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three-link networks with a single O/D pair and smooth, convex costs. On the
other hand, for a large class of cost functions (including all polynomials), the
price of anarchy does converge to 1 in both heavy and light traffic, irrespective
of the network topology and the number of O/D pairs in the network. We
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network’s cost functions are polynomials.
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1. Introduction

Almost every commuter in a major metropolitan area has experienced the frus-
tration of being stuck in traffic. At best, this might mean being late for dinner; at
worst, it means more accidents and altercations, not to mention the vastly increased
damage to the environment caused by huge numbers of idling engines.

To name but an infamous example, China’s G110 traffic jam in August 2010
brought to a standstill thousands of vehicles for 100 kilometers between Hebei and
Inner Mongolia. The snarl-up lasted twelve days and resulted in drivers being
unable to move for more than 1 kilometer per day, reportedly spending up to five
days trapped in the jam. Not caused by weather or a natural disaster, this massive
10-day tie-up was instead laid at the feet of a bevy of trucks swarming on the
shortest route to Beijing, thus clogging the highway to a halt (while ironically
carrying supplies for construction work to ease congestion). This, therefore, raises
the question: how much better would things have been if all traffic had been routed by
a social planner who could calculate (and enforce) the optimum traffic assignment?

In game-theoretic terms, this question boils down to the inefficiency of Nash
equilibria that are not Pareto optimal. The most widely used quantitative measure
of this inefficiency is the so-called price of anarchy (PoA): introduced by Koutsou-
pias and Papadimitriou (1999) and so dubbed by Papadimitriou (2001), the price of
anarchy is simply the ratio of the social cost of the least efficient Nash equilibrium
divided by the minimum achievable social cost. By virtue of this straightforward
definition, deriving worst-case bounds for the price of anarchy has given rise to a
vigorous literature at the interface of operations research, economics and computer
science, often leading to surprising and counter-intuitive results.

In the context of network congestion, Pigou (1920) was probably the first to
note the inefficiency of selfish routing, and his elementary two-road example with
a PoA of 4/3 is one of the two prototypical examples thereof. The other example
is due to Braess (1968), and consists of a four-road network where the addition
of a zero-cost segment makes things just as bad as in the Pigou case. These two
examples were the starting point for Roughgarden and Tardos (2002) who showed
that the price of anarchy in (nonatomic) routing games with affine costs may not
exceed 4/3. On the other hand, if the network’s cost functions are polynomials of
degree at most d, the price of anarchy may become as high as Θ(d/ log d), implying
that selfish routing can become arbitrarily bad in networks with polynomial costs
(Roughgarden, 2003).

By this token, and given the typically nonlinear relation between traffic loads and
travel times, the intervention of a central planner seems necessary in order to regain
some degree of efficiency. At the same time however, these worst-case instances are
typically realized in networks with delicately tuned traffic loads and costs: if a
network operates beyond this regime, it is not clear whether the price of anarchy
remains high. In view of this, our aim in this paper is to examine the asymptotic
behavior of the price of anarchy at both ends of the congestion spectrum: light and
heavy traffic.

Using both analytical and numerical methods, a very recent study by O’Hare
et al. (2016) suggests that the price of anarchy is usually close to 1 for both high
and low traffic, and it fluctuates in the intermediate regime (typically exhibiting
multiple local maxima). In a similar setting, Monnot et al. (2017) used a huge
dataset on commuting students in Singapore to estimate the so-called “stress of
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Figure 1. A network where selfish routing remains inefficient for both
light and heavy traffic.

catastrophe”: this majorant of the ordinary price of anarchy was estimated to
a value between 1.11 and 1.22, suggesting that the actual value of the price of
anarchy in Singapore is lower (and definitely below the 4/3 worst-case bound of the
Pigou/Braess examples).

All this leads to the following natural questions:
a) Under what conditions does the price of anarchy converge to 1 in light/heavy

traffic?
b) Do these conditions depend on the network topology, its cost functions, or

both?
c) Can general results be obtained for networks with multiple origin-destination

(O/D) pairs?
d) When these conditions are satisfied, how fast is this convergence?

1.1. Our contributions. Our first result is a cautionary tale: we show that the price
of anarchy may oscillate between two bounds strictly greater than 1 for all values
of the traffic inflow, even in simple parallel-link networks with a single O/D pair
(cf. Fig. 1). The cost functions in our example are convex and differentiable, so
neither convexity nor smoothness seem to play a major role in the efficiency of
selfish routing. Moreover, our construction only involves a three-link network, so
such phenomena may arise in any network containing such a three-link component.

Heuristically, the reason for this irregular – and, perhaps, counter-intuitive –
behavior is that the growth rate of the network’s cost functions exhibits higher-
order oscillations which persist at any scale, in both light and heavy traffic. To
dispense with such pathologies, we focus on networks whose cost functions ce(x)
are asymptotically comparable to a benchmark function c(x) which is itself assumed
to be regularly varying (cf. Definition 4.1). In so doing, we obtain a classification
of the network’s edges, paths, and O/D pairs as fast, slow or tight relative to the
chosen benchmark. Then, thanks to this classification, we obtain the following
general result: If the routing cost of the “most costly” O/D pair in the network
behaves like the benchmark, the network’s price of anarchy converges to 1 in both
light and heavy traffic.

Polynomial cost functions satisfy all of the above requirements, leading to the
comprehensive asymptotic principle:

In networks with polynomial costs,
the price of anarchy becomes 1 under both light and heavy traffic.
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In other words, a benevolent social planner with full control of traffic assignment
would not do any better than selfish agents in conditions of high or low congestion.
In particular, only if the traffic falls in an intermediate regime can there be a
substantial gap between optimum and equilibrium states.

To assess how wide this intermediate regime might be in practice, we also ex-
amine the speed at which the price of anarchy converges to 1 as a function of the
traffic inflow. Specializing to networks with polynomial costs, we find that in both
regimes the convergence follows a power law with respect to the total traffic inflow,
and we derive explicit sharp estimates for the corresponding rates.

1.2. Related work. Establishing worst-case bounds for the price of anarchy under
different conditions has been a staple of the literature on congestion games ever
since the seminal result of Roughgarden and Tardos (2002). In words, this result
states that in networks with affine costs the price of anarchy is no higher than
4/3, independently of the network topology and/or the number of O/D pairs in the
network. Furthermore, this bound is sharp in that, for every M > 0, there exists
a network with traffic inflow M and affine costs such that the price of anarchy
is exactly equal to 4/3. Importantly, our analysis shows that the order of the
quantifiers in the above statement cannot be exchanged: in any network with affine
costs, the price of anarchy gets arbitrarily close to 1 if the traffic inflow is sufficiently
large or small.

Worst-case bounds for the price of anarchy have been obtained for larger classes
of cost functions. For polynomial costs with degree at most d, Roughgarden (2003)
showed that the worst possible instance grows as Θ(d/ log d) while Dumrauf and
Gairing (2006) provided sharper bounds for monomials of maximum degree d and
minimum degree q. Extending the above results, Roughgarden and Tardos (2004)
provided a unifying result for costs that are differentiable with xc(x) convex, while
Correa et al. (2004, 2008) considered less regular classes of cost functions. Correa
et al. (2007) also studied the price of anarchy when the goal is to minimize the
maximum – rather than the average – latency in the network. For a survey, the
reader is referred to Roughgarden (2007).

In a more practical setting, Youn et al. (2008) studied the difference between
optimal and actual system performance in real transportation networks, focusing
in particular on Boston’s road network. They observed that the price of anarchy
depends crucially on the total traffic inflow: it starts at 1, it then grows with
some oscillations, and ultimately returns to 1 as the flow increases. González Vayá
et al. (2015) studied optimal scheduling for the electricity demand of a fleet of
plug-in electric vehicles: without using the term, they showed that the price of
anarchy goes to 1 as the number of vehicles grows. Cole and Tao (2016) showed
that in large Walrasian auctions and in large Fisher markets the price of anarchy
goes to one as the market size increases. Finally, Feldman et al. (2016) took a
different asymptotic approach and considered atomic games where the number of
players grows to infinity. Applying the notion of (λ, µ)-smoothness to the resulting
sequence of atomic games, they showed that the price of anarchy converges to the
corresponding nonatomic limit.

From an analytic standpoint, the closest antecedent to our paper is the recent
work of Colini-Baldeschi et al. (2016) who studied the heavy traffic limit of the price
of anarchy in parallel networks with a single O/D pair. Their analysis identified
that regular variation plays an important role in this setting; however, it offered
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no insights into non-parallel networks with multiple O/D pairs or the light traffic
regime. Our paper provides an in-depth answer to these questions: we show that
(a) regular variation yields asymptotic efficiency under both light and heavy traffic
conditions; (b) the topology of the network doesn’t matter; and (c) the existence
of several O/D pairs doesn’t matter as long as they admit a common benchmark
(which is always the case if the network’s cost functions are polynomial).

Building on a previous unpublished version of the present paper, Wu et al. (2017)
introduced a class of congestion games, called scalable, whose price of anarchy
converges to 1 as the total demand diverges. They also computed the rate of
convergence of the price of anarchy for the special case of BPR cost functions of
the same degree. Stidham (2014) also studied the behavior of the price of anarchy
for queueing networks in heavy traffic under various assumptions on the structure
of the network and on the stochastic properties of the queues. His results can be
used for the analysis of network routing models with capacity constraints.

Our work should also be compared to that of Monnot et al. (2017) who per-
formed an empirical study of the price of anarchy based on data from thousands of
commuting students in Singapore. Focusing on the network’s “stress of catastrophe”
(an empirical majorant of the network’s price of anarchy), they showed that routing
choices are near-optimal and the incurred price of anarchy is much lower than what
traditional worst-case bounds suggest. Interestingly, the study of Monnot et al.
(2017) also suggests that the Singapore road network is often lightly congested: as
such, their results can be seen as a practical validation of the light traffic results
presented here (and, conversely, our results provide a theoretical justification for
their empirical observations).

1.3. Outline of the paper. The paper is organized as follows. In Section 2, we
introduce the basic model and concepts that will be used in the rest of the paper.
Section 3 provides two motivating examples for the analysis to follow. In Section 4,
we treat networks with a single O/D pair, whereas Section 5 examines networks
with multiple O/D pairs. The more complicated case of variable relative inflows
is treated in Section 6. Finally, in Section 7, we study the rate of convergence of
the price of anarchy in light and heavy traffic. To streamline our presentation, the
proofs of our main results have been relegated to a series of appendices at the end
of the paper.

2. Model and preliminaries

2.1. Network model. Following Beckmann et al. (1956) and Roughgarden and Tar-
dos (2002), the basic component of our model will be a directed multi-graph
G ≡ G(V, E) with vertex set V and edge set E (both finite). We further assume
that there is a finite set of origin-destination (O/D) pairs indexed by i ∈ I, each
with an individual traffic demand mi ≥ 0 that is to be routed from the pair’s origin
node Oi ∈ V to its destination Di ∈ V. To route this traffic, the i-th O/D pair
employs a set Pi of paths joining Oi to Di, with each path p ∈ Pi comprising
a sequence of edges that meet head-to-tail in the usual way; specifically, we do
not assume that Pi is necessarily the set of all paths joining Oi to Di, but only
some subset thereof. [This distinction is particularly relevant for packet-switched
networks (such as the Internet) where only paths with a low hop count are typi-
cally employed.] For bookkeeping reasons, we will also make the following standing
assumptions throughout our paper:



6 R. COLINI-BALDESCHI, R. COMINETTI, P. MERTIKOPOULOS, AND M. SCARSINI

a) The total inflow rate M =
∑
i∈Im

i is positive (so there is a nonzero amount
of traffic in the network).

b) The path sets Pi are disjoint (which in particular holds trivially if all pairs
(Oi, Di) are distinct).

