavy and light traffic, irrespective of the network topology and the number of O/D pairs in the network. We also examine the rate of convergence of the price of anarchy, and we show that it follows a power law whose degree can be computed explicitly when the network’s cost functions are polynomials.File | Dimensione | Formato | |
---|---|---|---|
OR2020CCMS.pdf
Solo gestori archivio
Tipologia:
Versione dell'editore
Licenza:
Tutti i diritti riservati
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.