Now, writing P ≡
⋃
i∈I Pi for the union of all such paths, the set of feasible

routing flows f = (fp)p∈P in the network is defined as

F =
{
f ∈ RP+ :

∑
p∈Pi fp = mi for all i ∈ I

}
. (2.1)

In turn, a routing flow f ∈ F induces a load on each edge e ∈ E as

xe =
∑
p3e

fp, (2.2)

and we write x = (xe)e∈E for the corresponding load profile on the network.
Given all this, the delay (or latency) experienced by an infinitesimal traffic ele-
ment traversing edge e is determined by a nondecreasing continuous cost function
ce : [0,∞) → [0,∞): more precisely, if x = (xe)e∈E is the load profile induced by
a feasible routing flow f = (fp)p∈P , the incurred delay on edge e ∈ E is ce(xe).
Hence, with a slight abuse of notation, the associated cost of path p ∈ P will be
given by

cp(f) =
∑
e∈p

ce(xe). (2.3)

Putting together all of the above, the tuple Γ = (G, I, {mi}i∈I , {Pi}i∈I , {ce}e∈E)
will be referred to as a (nonatomic) routing game. When we want to explicitly keep
track of the total inflow rate M =

∑
im

i, we write ΓM instead of Γ; also, when
there is a single O/D pair, we will drop all reference to i and I altogether.

2.2. Equilibrium, optimality, and the price of anarchy. In routing games, the no-
tion of Nash equilibrium is captured by Wardrop’s first principle: at equilibrium,
the delays along utilized paths are equal and no higher than those that would be expe-
rienced by an infinitesimal traffic element going through an unused route (Wardrop,
1952).

Formally, a routing flow f∗ is said to be a Wardrop equilibrium (WE) of Γ if, for
all i ∈ I, we have

cp(f
∗) ≤ cp′(f∗) for all p, p′ ∈ Pi such that f∗p > 0. (2.4)

From the work of Beckmann et al. (1956), it is known that Wardrop equilibria
coincide with the solutions of the (convex) minimization problem

minimize
∑
e∈E

Ce(xe),

subject to xe =
∑
p3e

fp, f ∈ F ,
(WE)

where Ce(xe) =
∫ xe
0
ce(w) dw denotes the primitive of ce. Analogously, socially

optimum (SO) flows are defined as solutions of the total cost minimization problem

minimize
∑
p∈P

fpcp(fp),

subject to f ∈ F .
(SO)
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By a simple rearrangement of terms, the objective function of (SO) can be
rewritten as L(x) =

∑
e∈E xece(xe), so the value of the above problem can be

expressed equivalently (and somewhat more concisely) as

Opt(Γ) = min
x∈X

L(x), (2.5)

where X = {x ∈ RE+ : xe =
∑
p3e fp, f ∈ F} denotes the set of all load profiles of

the form (2.2). Thus, to quantify the gap between solutions to (WE) and (SO), let

Eq(Γ) = L(x∗) (2.6)

where x∗ is the load profile induced by a Wardrop equilibrium f∗ of Γ (by a standard
result of Beckmann et al. (1956), all such flows incur the same total cost). The
game’s price of anarchy (PoA) is then defined as

PoA(Γ) =
Eq(Γ)

Opt(Γ)
. (2.7)

For this ratio to be well-defined, we must have Opt(Γ) > 0; otherwise, if this is not
the case, we will vacuously set PoA(Γ) = 1. To avoid such technicalities, we will
tacitly assume that Opt(Γ) > 0 throughout.

Of course, PoA(Γ) ≥ 1 with equality if and only if Wardrop equilibria are also
socially efficient. Our main objective in what follows will be to study the asymptotic
behavior of this ratio when M → 0 or M →∞.

3. First results

3.1. Sioux Falls: a representative case study. To motivate our analysis, we begin
by examining the behavior of the price of anarchy in the road network of Sioux
Falls, a standard case study in the transportation literature. For concreteness, the
network’s (two-way) arterial roads are shown in Fig. 2(a) and their delay functions
are taken to be of the BPR (Bureau of Public Roads) type

ce(x) = ae + bex
de (3.1)

with coefficients ae, be and degrees de (typically de = 4) taken from the standard
reference work of LeBlanc et al. (1975, Table 1). To analyze the network’s price of
anarchy as a function of the total traffic inflow, we considered all 528 O/D pairs
with nonzero inflow, and for each O/D pair i ∈ I, we restricted Pi to contain
only the five shortest paths in terms of free-flow travel time (i.e., the time taken to
traverse a path when empty). We then scaled up or down these inflows preserving
the ratios between different O/D pairs and we plotted the network’s price of anarchy
for various values of the total inflow M .

As can be seen from Fig. 2(b), the network’s price of anarchy is identically equal
to 1 when the total inflow is small enough (approximately up to 3.7× 104 trips per
hour); for intermediate values of M , the price of anarchy becomes strictly greater
than 1, and, ultimately, it decreases monotonically to 1 in the heavy traffic limit.
Interestingly, LeBlanc et al. (1975) report a value of Mavg ≈ 3.6 × 105 trips/hour
for the network’s median traffic inflow; this value is well within the range where
the price of anarchy decreases monotonically to 1 and, indeed, the observed value is
approximately equal to 1.005, indicating a 0.5% difference between socially optimum
and equilibrium flows under median traffic conditions.

Similar conclusions have been drawn in the literature from empirical studies in
London, New York and Boston (Youn et al., 2008), as well as Sioux Falls with
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(a) The Sioux Falls road network.
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(b) Anarchy and efficiency in Sioux Falls.

Figure 2. The price of anarchy in the Sioux Falls metropolitan area as
a function of the traffic inflow.

different subsets of O/D pairs and connecting paths per pair (O’Hare et al., 2016).
In particular, in all cases, it was observed that there is an initial interval of values
of M for which the price of anarchy is identically equal to 1; our first result shows
that this is not mere happenstance:

Proposition 3.1. If the network’s cost functions are of the form (3.1) with ae, be > 0
and de ≡ d for all e ∈ E, we have PoA(ΓM ) = 1 for all sufficiently small M .

In fact, as the following result shows, this behavior arises whenever each O/D
pair admits a single “best” path under zero inflow:

Proposition 3.2. Let Pimin = arg minp∈Pi cp(0) denote the set of minimal cost paths
of the i-th O/D pair under zero inflow. If Pimin is a singleton for all i ∈ I, we have
PoA(ΓM ) = 1 for all sufficiently small M .

The above results (both proven in Appendix A) provide a reasonable theoretical
justification for the light traffic behavior of the price of anarchy that is observed
in Fig. 2 (the heavy traffic limit is discussed in detail in the next sections). At
the same time however, the BPR and “unique best path” assumptions in Proposi-
tions 3.1 and 3.2 respectively suggest that there is a finer mechanism at play which
becomes apparent when the total cost at low traffic depends more delicately on the
distribution of traffic in the network. We make this precise in the following section
where we provide an example of a three-link network where the price of anarchy
oscillates between two values strictly greater than 1, for all values of the traffic
inflow.

3.2. A network where selfish routing is always inefficient. To construct an example
of an “always inefficient” network, our approach will be to take a network with
a certain degree of periodicity, obtain an explicit handle for its price of anarchy
over a compact interval, and then tessellate this behavior over the entire traffic
spectrum (0,∞). To carry this out, let ΓM be a nonatomic routing game consisting
of a single O/D pair with traffic inflow M . This traffic is to be routed over the
three-link parallel graph of Fig. 1 with cost functions

c1(x1) = xd1
[
1 + 1

2 sin(log x1)
]
, (3.2a)

c2(x2) = xd2, (3.2b)
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c3(x3) = xd3
[
1 + 1

2 cos(log x3)
]
, (3.2c)

where d is a positive integer. It is easy to see that these cost functions are increasing,
strictly convex and smooth on [0,∞) for all d ≥ 2, and they all grow as Θ(xd) at
both traffic limits (x → 0 and x → ∞). Furthermore, the functions xece(xe) are
strictly convex, so the optimum traffic allocation problem (SO) admits a unique
solution. Hence, the only way for the game’s price of anarchy to be equal to 1 is
when the game’s (also unique) Wardrop equilibrium coincides with the network’s
socially optimum flow.

As we show in Appendix A, the equations determining the network’s equilibrium
and optimum flows never admit a common solution, so the price of anarchy is strictly
greater than 1 over any compact interval (showing in this way that the conclusion of
Propositions 3.1 and 3.2 already fails for this example). Moreover, the trigonometric
terms in (3.2) imply that these equations are periodic in a logarithmic scale (i.e.,
in logM). Hence, combining these two properties, we obtain:

Proposition 3.3. In the three-link parallel network defined above, PoA(ΓM ) is peri-
odic in logM and oscillates between two values strictly greater than 1.

Colini-Baldeschi et al. (2016) already provided examples of networks where
lim supM→∞ PoA(ΓM ) > 1 but the cost functions involved were fairly irregular
and the lim inf of the price of anarchy was still 1 (i.e., selfish routing was still ef-
ficient infinitely often). By contrast, in the above example, the price of anarchy
is bounded away from 1 for all possible demands, and this despite the fact that
the network’s cost functions are smooth, strictly convex and grow as Θ(xd) at both
ends of the congestion spectrum. This is a considerable sharpening of the example
of Colini-Baldeschi et al. (2016) as it shows that there are cases where efficiency is
never achieved at equilibrium – not even asymptotically.

4. Networks with a single O/D pair

Despite the highly smooth and convex structure of the example network of Propo-
sition 3.3, closer inspection reveals that the growth rate of its cost functions exhibits
persistent oscillations at both 0 and ∞. This naturally leads to the following ques-
tion: Does selfish routing remain bad for “reasonable” cost functions that do not
behave irregularly in the limit?

To quantify – and discard – such irregularities, we will employ the seminal notion
of regular variation (recalled below). For clarity and concision, we will focus for
now on networks with a single O/D pair; the case of multiple O/D pairs will be
discussed in detail later, in Sections 5 and 6.

4.1. Regular variation and edge classification. To present a unified perspective, we
will tackle both ends of the congestion spectrum simultaneously by introducing the
traffic limit indicator ω ∈ {0,∞}: letting M → ω gives the light traffic limit for
ω = 0 and the heavy traffic limit for ω = ∞. Regular variation at either limit is
then defined as follows:

Definition 4.1. A function g : (0,∞)→ (0,∞) is said to be regularly varying at ω if

lim
t→ω

g(tx)

g(t)
is finite and nonzero for all x > 0. (4.1)
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In words, regular variation means that g(t) grows at the same rate when viewed at
different scales (determined here by x). The concept itself dates back to Karamata
(1930, 1933) and has been used extensively in functional analysis, probability, and
large deviations theory (see e.g., de Haan and Ferreira, 2006; Jessen and Mikosch,
2006; Resnick, 2007); for a comprehensive survey we refer the reader to Bingham
et al. (1989).

Standard examples of regularly varying functions include all affine functions,
polynomials, logarithms, and, more generally, all analytic functions (barring those
with an essential singularity at ω =∞). [Recall here that a function g(x) is analytic
on a domain U if it is equal to its Taylor series on U .] On the other hand, despite
being bounded from above and below as Θ(xd), the oscillatory cost functions (3.2)
used in the counterexample of Section 3 are not regularly varying. Indeed, at either
ω = 0 or ω =∞, the limit

lim
t→ω

c1(tx)

c1(t)
= lim
t→ω

1 + 1
2 sin(log t+ log x)

1 + 1
2 sin(log t)

xd (4.2)

does not exist in (0,∞) unless log x = kπ for some k ∈ Z (and likewise for c3). In
this way, regular variation provides a much finer view than polynomial growth.

With all this at hand, we will dispose of growth irregularities like the above by
positing that the network’s cost functions can be compared asymptotically to some
regularly varying function c(x). Specifically, given an ensemble of cost functions
C = {ce}e∈E , we will say that a regularly varying function c : (0,∞) → (0,∞) is a
benchmark for C at ω if the following (possibly infinite) limit exists for all e ∈ E

αe = lim
x→ω

ce(x)

c(x)
. (4.3)

This limit will be called the index of edge e at ω, and e will be called fast, slow,
or tight (relative to c at ω) if αe is respectively 0, ∞, or in-between. In particular,
when e is tight, ce(x) is also regularly varying and exhibits the same asymptotic
behavior as the benchmark function c(x) at ω; if e is fast, then ce(x) = o(c(x)); and,
finally, if e is slow, then c(x) = o(ce(x)). As such, a benchmark function groups
the network’s edges into three equivalence classes that exhibit the same qualitative
behavior with respect to c(x).

Of course, this partition depends on the chosen benchmark and the traffic limit
(light or heavy): for instance, x2 is fast with respect to x at 0, but it is slow at
∞. For concision, we will not keep track of this dependence explicitly and instead
rely on the context to resolve any ambiguities. However, it will be important to
keep in mind that the classification of fast and slow edges could be flipped when
transitioning from heavy to light traffic and vice versa.

Now, since bottlenecks along a path are caused by its slowest edges, we also
define the index of a path p ∈ P as

αp = max
e∈p

αe, (4.4)

and we say that p is fast, slow, or tight based on whether αp is 0,∞, or in-between.
Finally, given that traffic will tend to be routed along the fastest paths in the
network, we define the index of the network as

α = min
p∈P

αp, (4.5)
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and we say that the network is itself tight if 0 < α < ∞. In words, a path is fast
(resp. tight/slow) if its slowest edge is fast (resp. tight/slow), and a network is
tight if its fastest path is tight.

Defined this way, tightness guarantees that the network admits a path whose
cost behaves asymptotically as a (positive) multiple of the benchmark function c(x).
The importance of this requirement is again illustrated by the cost model (3.2) of
the previous section: if we only assumed that the network admits a path whose
cost behaves as Θ(c(x)), then we would not be able to rule out the pathological
oscillations of the example in Section 3.

4.2. The light traffic limit. Thanks to the above legwork, we are in a position to
state our main result for lightly congested networks with a single O/D pair:

Theorem 4.2. Let ΓM be a nonatomic routing game with a single O/D pair. If the
network is tight under light traffic (ω = 0), then

lim
M→0

PoA(ΓM ) = 1. (4.6)

In words, Theorem 4.2 simply states that if the cost of the network’s fastest
path is regularly varying at 0, selfish routing becomes efficient in light traffic. To
streamline our presentation, Theorem 4.2 is proved in Appendix B as a special case
of a much more general statement. Here, we focus on some immediate corollaries
thereof:

Corollary 4.3. Suppose that, for every edge e ∈ E, the limit limx→0 ce(x)/xqe is
finite and nonzero for some qe ≥ 0. Then, PoA(ΓM )→ 1 as M → 0.

Proof. Referring to qe as the order of e, define the order of a path p ∈ P as qp =
mine∈p qe and that of the network as q = maxp∈P qp. Clearly, limx→0 ce(x)/xq = 0 if
and only if qe > q; limx→0 ce(x)/xq =∞ if and only if qe < q; and limx→0 ce(x)/xq ∈
(0,∞) if and only if qe = q. This shows that the network is tight with respect to
c(x) = xq at 0, so Theorem 4.2 applies. �

Corollary 4.4. In a single O/D-network with analytic costs we have PoA(ΓM )→ 1
as M → 0.

Proof. If ce(x) =
∑∞
k=0 ck,ex

k for small enough x, we have limx→∞ ce(x)/xqe ∈
(0,∞) for qe = min{k ∈ N : ck,e 6= 0}. Our claim then follows from Corollary 4.3.

�

Corollary 4.5. In a single O/D-network with polynomial costs we have PoA(ΓM )→
1 as M → 0.

Of the above results, Corollaries 4.4 and 4.5 are of special practical interest be-
cause most latency models that have been proposed in the literature are polynomial
or analytic at 0. In urban networks, the golden standard is the Bureau of Public
Roads (BPR) quartic model ce(x) = ae+ bex

4, while basically all of the established
queueing models used in the theory of packet-switched networks (M/M/1,M/G/k,
M/M/c, etc.) are analytic at 0 (Bertsekas and Gallager, 1992).

Despite appearances, the very wide applicability of Theorem 4.2 and its corollar-
ies is fairly surprising. Indeed, at first sight, one would expect that when M → 0,
traffic is so light that it doesn’t really matter how it is routed. This is indeed the
case if, for instance, all paths in the network exhibit different positive costs when
M = 0 (cf. Proposition 3.2). However, if the cost of an empty path is zero, this is
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no longer the case: the optimum and equilibrium traffic assignments could be fairly
different (even when the network is lightly congested), so there is no a priori reason
for the price of anarchy to converge to 1 asM → 0 (the example of Section 3 clearly
illustrates this phenomenon). Theorem 4.2 shows that all that is needed for this to
occur is for the network’s cost functions to be faithfully represented by a common
benchmark function: when this condition is met, optimum and equilibrium costs
no longer fluctuate but, instead, they converge to the same value.

4.3. The heavy traffic limit. Our main result for highly congested networks with a
single O/D pair is as follows:

Theorem 4.6. Let ΓM be a nonatomic routing game with a single O/D pair. If the
network is tight under heavy traffic (ω =∞), then

lim
M→∞

PoA(ΓM ) = 1. (4.7)

In words, Theorem 4.6 simply states that if the cost of the network’s fastest
path is regularly varying at ∞, selfish routing becomes efficient in heavy traffic.
To compare and contrast the light and heavy traffic regimes, we relegate the proof
of Theorem 4.6 to Appendix B and only focus here on some immediate corollaries
thereof:

Corollary 4.7. Suppose there exists a path p ∈ P with bounded costs, that is,
limx→∞ ce(x) <∞ for all e ∈ p. Then, PoA(ΓM )→ 1 as M →∞.

Proof. Taking c(x) = 1, we get αe = limx→∞ ce(x) ∈ (0,∞] for all e ∈ E . By
assumption, there exists a path such that 0 < αp <∞, so Theorem 4.6 applies. �

Corollary 4.8. Suppose that the limit limx→∞ ce(x)/xqe is finite and nonzero for
some qe ≥ 0 and all e ∈ E. Then, PoA(ΓM )→ 1 as M →∞.

Proof. Shadowing the proof of Corollary 4.3, let qp = maxe∈p qe and q = minp∈P qp
(but note the reversal of the max and min operators). Clearly, limx→∞ ce(x)/xq =
0 if and only if qe < q; limx→∞ ce(x)/xq = ∞ if and only if qe > q; finally,
limx→∞ ce(x)/xq ∈ (0,∞) if and only if qe = q. This shows that the network is
tight with respect to c(x) = xq at ∞, so Theorem 4.6 applies. �

Corollary 4.9. In a single O/D-network with polynomial costs we have PoA(ΓM )→
1 as M →∞.

In a certain, precise sense, Theorems 4.2 and 4.6 show that the high and low
congestion regimes can be seen as different sides of the same coin. By excluding
pathological oscillations at either end of the congestion spectrum, regular variation
ensures asymptotic regularity and guarantees that selfish routing becomes efficient
in the limit: specifically, tightness at 0 guarantees efficiency in light traffic while
tightness at ∞ guarantees efficiency in heavy traffic. By this token, taking Corol-
laries 4.5 and 4.9 in tandem implies that selfish routing becomes efficient under
both light and heavy traffic in networks with polynomial costs and a single O/D
pair.

That being said, there are still important, quantitative differences between the
light and heavy traffic limits. For instance, even though Corollaries 4.8 and 4.9
are direct analogues of their light traffic counterparts, the conclusion of Corol-
lary 4.7 is false in light traffic (the three-link network of Section 3 serves again as
a counterexample). In fact, even in the case of polynomial costs (Corollary 4.5 vs.
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Corollary 4.9), there is an important reversal of roles that takes place between fast
and slow edges. Specifically, edges that are fast in light traffic typically become
slow under heavy traffic and vice versa (importantly however, tight edges are not
re-classified under this regime change). Nevertheless, despite this reversal, the price
of anarchy still goes to 1 in both cases.

5. Networks with multiple O/D pairs

We now extend our analysis to networks with multiple O/D pairs. In this case,
if the inflow rate of the i-th O/D pair is mi, the total traffic inflow in the network
is given by

M =
∑
i∈I

mi, (5.1)

and we write

λi =
mi

M
(5.2)

for the relative inflow rate of the i-th O/D pair – i.e., the fraction of the total traffic
generated by the pair in question. In the rest of this section, we will assume that
the relative inflow of every O/D pair i ∈ I is a fixed positive constant that does
not depend on M ; the case of variable inflow rates will be discussed in detail in
Section 6.

The key difference with the single-pair setting is that routing costs for different
O/D pairs may exhibit completely different asymptotic behaviors in the limit. As a
result, in the presence of multiple O/D pairs, the definition of the network’s index
(and the related notion of tightness) must be re-examined. To do so, given that
the traffic generated by an O/D pair will tend to be routed along the pair’s fastest
path, we first define the index of an O/D pair i ∈ I as

αi = min
p∈Pi

αp. (5.3)

Just like edges and paths, this index can be used to classify O/D pairs as fast, slow
or tight depending on whether αi is respectively 0, ∞, or in-between. The index of
the network is then defined as

α = max
i∈I

αi, (5.4)

and we say that the network is tight if 0 < α < ∞. Heuristically, this definition
simply captures the fact that the leading contribution to congestion is due to the
“costliest” O/D pairs in the network; obviously, if there is but a single O/D pair,
this last point is moot and (5.4) reduces to (4.5).

Example 5.1. To illustrate the above concepts, consider a Wheatstone network with
two O/D pairs and cost functions as in Fig. 3. Focusing first on the heavy traffic
limit, the benchmark c(x) = x would classify edge 1 as tight, edges 2 and 5 as slow,
and edges 3 and 4 as fast. Accordingly, the first O/D pair would be classified as
tight while the second O/D pair would be classified as fast; since no pair is slow
and at least one pair is not fast, the network is itself tight.

In the light traffic limit, the same benchmark would classify edges 1 and 3 as
tight, edges 4 and 5 as slow, and edge 2 as fast. Under this classification, the first
O/D pair would again be tight, but the second O/D pair would now be classified as
slow (because all its paths contain a slow edge), so the network would no longer be
tight. A moment’s reflection shows that the reason for this is that the benchmark
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O1

D1

O2

D2

c1(x) = x

c2(x) = x2

c3(x) = log(1 + x)

c4(x) = 1 +
√
x

c5(x) = ex

Figure 3. A Wheatstone network with two O/D pairs (cf. Example 5.1
below). In heavy traffic, the network is tight relative to the benchmark
function c(x) = x; in light traffic, the network is tight relative to the
benchmark c(x) = 1.

function c(x) = x is not well-suited for the second O/D pair. Instead, if we take
the benchmark c(x) = 1, the first O/D pair would be classified as fast (because it
has a fast path, namely edge 1) and the second pair would be classified as tight,
so the network would now be tight. For a systematized version of this benchmark
selection procedure, see the proof of Corollary 5.2 below.

With all this at hand, our next result states that if the costliest O/D pair in the
network admits a tight path, selfish routing becomes asymptotically efficient in the
limit:

Theorem 5.1. Let ΓM be a nonatomic routing game. If the network is tight in the
limit as M → ω, then

lim
M→ω

PoA(ΓM ) = 1. (5.5)

In words, if (a) every O/D pair has a path which is not slow, and (b) the fastest
path of the slowest O/D pair has a regularly varying cost, selfish routing becomes
efficient in the limit. Motivated by the strong connection between Theorems 4.2
and 4.6, Theorem 5.1 has been stated in a way that does not discriminate between
the light and heavy traffic regimes. The reason for this is to highlight the role of the
tightness assumption: tightness at 0 guarantees efficiency in light traffic (ω = 0)
while tightness at ∞ guarantees efficiency in heavy traffic (ω =∞).

Of course, both Theorems 4.2 and 4.6 follow as corollaries of Theorem 5.1 by
taking respectively ω = 0 or ∞ and specializing to a single O/D pair (in which
case Eqs. (4.5) and (5.4) coincide). Other than that, however, the same caveats
apply regarding the passage from light to heavy traffic: the classification of fast
and slow edges could be reversed, the equilibrium/socially optimum flows could be
drastically different in the two regimes, etc. To illustrate all this, we proceed with
some further corollaries of Theorem 5.1 (which we prove in Appendix B):

Corollary 5.2. If the network’s costs are regularly varying at ω and the (possibly
infinite) limit

αe,e′ = lim
x→ω

ce(x)/ce′(x) (5.6)

exists for all e, e′ ∈ E, then PoA(ΓM )→ 1 as M → ω.

Proof. Define a total preorder among the network’s edges by setting e 4 e′ if and
only if αe,e′ ≤ 1. For each path p ∈ P, choose a maximal element ep of p, i.e., an
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edge ep ∈ p such that e 4 ep for all e ∈ p. Then, for each O/D pair i ∈ I, choose a
path pi for which epi is minimal, i.e., epi 4 ep′ for all p′ ∈ Pi. Finally, pick an O/D
pair i ∈ I such that epi is maximal, i.e., epj 4 epi for all j ∈ I. Setting e∗ = epi
and taking c(x) ≡ ce∗(x) as a benchmark, it is easy to verify that the network is
tight at ω, so Theorem 5.1 applies. �

The proof of Corollary 5.2 shows that the “comparison index” αe,e′ induces a
preference relation which refines the coarser classification of the network’s edges
into fast, slow and tight. Of course, this ordering could be reversed when passing
from light to heavy traffic, but the existence thereof (along with regular variation)
guarantees that the price of anarchy is asymptotically equal to 1 in both cases.

In addition to the above, Corollary 5.2 also gives an alternative way to prove the
following analogue of Corollaries 4.3 and 4.8:

Corollary 5.3. Suppose that the limit limx→ω ce(x)/xqe is finite and nonzero for
some qe ≥ 0 and all e ∈ E. Then, PoA(ΓM )→ 1 as M → ω.

Proof. Observe that
ce(x)

ce′(x)
=
ce(x)

xqe
xqe

xqe′
xqe′

ce′(x)
, (5.7)

so limx→ω ce(x)/ce′(x) exists for all e ∈ E . Our claim then follows from Corol-
lary 5.2. �

We thus obtain the following important corollary for polynomial cost functions:

Corollary 5.4. In networks with polynomial costs, PoA(ΓM )→ 1 as M → ω.

In words, Corollary 5.4 yields the general principle that we stated in the intro-
duction:

In networks with polynomial costs,
the price of anarchy becomes 1 under both light and heavy traffic.

We find this principle particularly appealing as it indicates that the price of anarchy
may attain high values only in an intermediate regime (where the traffic is neither
light nor heavy).

6. Networks with variable inflow rates

An important assumption in the analysis of the previous section is that the
relative inflow rate λi = mi/M of each O/D pair i ∈ I does not fluctuate in the
limit – i.e., all pairs are assumed to generate a constant fraction of the overall traffic.
In general however, this assumption need not hold: for instance, in an urban road
network, central O/D pairs generate disproportionately more traffic during rush
hour than peripheral, suburban destinations, so it is not reasonable to assume that
traffic scales up maintaining a constant traffic ratio between different O/D pairs.

To understand the impact of this variability, consider two independent links, e1
and e2, with corresponding cost functions c1(x) = x and c2(x) = x2. Suppose
further that these links are joining two uncoupled O/D pairs with inflow rates m1

and m2 and total inflow M = m1 + m2. If both inflows scale in the limit as
Θ(M), the cost of the first pair will scale as Θ(M) while that of the second pair
will scale as Θ(M2). As such, the leading contribution to congestion will be that
of the first O/D pair in light traffic, and that of the second pair in heavy traffic.
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If, however, the inflow of the first pair scales as Θ(M) but that of the second pair
scales as Θ(M1/3), the induced costs will scale respectively as Θ(M) and Θ(M2/3);
consequently, the most costly O/D pair will now be the second one in light traffic
and the first one in heavy traffic.

This reversal of roles shows that the asymptotic behavior of the relative inflow
rates λi = mi/M could end up painting a completely different picture in the limit.
In particular, if these relative rates oscillate wildly in the limit, the price of anarchy
may exhibit a likewise irregular asymptotic behavior, even if the underlying network
is well-behaved (for instance, even if it is tight; cf. Example 6.2 below). As a result,
special care must be taken to define and study the asymptotic regime in networks
with variable traffic demands.

To that end, let Γn be a sequence of nonatomic routing games with total inflow
Mn =

∑
i∈Im

i
n induced by a sequence of inflow rates mi

n for each O/D pair i ∈ I.
The light and heavy traffic limits are obviously recovered depending on whether
the total inflow Mn converges respectively to ω = 0 or ω =∞ as n→∞. However,
the relative inflow rates λin = mi

n/Mn could now exhibit very different behaviors as
n→∞: in particular, as discussed above, the relative inflow of an O/D pair could
oscillate – or even vanish – in the limit. To capture such phenomena, we introduce
below the notion of salience:

Definition 6.1. Let Γn be a sequence of nonatomic routing games with relative
inflow rates λin, i ∈ I. We say that a subset I ′ ⊆ I of O/D pairs is salient if

lim inf
n→∞

∑
i∈I′

λin > 0, (6.1)

i.e., if the total fraction of the traffic generated by the O/D pairs in I ′ is non-
negligible in the limit.

Obviously, if the sequence of relative inflow vectors λn = (λin)i∈I converges to
a well-defined limit, I ′ will be salient if and only if some O/D pair of I ′ is itself
salient – i.e., if and only if lim infn→∞ λin > 0 for some i ∈ I ′. However, if this is not
the case, a set of O/D pairs may be salient even if none of its constituent pairs is
salient: for instance, if there are two O/D pairs, “+” and “−”, with relative inflows
λ±n = (1 ± (−1)n)/2, neither pair is salient but their union is (since λ+n + λ−n = 1
for all n). Thus, the notion of salience does not rule out fluctuations in the relative
inflows of individual O/D pairs; it only posits that the set of O/D pairs in question
carries enough traffic in the limit.

Bearing all this in mind, our main result for networks with variable inflow rates
is as follows:

Theorem 6.2. Let Γn be a sequence of nonatomic routing games with inflow rates
mi
n and total inflow Mn =

∑
i∈Im

i
n. Suppose further that:

(a) Traffic is either light or heavy in the limit, i.e., limn→∞Mn = ω ∈ {0,∞}.
(b) Every O/D pair has a path which is not slow, i.e., αi <∞ for all i ∈ I.
(c) The set of tight O/D pairs is salient, i.e., lim infn→∞

∑
i:αi>0 λ

i
n > 0.

Then, PoA(Γn)→ 1 as n→∞.

Heuristically, Condition (a) above simply indicates the traffic regime under study
(light or heavy), whereas Condition (b) guarantees that the network’s benchmark
function correctly classifies the paths that are not too costly in each O/D pair.
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O1 D1

O2 D2

c1(x) = 1

c2(x) = x

c3(x) = 0

Figure 4. A simple network with two uncoupled O/D pairs.

Finally, Condition (c) guarantees that tight O/D pairs are indeed relevant in terms
of traffic, i.e., they account for a non-negligible fraction of the total inflow.

In view of all this, Theorem 6.2 can be seen as a direct extension of our “fixed-
rate” analysis in Sections 4 and 5: indeed, in the case of constant (positive) relative
inflows, salience boils down to asking that the network admits at least one tight
O/D pair, so Theorem 5.1 can be obtained as a special case of Theorem 6.2. Below,
we provide some further corollaries of Theorem 6.2 along these lines:

Corollary 6.3. If every O/D pair in the network is tight, then PoA(Γn)→ 1.

Corollary 6.4. If the network is tight and every O/D pair is salient, then PoA(Γn)→
1.

On the other hand, it is worth noting that if salience fails, we can draw no
definitive conclusions for the price of anarchy. We illustrate the main reasons for
this via two examples below:

Example 6.1 (Efficiency without salience). Consider the simple network of Fig. 4,
where two “uncoupled” O/D pairs respectively encounter a standard Pigou network
and an independent link with zero cost. In heavy traffic, the benchmark function
c(x) = 1 classifies the O/D pair i = 1 as tight and the pair i = 2 as fast, so the
network is itself tight. Note also that the second O/D pair does not affect the
network’s price of anarchy because it has a single routing option and its cost is
identically equal to 0; however, it still affects the definition of relative inflows.

If we take the inflow sequence m1
n =
√
n and m2

n = n, we getMn = n+
√
n→∞

and λ1n → 0 as n→∞, so the first O/D pair is not salient. Since the second O/D
pair is not tight, Condition (c) fails; nevertheless, if we apply Theorem 4.6 to the
first O/D pair by itself, we obtain limM→∞ PoA(ΓM ) = 1 (recall here that the
second pair does not affect the network’s PoA). In other words, Condition (c) is
not necessary for selfish routing to be asymptotically efficient.

Example 6.2 (Inefficiency without salience). Consider the same network as above
but take the periodically oscillating inflow sequence

m1
n =

{
1 for n odd,
1 + 2n for n even,

and m2
n =

{
2n for n odd,
0 for n even.

(6.2)

We then have Mn = 2n + 1 → ∞ and lim infn→∞ λ1n = 0 so, again, Condition (c)
fails (but in a different way). This time, whenever n is odd, the network’s price of
anarchy is equal to that of a Pigou network with inflow 1 (because the second O/D
pair is costless). Thus, for n odd, we get PoA(Γn) = 4/3, which is the worst-case
value for networks with affine costs; as such, the conclusion of Theorem 6.2 does
not hold in general if we just drop the salience condition.
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O D

c1(x) = xd1

c2(x) = xd2

Figure 5. A two-link Pigou network with monomial costs.

The above examples suggest that there is a finer mechanism at work which is not
captured by the intersection of tightness and salience. At a high level, the crucial
component of this mechanism seems to be that asymptotic efficiency is guaranteed
if the network remains tight after suitably modifying the network’s cost functions
to take into account the scaling of the inflow of each O/D pair. However, getting
an exact statement at this level of generality is fairly cumbersome, so we do not
attempt it here.

7. Rate of convergence

The analysis of the previous sections provides a wide range of sufficient conditions
guaranteeing that selfish routing becomes efficient in the limit; however, it does not
provide any indication for the rate at which the network’s price of anarchy converges
to 1. In this section, we derive such rates (including subleading terms) for networks
with polynomial costs of the form

ce(x) =

de∑
k=qe

ce,kx
k, (7.1)

where all coefficients are assumed nonnegative (ce,k ≥ 0) and qe and de respectively
denote the smallest and largest powers present (so ce,qe , ce,de > 0); by convention,
we also take qe = ∞ and de = 0 when ce(x) ≡ 0. [This follows the standard –
if somewhat surprising at first – convention that sup∅ = −∞, inf ∅ = ∞.] This
model covers in particular the BPR “constant plus monomial” model (3.1) but also
extends more easily to networks with more intricate cost functions.

In contrast to our qualitative analysis, the two traffic limits (light and heavy)
exhibit different quantitative behaviors, so we treat them separately.

7.1. The light traffic case. We begin with the light traffic limit (ω = 0). To motivate
our analysis, we start with a simple example of a Pigou network with monomial
costs as shown in Fig. 5: for d1, d2 > 0, the zero-flow travel time of both links is
zero, so Proposition 3.2 does not apply. Instead, as we show below, the network’s
price of anarchy decays to 1 following a power law:

Proposition 7.1. Consider a two-link parallel network with cost functions c1(x) =
xd1 and c2(x) = xd2 , 0 < d1 < d2, and a single O/D pair with inflow M . Then

PoA(ΓM ) = 1 + bMa + o(Ma) (7.2)

where

a = d2/d1 − 1, (7.3)
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Figure 6. The rate of convergence of the price of anarchy in a lightly
congested Pigou network as in Fig. 5. The figure on the left shows the
price of anarchy as a function of the total traffic inflow M for different
values of the exponents d1 and d2. In the figure to the right, the price
of anarchy has been rescaled by M−a with a = d2/d1 − 1, showing
that PoA(ΓM ) ∼ 1 + bMa for some b > 0; the horizontal asymptotes
correspond precisely to the expression (7.4) for b.

and

b = d1

(
1 + d2
1 + d1

)1+1/d1

− d2 > 0. (7.4)

In words, Proposition 7.1 shows that the rate of convergence of the price of
anarchy is controlled by the ratio d2/d1: the largest the ratio of degrees, the fastest
the decay of the price of anarchy (for a numerical illustration, see Fig. 6). This
behavior is consistent with Proposition 3.2 which predicts that PoA(ΓM ) ≡ 1 if M
is small enough and d1 = 0. Indeed, taking d1 → 0 in (7.2) shows that PoA(ΓM ) =
1 +O(Ma) for any a > 0, suggesting in turn that the rate of decay of PoA(ΓM ) is
qualitatively different in this case.

Another case worth noting is when d1 = d2, i.e., when both links are equivalent
in terms of performance. In this case, PoA(ΓM ) is identically equal to 1 for all
values of M (Proposition 3.1 already guarantees as much when M is not large).
However, (7.2) would seem to suggest that the price of anarchy can remain large as
M → 0 (since a = 1− 1 = 0 when d1 = d2). The solution of this apparent paradox
is provided by looking at the multiplicative constant b: when d1 = d2, we also have
b = 0, so the resulting contribution to the price of anarchy is 0 – not Ω(1).

The above highlights the importance of the relative rate of decay of the network’s
edge costs as a function of the inflow. Since monomials with lower exponents are
more costly in the low traffic limit, this rate is dominated by the smallest power in
(7.1). Thus, motivated by the index machinery of Sections 4 and 5, we respectively
define the order of an edge e ∈ E , that of a path p ∈ P, of an O/D pair i ∈ I, and
that of the network itself as

qe = min{k : ce,k > 0} (7.5a)

qp = min
e∈p

qe, (7.5b)

qi = max
p∈Pi

qp, (7.5c)
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q = min
i∈I

qi. (7.5d)

In view of the above, the network is tight with respect to the benchmark function
c(x) = xq, and an edge e ∈ E is fast when qe > q, tight when qe = q, and slow if
qe < q. We then denote the set of the network’s slow edges as

Eslow = {e ∈ E : qe < q}, (7.6)

and we write

qslow = max
e∈Eslow

qe (7.7)

for the order of the fastest edge in Eslow (again employing the standard convention
that max∅ = −∞, so qslow = −∞ when there are no slow edges).

Building on the intuition gained from Proposition 7.1, our main quantitative
result for low traffic is that the network’s PoA decays to 1 following a power law
that depends only on the ratio between the order of the network (q) and that of its
fastest slow edge (qslow):

Theorem 7.2. Let ΓM be a nonatomic routing game with polynomial costs, total
inflow M , and fixed relative inflows. Then, there exist non-negative constants K1 ≥
0 and Ka ≥ 0 such that

PoA(ΓM ) ≤ 1 +K1M +KaM
a, (7.8)

where a = q/qslow − 1 and Ka = 0 whenever Eslow = ∅.

Theorem 7.2 was stated for networks with fixed relative inflows for simplicity
only: in Appendix C, we state and prove a more general result for networks with
variable relative inflows as in Section 5. In terms of intuition, we only note here
that Theorem 7.2 complements the insights gained from Propositions 3.1 and 3.2
in an important way: when there is no single “best path” under zero inflow, the
network’s price of anarchy is no longer identically equal to 1 for small inflows but
instead behaves as a power law.

7.2. The heavy traffic case. We now turn to the heavy traffic limit (ω = ∞). As
in the light traffic case, we start with a simple – but illuminating – example of a
two-link Pigou network where precise results can be obtained:

Proposition 7.3. Consider a two-link parallel network with cost functions c1(x) =
xd1 and c2(x) = xd2 , 0 < d1 < d2, and a single O/D pair with inflow M . Then

PoA(ΓM ) = 1 + bM−a + o(M−a) (7.9)

where

a = 1− d1/d2 (7.10)

and

b = d2

(
1 + d1
1 + d2

)1+1/d2

− d1 > 0. (7.11)

For illustration purposes, we plotted in Fig. 7 the asymptotic behavior of the
network’s price of anarchy for different values of d1 and d2. In the same vein as in
the light traffic limit, two special cases that are of interest here are when d2 = ∞
and when d1 = d2. In the former (d2 = ∞), Eq. (7.10) gives a = 1, indicating a
convergence rate of the order of O(1/M): since a < 1 for all finite d2, this is the
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Figure 7. The rate of convergence of the price of anarchy in a heavily
congested Pigou network as in Fig. 5. The figure on the left shows the
price of anarchy as a function of the total traffic inflow M for differ-
ent values of the exponents d1 and d2. In the figure to the right, the
price of anarchy has been rescaled by Ma with a = 1− d1/d2, showing
that PoA(ΓM ) ∼ 1 + b/Ma for some b > 0; the horizontal asymptotes
correspond precisely to the expression (7.11) for b.

best possible rate that can be achieved in the heavy traffic limit. For the latter
(d1 = d2), Eq. (7.10) gives a = 0, suggesting that the price of anarchy can remain
large as M → ∞. This seems to be inconsistent with the fact that the network’s
price of anarchy is identically equal to 1 when d1 = d2 but a closer look reveals
that the multiplicative constant b of (7.11) is also 0 when d1 = d2, thus reconciling
the two results.

Now, even though the above result does not apply to more general networks
with polynomial costs, it still highlights the main mechanism at play. Specifically,
for large edge loads x, the dominant term in (7.1) is the one with highest degree
de. As we’ve discussed before, this indicates a complete reversal of roles between
light and heavy traffic: for d1 < d2, xd1 is slower than xd2 when x→ 0, but faster
when x → ∞. Thus, with an obvious adaptation of what we did for light traffic,
we define the order of an edge e ∈ E , that of a path p ∈ P, of an O/D pair i ∈ I,
and of the network itself as

de = max{k : ce,k > 0} (7.12a)

dp = max
e∈p

de, (7.12b)

di = min
p∈Pi

dp, (7.12c)

d = max
i∈I

di. (7.12d)

With all this at hand, we see that the network is tight with respect to the benchmark
c(x) = xd, so an edge e ∈ E is fast when de < d, tight when de = d, and slow if
de > d. The set of the network’s slow edges is then denoted as

Eslow = {e ∈ E : de > d}, (7.13)

and we write

dslow = min
e∈Eslow

de (7.14)
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for the order of the fastest edge in Eslow (again employing the standard convention
that min∅ =∞, so dslow =∞ when there are no slow edges).

Mutatis mutandis, this definition is the same as in light traffic except for a
reversal of the max/min operators. Our main result for heavily congested networks
confirms this intuition:

Theorem 7.4. Let ΓM be a nonatomic routing game with polynomial costs, total
inflow M , and fixed relative inflows. Then, there exist non-negative constants K1 ≥
0 and Ka ≥ 0 such that

PoA(ΓM ) ≤ 1 +
K1

M
+
Ka

Ma
, (7.15)

where a = 1− d/dslow and Ka = 0 whenever Eslow = ∅.

Remark 7.1. As in the light traffic case, if the costs are monomials of the same
degree, then K1 = Ka = 0 and PoA(ΓM ) ≡ 1 for all M > 0.

In words, given that a < 1 when there is at least one slow edge in the network
(a = 1 and Ka = 0 otherwise), Theorem 7.4 states the network’s price of anarchy
converges to 1 as O(1/Ma) with an O(1/M) subleading term. In particular, in
the presence of a single slow edge e with de > d, the convergence exponent a in
(7.15) can become as small as 1/(d+ 1), thus pointing to a slower convergence rate
in networks with routing costs of high degree and a small gap between the degree
of tight and slow edges. On the other hand, if there are no slow edges we have
Eslow = ∅ and we get an O(1/M) rate of convergence.

On this issue, Wu et al. (2017) recently showed that if all the network’s cost
functions are of the BPR type ce(x) = ae + bex

d with the same degree d, then
PoA(ΓM ) = 1 +O(M−d) as M →∞. In this special case, the rate of convergence
is faster than the prediction of Theorem 7.4, a gap which points to a sharp discon-
tinuity that occurs when all costs have the same degree. To see this in a concrete
example, consider again the two-link Pigou network of Fig. 5. By symmetry, if
d1 = d2, the fraction of traffic routed on edge 1 at optimum and at equilibrium
coincide

ỹ1 = y∗1 =
1

2
for all M > 0, (7.16)

implying in turn that PoA(ΓM ) is identically equal to 1. On the other hand, when
d1 < d2, both fractions ỹ1 and y∗1 converge to 1 as M →∞. Proposition 7.3 shows
that the rate of convergence of the price of anarchy in this case is exactly of order
Θ(1/Ma) and cannot be improved.

Put differently, Proposition 7.3 shows that the slightest difference in edge degrees
causes the rate of convergence of the price of anarchy to drop abruptly to Θ(M−a);
in fact, Eq. (7.11) even provides an explicit expression for the proportionality con-
stant in the high congestion rate Θ(M−a). By this token, the bounds provided
by Theorem 7.4 are tight and cannot be improved in general, even in the class of
two-link parallel networks with monomial costs.

8. Discussion

Most of the literature on the price of anarchy – for congestion games and not
only – has traditionally focused on worst-case upper bounds for different classes
of networks, cost functions, and/or types of players. Several of these results have
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become milestones in the field and have had a significant impact in practical consid-
erations for traffic networks. However, real-world situations involve a fixed network
and traffic flows that are not necessarily close to these worst-case scenarios. Thus,
in addition to determining how bad can selfish routing become, it is also important
to determine when these cases are relevant.

Our goal in this paper was to provide an answer to this question by examining the
behavior of the price of anarchy at each end of the congestion spectrum. Under fairly
mild assumptions (that always include networks with polynomial costs), we found
that the PoA goes to 1 in both cases, independently of the network’s topology, and
even when there are multiple O/D pairs. What we find appealing about this result
is that it is essentially independent of the underlying graph and/or the distribution
of O/D pairs in the network. Especially in the heavy traffic limit, this means that
selfish routing is not the real cause of increased delays: from a social planner’s
point of view, sophisticated tolling/rerouting schemes that target the optimum
traffic assignment will not yield considerable gains over a “laissez-faire” approach
where each traffic element takes the fastest available path.

Appendix A. Proofs of the results of Section 3

We start this appendix with the proofs of Propositions 3.1 and 3.2. To that end,
we first establish the following result:

Lemma A.1. For sufficiently small M , equilibrium and optimum traffic allocations
only employ paths in Pimin = arg minp∈Pi cp(0).

Proof. In a slight abuse of notation, let cp(M) =
∑
e∈p ce(M) denote the cost of

the path p if all its edges carry load equal to the total inflow M . Clearly, if M
is small enough, we have cp′(0) > cp(M) for all p ∈ Pimin and all p′ ∈ Pi \ Pimin.
Hence, for an equilibrium flow f∗, we have

cp′(f
∗) ≥ cp′(0) > cp(M) ≥ cp(f∗), (A.1)

implying in turn that f∗p′ = 0. Likewise, since an optimal flow f̃ is an equilibrium
for the marginal costs c̃e(x) = ce(x) + x c′e(x) and c̃p′(0) > c̃p(M), similar consid-
erations show that an optimum flow profile cannot route any traffic along a path
p′ ∈ Pi \ Pimin. �

To proceed, it is more convenient to start with Proposition 3.2:

Proof of Proposition 3.2. By Lemma A.1, when M is small enough, both the equi-
librium and the optimum must route the total inflow mi along the unique path in
Pimin. Hence the equilibrium and optimal flows coincide and therefore the price of
anarchy is equal to 1. �

With this result at hand, we have:

Proof of Proposition 3.1. If Pimin is a singleton for all i ∈ I, our claim follows from
Proposition 3.2. Otherwise, by Lemma A.1, if M is small enough, for every i ∈ I,
only paths in Pimin are used in equilibrium. Moreover, if p, p′ ∈ Pimin, then, for M
small enough, we have ∑

e∈p
ae + be(x

∗
e)
d =

∑
e∈p′

ae + be(x
∗
e)
d, (A.2)
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and hence ∑
e∈p

be(x
∗
e)
d =

∑
e∈p′

be(x
∗
e)
d. (A.3)

Again, by Lemma A.1, if M is small enough, for every i ∈ I, only paths in Pimin

are used at the optimum. If p, p′ ∈ Pimin, then, for M small enough, we have∑
e∈p

ae + (d+ 1)bex̃
d
e =

∑
e∈p′

ae + (d+ 1)bex̃
d
e , (A.4)

that is, ∑
e∈p

(d+ 1)bex̃
d
e =

∑
e∈p′

= (d+ 1)bex̃
d
e . (A.5)

Comparing (A.3) and (A.5), we see that the two equations are satisfied by the same
loads. Therefore, for M small enough, there exist an equilibrium and an optimum
having the same flows. Uniqueness of the equilibrium and optimum costs provides
the result. �

We now present the proof of the counterexample with an oscillating PoA of
Section 3.2:

Proof of Proposition 3.3. Since an unused edge has a cost of zero under (3.2), all
three edges must be used at equilibrium. Hence, for a given value of the total inflow
M = x1 + x2 + x3, the load profile x = (x1, x2, x3) is a Wardrop equilibrium if and
only if c1(x1) = c2(x2) = c3(x3). In that case, the normalized profile z = x/M
satisfies

zd1
[
1 + 1

2 sin(logMz1)
]

= zd2 = zd3
[
1 + 1

2 cos(logMz3)
]
.

(A.6)

Likewise, after differentiating and rearranging, the conditions for the network’s
socially optimum flow are

zd1

[
1 + 1

2 sin(logMz1) + 1
2(d+1) cos(logMz1)

]
= zd2 = zd3

[
1 + 1

2 cos(logMz3)− 1
2(d+1) sin(logMz3)

]
.

(A.7)

We now show that Eqs. (A.6) and (A.7) never admit a common solution. Indeed,
this can occur if and only if

cos(logMz1) = 0 = sin(logMz3), (A.8)

i.e., if and only if there exist integers k1, k3 ∈ Z such that

logMz1 = k1π +
π

2
,

logMz3 = k3π.
(A.9)

This implies that sin(logMz1) = ±1 and cos(logMz3) = ±1, leading to the follow-
ing cases:

Case 1: sin(logMz1) = 1, cos(logMz3) = 1. Substituting in (A.6) we get zd1 = zd3
so (A.9) gives

k1π +
π

2
= k3π. (A.10)

This gives k3 − k1 = 1/2, which cannot hold for integer values of k1 and k3.
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Case 2: sin(logMz1) = 1, cos(logMz3) = −1. As above, from (A.6) we get 3zd1 =
zd3 , so (A.9) gives

1

d
log 3 + k1π +

π

2
= k3π. (A.11)

This yields log 3
π = d(k3 − k1 − 1

2 ), which again cannot hold for k1, k3, d ∈ Z.
The remaining two cases lead to a contradiction in the same way, implying that

the game’s Wardrop equilibrium and socially optimum flows cannot coincide for
any value of M . Since Eqs. (A.6) and (A.7) are periodic in logM , it follows that
the game’s price of anarchy oscillates periodically at a logarithmic scale. Thus,
focusing on the period 1 ≤M ≤ e2π, we conclude that

inf
M>0

PoA(ΓM ) = min
1≤M≤e2π

PoA(ΓM ) > 1, (A.12)

i.e., the Wardrop equilibria of the network in Fig. 1 remain strictly inefficient under
both light and heavy traffic. �

Appendix B. Convergence of the price of anarchy

We now prove Theorem 6.2; Theorems 4.2, 4.6 and 5.1 will then follow as special
cases of this more general result. To that end, we begin with two auxiliary lemmas
concerning the asymptotic behavior of regularly varying functions:

Lemma B.1 (Karamata, 1933). If g is regularly varying at ω, there exists some
ρ ∈ R such that

lim
t→ω

g(tx)

g(t)
= xρ for all x > 0. (B.1)

Lemma B.1 is a classical result in the theory of regularly varying functions and
gives rise to the term “ρ-regularly varying” for functions satisfying (B.1); for a
proof, see, e.g., Bingham et al. (1989).

The second lemma is a more technical asymptotic comparison result allowing us
to replace a ρ-regularly varying function by a monomial of degree ρ in the limit:

Lemma B.2. Let ω ∈ {0,∞} and consider two functions f, g : (0,∞)→ (0,∞) such
that:

(1) f is nondecreasing.
(2) g is ρ-regularly varying at ω for some ρ > 0.
(3) limx→ω f(x)/g(x) = α ∈ [0,∞).

If Mn → ω and zn → z ∈ [0,∞), then

lim
n→∞

f(Mnzn)

g(Mn)
= αzρ. (B.2)

Proof. We first consider the case ω = ∞. If z > 0, the sequence xn = Mnzn
diverges to infinity, so our claim follows from Theorem 1.5.2 in Bingham et al.
(1989) by writing

f(Mnzn)

g(Mn)
=
f(xn)

g(xn)
· g(Mnzn)

g(Mn)
→ αzρ. (B.3)

If z = 0, then, for all ε > 0, we have zn ≤ ε if n is sufficiently large. Then, using
the monotonicity of f and the previous argument, we get

0 ≤ lim sup
n→∞

f(Mnzn)

g(Mn)
≤ lim sup

n→∞

f(Mnε)

g(Mn)
= αερ. (B.4)
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Taking ε→ 0, we conclude that f(Mnzn)/g(Mn)→ 0 = αzρ, as claimed.
The case ω = 0 is even simpler. Indeed, we now have that xn = Mnzn tends to

0, so that the result follows using (B.3) and invoking Theorem 1.5.2 in Bingham
et al. (1989). �

Now, to proceed with the proof of Theorem 6.2, we will require some additional
notation. First, fix some inflow vectorm = (mi)i∈I with total inflowM =

∑
i∈Im

i

and relative inflows λ = (λi)i∈I . Instead of working directly with the flow variables
f ∈ F , it will be more convenient to introduce the normalized traffic allocation
variables yi = (yip)p∈Pi defined as

yip = fp/m
i for all p ∈ Pi, i ∈ I. (B.5)

We clearly have
∑
p∈Pi y

i
p = 1 for all i ∈ I; we will also write Yi = ∆(Pi) for

the simplex of traffic allocations of i ∈ I and Y = ×i∈IYi for the product thereof.
Moreover, descending to the edge level, we define the normalized load induced by
the i-th O/D pair on e ∈ E as

zie(y) =
∑

p∈Pi,p3e

yip (B.6)

and we denote respectively the normalized and total load on edge e ∈ E as

ζe(y, λ) =
∑
i∈I

λizie(y) and xe(y,m) = M ζe(y, λ) =
∑
i∈I

mizie(y). (B.7)

Finally, based on the index framework of Sections 4 and 5, we will respectively
denote the set of the network’s fast, tight and slow edges as

Efast = {e ∈ E : αe = 0}, (B.8a)

Etight = {e ∈ E : 0 < αe <∞}, (B.8b)

Eslow = {e ∈ E : αe =∞}, (B.8c)

and, in obvious notation, we will write e.g., Pslow for the set of the network’s slow
paths, Itight for the set of tight O/D pairs, etc.

The following asymptotic approximation result provides the heavy lifting for the
proof of Theorem 6.2:

Lemma B.3. Consider a network with nondecreasing cost functions ge, with ge(0) =
0 for e ∈ E, and suppose that it admits a benchmark function g at ω, which is ρ-
regularly varying with ρ > 0. Consider also a sequence of inflow vectors mn =
Mnλn such that:

a) Mn → ω and the vector of relative inflows λn converges to some λ ∈ ∆(I).
b) Every O/D pair has a path which is not slow (relative to g).
c) There exists an O/D pair i ∈ I which is tight (relative to g) and has λi > 0.

Then, the optimal allocation problem

Gn = min
y∈Y

∑
e∈E

ge(xe(y,mn)) (B.9)

satisfies

lim
n→∞

Gn
g(Mn)

= Vρ(λ), (B.10)
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where Vρ(λ) ∈ (0,∞) is the solution value of the problem

Vρ(λ) = min
y∈Y

∑
e∈E

αe ζe(y, λ)ρ (B.11)

and, by convention, we have set αezρe = 0 if αe = ∞ and ze = 0. Moreover, if ŷn
is a sequence of optimal solutions of Gn, every limit point of ŷn solves Vρ(λ).

Proof. The arguments in the proof are similar to the line of reasoning in epi-
convergence arguments as in Attouch (1984). To streamline the presentation, we
break up the proof in five steps as follows:

Step 1: Vρ(λ) < ∞. By Condition (b), each O/D pair admits a path that is
not slow; therefore, routing all traffic through said path gives a finite value for the
objective of (B.11), implying in turn that Vρ(λ) < ∞. More precisely, for every
i ∈ I, take a traffic allocation yi ∈ Yi that assigns zero weight to the slow paths
Pislow of i. Then, for every slow edge e ∈ Eslow, we have zie(y) = 0 and, a fortiori,
ζe(y, λ) = 0; hence

Vρ(λ) ≤
∑

e:αe<∞
αe ζe(y, λ)ρ <∞. (B.12)

Step 2: Vρ(λ) > 0. By Condition (c), there exists a tight O/D pair i ∈ Itight
such that λi > 0. For every y ∈ Y we have

∑
p∈Pi yp = 1, so there exists some

route p ∈ Pi with yip ≥ 1/|Pi|. This gives zie(y) ≥ 1/|Pi| for all e ∈ p, and hence∑
e∈E

αe ζe(y, λ)ρ ≥
∑
e∈E

αe
(
λizie(y)

)ρ ≥∑
e∈p

αe
(
λi/|Pi|

)ρ ≥ αi(λi/|Pi|)ρ > 0.

(B.13)
Minimizing over y ∈ Y then yields Vρ(λ) > 0, as claimed.

Step 3: lim supn→∞Gn/g(Mn) ≤ Vρ(λ). Fix an optimal solution ŷ ∈ Y of
(B.11). By the finiteness of Vρ(λ), we have ζe(ŷ, λ) = 0 for every slow edge e ∈ Eslow
(i.e., when αe = ∞). If λi > 0, this implies that zie(ŷ) = 0. Otherwise, if λi = 0,
the objective function of (B.11) does not depend on yi, so every yi with zie(y) = 0
is also optimal. Hence we can choose the solution ŷ of (B.11) so that all traffic is
routed along edges that are not slow.

Now, from optimality we have
Gn

g(Mn)
≤ 1

g(Mn)

∑
e∈E

ge(Mnζe(ŷ, λn)). (B.14)

Using Lemma B.2, for every non-slow edge e ∈ E \ Eslow (i.e., αe <∞), we get

lim
n→∞

ge(Mnζe(ŷ, λn))

g(Mn)
= αe ζe(ŷ, λ)ρ. (B.15)

Otherwise, if e ∈ Eslow is slow (i.e., αe = ∞), we have ζe(ŷ, λn) = 0; thus, since
ge(0) = 0, we get

lim
n→∞

ge(Mnζe(ŷ, λn))

g(Mn)
= lim
n→∞

ge(0)

g(Mn)
= 0 = αe ζe(ŷ, λ)ρ. (B.16)

Combining the previous three displayed equations, we obtain

lim sup
n→∞

Gn
g(Mn)

≤
∑
e∈E

lim
n→∞

ge(Mnζe(ŷ, λn))

g(Mn)
=
∑
e∈E

αe ζe(ŷ, λ)ρ = Vρ(λ). (B.17)
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Step 4: lim infn→∞Gn/g(Mn) ≥ Vρ(λ). Passing to a subsequence if necessary,
we may assume that lim infn→∞Gn/g(Mn) is attained as a limit. Thus, letting ŷn
be a sequence of solutions of Gn, and taking a further subsequence if necessary, we
may assume that ŷn converges to some ŷ ∈ Y. Then, ignoring the network’s slow
edges, we have

Gn
g(Mn)

≥
∑

e:αe<∞

ge(Mnζe(ŷn, λn))

g(Mn)
, (B.18)

and hence, by Lemma B.2, we obtain

lim inf
n→∞

Gn
g(Mn)

≥
∑

e:αe<∞
αe ζe(ŷ, λ)ρ. (B.19)

To proceed, we will show that ζe(ŷ, λ) = 0 for every slow edge. Indeed, if this
were not the case, we could find some ε > 0 such that ζe(ŷn, λn) > ε for all
sufficiently large n. With ge nondecreasing, we then get

Gn
g(Mn)

≥ ge(Mnζe(ŷn, λn))

g(Mn)
≥ ge(Mnε)

g(Mn)
=
ge(Mnε)

g(Mnε)

g(Mnε)

g(Mn)
→ αeε

ρ =∞, (B.20)

in contradiction to Steps 1 and 3 above. From all this, it follows that

lim inf
n→∞

Gn
g(Mn)

≥
∑
e∈E

αe ζe(ŷ, λ)ρ ≥ Vρ(λ). (B.21)

Step 5: Optimality of limit points. As above, let ŷn be a sequence of optimal
solutions of (B.9) and, by descending to a subsequence if necessary, assume that it
converges to some ŷ ∈ Y. From the previous steps we have Gn/g(Mn)→ Vρ(λ) so,
proceeding as in Step 4, we get

Vρ(λ) = lim
n→∞

Gn
g(Mn)

≥
∑
e∈E

αe ζe(ŷ, λ)ρ ≥ Vρ(λ), (B.22)

showing that ŷ solves (B.11). �

Armed with Lemma B.3, we are finally in a position to prove Theorem 6.2:

Proof of Theorem 6.2. To begin with, express the objective function of (SO) in
terms of the normalized flow variables y as

Ln(y) =
∑
e∈E

xe(y,mn) ce(xe(y,mn)). (B.23)

Now, let y∗n, ỹn be the normalized traffic allocation profiles of a Wardrop equilibrium
and a socially optimum flow, respectively. Then, the network’s price of anarchy may
be expressed as

PoA(Γn) =
Eq(Γn)

Opt(Γn)
=
Ln(y∗n)

Ln(ỹn)
. (B.24)

Notice that Opt(Γn) > 0 thanks to Assumptions (b) and (c).
In order to prove that PoA(Γn)→ 1 it suffices to take a subsequence Γnk realizing

the lim supn→∞ PoA(Γn) as a limit and to prove that PoA(Γnk) → 1. Relabeling
indices and extracting a further subsequence if necessary, we may assume without
loss of generality that: (a) the limit limn→∞ PoA(Γn) exists; (b) the sequence λn
of relative inflows converges to some λ ∈ ∆(I); and (c) the sequences y∗n and ỹn
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converge to some y∗, ỹ ∈ Y respectively. With all this, we will use Lemma B.3 to
derive the asymptotic behavior of Opt(Γn) and Eq(Γn).

First, for Opt(Γn), combining Lemma B.1 with Proposition 1.5.1 of Bingham
et al. (1989) and the fact that the network’s cost functions are nondecreasing, we
immediately see that the network’s benchmark function c is β-regularly varying for
some β ≥ 0. Then, letting ge(x) = xce(x) and g(x) = xc(x), we also get that g is ρ-
regularly varying with ρ = 1+β > 0 and limx→ω ge(x)/g(x) = limx→ω ce(x)/c(x) =
αe. This means that the hypotheses of Lemma B.3 are all satisfied, implying in
turn that

Ln(ỹn) = Opt(Γn) ∼ Vρ(λ) g(Mn) as n→∞, (B.25)
with the notation “fn ∼ gn” meaning here that limn→∞ fn/gn = 1.

In view of this, and since 0 < Vρ(λ) < ∞, it remains to show that Ln(y∗n) ∼
Vρ(λ)g(Mn). To that end, we first analyze the asymptotic behavior of the convex
minimization problem

W (Γn) = min
y∈Y

∑
e∈E

Ce(xe(y,mn)) (B.26)

by applying Lemma B.3 to the primitives Ce and C of ce and c respectively. By
a standard result (Bingham et al., 1989, Theorem 1.5.11), C is ρ-regularly varying
with ρ = 1 + β; moreover, by L’Hôpital’s rule we also have limx→ω Ce(x)/C(x) =
limx→ω ce(x)/c(x) = αe. By Lemma B.3, it follows that W (Γn)/C(Mn) → Vρ(λ).
In addition, since the Wardrop equilibrium traffic allocations y∗n are solutions of
W (Γn), the limit y∗ of y∗n is optimal for Vρ(λ) by Lemma B.3.

Noting that xe(y∗n,mn) = Mnζe(y
∗
n, λn), we obtain

Ln(y∗n)

g(Mn)
=
∑
e∈E

ge
(
Mnζe(y

∗
n, λn)

)
g(Mn)

. (B.27)

By Lemma B.2, we also have the following limit for every non-slow edge e ∈ E\Eslow:
ge(Mnζe(y

∗
n, λn))

g(Mn)
→ αe ζe(y

∗, λ)ρ. (B.28)

To establish a similar limiting result when e is slow, we first claim that there exists
a constant B ≥ 0 such that

ge(Mnζe(y
∗
n, λn)) ≤ B ζe(y∗n, λn)g(Mn) (B.29)

This is trivially satisfied when ζe(y
∗
n, λn) = 0, so it suffices to consider the case

ζe(y
∗
n, λn) > 0. The above inequality is then equivalent to asking that

ce(Mnζe(y
∗
n, λn)) ≤ B c(Mn) (B.30)

Now, ζe(y∗n, λn) > 0 implies that the edge e receives some equilibrium traffic from
at least one O/D pair i ∈ I, so it must belong to a path p ∈ Pi with minimal cost.
Thus, if we consider an alternative path p′ ∈ Pi all of whose edges are tight or fast,
we have

ce(Mnζe(y
∗
n, λn)) ≤

∑
e′∈p

ce′(Mnζe′(y
∗
n, λn)) ≤

∑
e′∈p′

ce′(Mnζe′(y
∗
n, λn)). (B.31)

Using the trivial bound Mnζe′(y
∗
n, λn) ≤Mn, we further get

ce(Mnζe(y
∗
n, λn)) ≤

∑
e′∈p′

ce′(Mn) ≤
∑

e′:αe′<∞
ce′(Mn). (B.32)
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However, for every non-slow edge e′ ∈ E \ Eslow, the sequence ce′(Mn)/c(Mn) con-
verges to αe′ so we can find a constant Be′ such that ce′(Mn)/c(Mn) ≤ Be′ for all
n ∈ N; consequently, (B.30) follows by taking B =

∑
e′:αe′<∞

Be′ . Thus, given that
y∗ is optimal for Vρ(λ), we get ζe(y∗n, λn)→ ζe(y

∗, λ) = 0, and hence

ge(Mnζe(y
∗
n, λn))

g(Mn)
≤ B ζe(y∗n, λn)→ 0 = αe ζe(y

∗, λ)ρ. (B.33)

Combining (B.28), (B.33) and (B.27), we then get

Ln(y∗n)/g(Mn)→
∑
e∈E

αe ζe(y
∗, λ)ρ = Vρ(λ), (B.34)

as was to be shown. �

Appendix C. Speed of convergence

In this appendix, we provide the proofs of the results presented in Section 7.

C.1. Rates in the light traffic regime. First we present the proof of Proposition 7.1
on the light traffic rates in the case of a Pigou network.

Proof of Proposition 7.1. Let x denote the flow on edge e1. At equilibrium, the
costs on both edges must be equal so that (x∗)d1 = (M −x∗)d2 , which is equivalent
to x∗ + (x∗)d1/d2 = M . Since M tends to 0 it follows that x∗ will be small and
since d1 < d2 the term (x∗)d1/d2 dominates the right hand side. Therefore

x∗ = Md2/d1(1 + o(1)) (C.1)

so the equilibrium cost Eq(ΓM ) = M · c1(x∗) = M · c2(M − x∗) scales as

Eq(ΓM ) = M ·
[
M −Md2/d1(1 + o(1))

]d2
= Md2+1−d2Md2+d1/d2 +o(Md2+d1/d2).

(C.2)
Similarly, if x̃ is the optimal flow on edge e1, both edges have the same marginal

cost
(1 + d1)x̃d1 = (1 + d2)(M − x̃)d2 . (C.3)

Therefore, if we let

ρ =

(
1 + d2
1 + d1

)1/d2

, (C.4)

we get ρx̃+ x̃d1/d2 = ρM as before, and hence

x̃ = (ρM)d2/d1(1 + o(1)). (C.5)

It follows that the optimal cost scales as

Opt(ΓM ) = x̃ · c1(x̃) + (M − x̃) · c2(M − x̃)

=
[
(ρM)d2/d1(1 + o(1))

]d1+1

+
[
M − (ρM)d2/d1(1 + o(1))

]d2+1

= (ρM)d2+d2/d1 +Md2+1 − (d2 + 1)Md2(ρM)d2/d1 + o(Md2+d2/d1)

= Md2+1 − ρd2/d1
[
(d2 + 1)− ρd2

]
Md2+d2/d1 + o(Md2+d2/d1)

= Md2+1 − (b+ d2)Md2+d2/d1 + o(Md2+d2/d1) (C.6)

where the last equality follows from the identity ρd2/d1
[
(d2 + 1)− ρd2

]
= b+ d2.
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Combining the previous expressions we get

PoA(ΓM ) =
Eq(ΓM )

Opt(ΓM )
=

Opt(ΓM ) + bMd2+d2/d1 + o(Md2+d2/d1)

Opt(ΓM )

= 1 +
bMd2+d2/d1 + o(Md2+d2/d1)

Md2+1 + o(Md2+1)

= 1 + bMa + o(Ma). (C.7)

To complete our proof, it remains to show that b > 0. After a small rearrange-
ment, this is equivalent to establishing the inequality(

1 + d2
1 + d1

)1+d1

=

(
1 +

d2 − d1
1 + d1

)1+d1

>

(
1 +

d2 − d1
d1

)d1
=

(
d2
d1

)d1
, (C.8)

which itself follows from the fact that the function (1 + g/x)x is increasing in x
whenever g is positive. �

Now we prove the following more general version of Theorem 7.2.

Theorem C.1. Let Γn be a sequence of nonatomic routing games satisfying the
assumptions of Theorem 6.2, with Mn → 0. Suppose further that the edge costs are
polynomials as in (7.1), and let a = q/qslow−1 with q and qslow given by (7.5d) and
(7.7) respectively. Then, there exist non-negative constants K1 ≥ 0 and Ka ≥ 0
such that

PoA(Γn) ≤ 1 +K1Mn +KaM
a
n (C.9)

with Ka = 0 whenever Eslow = ∅.

Proof. Let y∗n, ỹn ∈ Y be an equilibrium and an optimum flow for Γn with induced
edge flows x∗e,n = Mn ζe(y

∗
n, λn) and x̃e,n = Mn ζe(ỹn, λn). The social cost of y∗n

can be estimated as

Ln(y∗n) =
∑
e∈E

x∗e,n ce(x
∗
e,n) =

∑
e∈E

de∑
k=qe

ce,k · (x∗e,n)
k+1

=
∑
e∈E

de∑
k=qe

[
q + 1

k + 1
+
k − q
k + 1

]
ce,k · (x∗e,n)

k+1

= (q + 1)
∑
e∈E

Ce(x
∗
e,n) +

∑
e∈E

de∑
k=qe

k − q
k + 1

ce,k · (x∗e,n)
k+1

≤ (q + 1)
∑
e∈E

Ce(x̃e,n) +
∑
e∈E

de∑
k=q+1

k − q
k + 1

ce,k · (x∗e,n)
k+1 (C.10)

where Ce is the primitive of ce and for the last inequality we used the fact that
x∗e,n minimizes the first sum, and in the double sum we dropped the negative terms
with k ≤ q. Now, the first sum in (C.10) can be further bounded as

(q + 1)
∑
e∈E

Ce(x̃e,n) =
∑
e∈E

de∑
k=qe

q + 1

k + 1
ce,k · (x̃e,n)

k+1

=
∑
e∈E

de∑
k=qe

ce,k · (x̃e,n)
k+1

+
∑
e∈E

de∑
k=qe

q − k
k + 1

ce,k · (x̃e,n)
k+1
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≤ Opt(Γn) +
∑

e∈Eslow

q−1∑
k=qe

q − k
k + 1

ce,k · (x̃e,n)
k+1

where we used the optimality of x̃n in the first double sum, and we dropped the
negative terms in the second. Note that in the latter only the slow edges with
qe < q are relevant. Combining these estimates we get

Ln(y∗n) ≤ Opt(Γn)+
∑

e∈Eslow

q−1∑
k=qe

q − k
k + 1

ce,k ·(x̃e,n)
k+1

+
∑
e∈E

de∑
k=q+1

k − q
k + 1

ce,k ·(x∗e,n)
k+1

(C.11)
Let us call LI

n the first double sum in (C.11) and LII
n the second. In order to

bound LII
n we assume that n is large enough so that Mn ≤ 1. This assumption is

done for convenience and it only affects the value of the constants K1 and Ka: by
redefining them appropriately, the bound (C.9) will hold for all n. Then by setting

G =
∑
e∈E

de∑
k=q+1

k − q
k + 1

ce,k, (C.12)

and noting that x∗e,n ≤Mn, we get

LII
n ≤

∑
e∈E

de∑
k=q+1

k − q
k + 1

ce,k ·Mk+1
n ≤ GMq+2

n . (C.13)

In order to bound LI
n we note that this term vanishes when Eslow is empty.

Otherwise, consider any edge e ∈ Eslow that contributes to the sum with x̃e,n > 0.
We note that the optimum flow ỹn is an equilibrium for the marginal cost functions

c̃e(x) = ce(x) + x c′e(x) =

de∑
k=qe

(k + 1)ce,kx
k. (C.14)

The edge e must therefore belong to an optimal path p ∈ Pi (w.r.t. the costs c̃e(x))
for some i ∈ I. Hence, taking any alternative path p′ ∈ Pi which is not slow, i.e.,
with qe′ ≥ q for all e′ ∈ p′, and denoting

B =
∑

e′ 6∈Eslow

de′∑
k=qe′

(k + 1)ce′,k, (C.15)

we get the bound (recall that Mn ≤ 1)

c̃e(x̃e,n) ≤
∑
e′∈p

c̃e′(x̃e,n) ≤
∑
e′∈p′

c̃e′(x̃e,n) ≤
∑
e′∈p′

c̃e′(Mn) ≤ BMq
n. (C.16)

In particular, letting c̃0 = mine∈Eslow(qe + 1)ce,qe we have

c̃0 · (x̃e,n)
qe ≤ (qe + 1)ce,qe · (x̃e,n)

qe ≤ c̃e(x̃e,n) ≤ BMq
n. (C.17)

Now, for n large we have BMq
n/c̃0 ≤ 1 and since qe ≤ qslow we obtain x̃e,n ≤

(BMq
n/c̃0)

1/qslow . Combining this latter bound with (C.16), and denoting D =

B (B/c̃0)
1/qslow |Eslow|, we deduce

LI
n =

∑
e∈Eslow

q−1∑
k=qe

q − k
k + 1

ce,k · (x̃e,n)
k+1
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≤
∑

e∈Eslow

q−1∑
k=qe

(k + 1)ce,k · (x̃e,n)
k+1

≤
∑

e∈Eslow

x̃e,n c̃e(x̃e,n)

≤
∑

e∈Eslow

(BMq
n/c̃0)

1/qslowBMq
n

≤ DMq+q/qslow
n . (C.18)

Plugging (C.18) and (C.13) into (C.11) we get

PoA(Γn) =
Ln(y∗n)

Opt(Γn)
≤ Opt(Γn) +GMq+2

n +DM
q+q/qslow
n

Opt(Γn)
. (C.19)

Now, if we set H = mine∈E ce,qe , we have the following lower bound for the
optimal cost

Opt(Γn) =
∑
e∈E

x̃e,n · ce(x̃e,n) ≥ H
∑
e∈E

(x̃e,n)
qe+1

. (C.20)

We claim that the latter is of order at least O(Mq+1
n ). Indeed, let us take ε > 0

with
∑
i∈Itight

λin ≥ ε for sufficiently large n. For each n ∈ N we may find i ∈ Itight

such that λin ≥ ε/|Itight| and, similarly, there exists a path p ∈ Pi with ỹp,n ≥
1/|Pi| ≥ 1/|P|. Then, setting κ = 1/(|Itight| × |P|) we have ζe(ỹn, λn) ≥ κε and
therefore x̃e,n ≥Mnκε for all e ∈ p. For n large we may assume thatMnκε ≤ 1 and,
since the path p contains at least one edge e ∈ p with qe ≤ q, setting H̄ = H(κε)q+1

we get
Opt(Γn) ≥ H (Mnκε)

qe+1 ≥ H̄Mq+1
n . (C.21)

This lower bound, combined with (C.19), yields (C.9) with K1 = G/H̄ and
Ka = D/H̄. We conclude by noting that when Eslow = ∅ we have LI

n = 0 and
therefore we may take Ka = 0. �

C.2. Rates in the heavy traffic regime. We proceed with the proof of Proposi-
tion 7.3 on the heavy traffic rates in the case of a Pigou network.

Proof of Proposition 7.3. Let x denote the flow on edge e2. At equilibrium, the
costs on both edges must be equal so (x∗)d2 = (M − x∗)d1 , which is equivalent to
x∗ + (x∗)d2/d1 = M . It thus follows that

x∗ = Md1/d2(1 + o(1)), (C.22)

implying in turn that the equilibrium cost Eq(ΓM ) = M · c2(x∗) = M · c1(M − x∗)
scales as

Eq(ΓM ) = M ·
[
M −Md1/d2(1 + o(1))

]d1
= M1+d1−d1Md1+d1/d2 +o(Md1+d1/d2).

(C.23)
Similarly, if x̃ is the optimal flow on edge e2, both edges have the same marginal
cost, namely

(1 + d2)x̃d2 = (1 + d1)(M − x̃)d1 , (C.24)
and hence

x̃ = (θM)d1/d2(1 + o(1)), (C.25)



34 R. COLINI-BALDESCHI, R. COMINETTI, P. MERTIKOPOULOS, AND M. SCARSINI

where we set

θ =

(
1 + d1
1 + d2

)1/d1

. (C.26)

Therefore, the optimal social cost scales as

Opt(ΓM ) = (M − x̃) · c1(M − x̃) + x̃ · c2(x̃)

=
[
M − (θM)d1/d2(1 + o(1))

]d1+1
+
[
(θM)d1/d2(1 + o(1))

]d2+1

= Md1+1 − (d1 + 1)Md1(θM)d1/d2 + (θM)d1+d1/d2 + o(Md1+d1/d2)

= Md1+1 − θd1/d2 [(d1 + 1)− θd1 ]Md1+d1/d2 + o(Md1+d1/d2), (C.27)

= Md1+1 − (b+ d1)Md1+d1/d2 + o(Md1+d1/d2), (C.28)

where b is defined as in (7.11).
Combining the previous expressions, we then get

PoA(ΓM ) =
Opt(ΓM ) + bMd1+d1/d2 + o(Md1+d1/d2)

Opt(ΓM )
(C.29)

= 1 +
bMd1+d1/d2 + o(Md1+d1/d2)

Md1+1 + o(Md1+1)

= 1 + bM−a + o
(
M−a

)
, (C.30)

which establishes the first part of Proposition 7.3. Finally, the positivity of b > 0,
follows again from the fact that (1− g/x)x increased with x when g > 0. �

The following more general result subsumes Theorem 7.4.

Theorem C.2. Let Γn be a sequence of nonatomic routing games satisfying the
assumptions of Theorem 6.2, with Mn → ∞. Suppose further that the edge costs
are polynomials as in (7.1), and let a = 1−d/dslow with d and dslow given by (7.12d)
and (7.14). Then there exist non-negative constants K1 ≥ 0 and Ka ≥ 0 such that

PoA(Γn) ≤ 1 +
K1

Mn
+
Ka

Ma
n

(C.31)

with Ka = 0 whenever Eslow = ∅.

Proof. The proof follows a similar pattern as the one of Theorem C.1. Let again
y∗n, ỹn ∈ Y be an equilibrium and an optimum for Γn, respectively. Denote x∗e,n =
Mn ζe(y

∗
n, λn) and x̃e,n = Mn ζe(ỹn, λn) the corresponding induced edge flows. As

before, the social cost of y∗n can be estimated as

Ln(y∗n) =
∑
e∈E

x∗e,n ce(x
∗
e,n) =

∑
e∈E

de∑
k=qe

ce,k · (x∗e,n)
k+1

=
∑
e∈E

de∑
k=qe

[
d+ 1

k + 1
+
k − d
k + 1

]
ce,k · (x∗e,n)

k+1

= (d+ 1)
∑
e∈E

Ce(x
∗
e,n) +

∑
e∈E

de∑
k=qe

k − d
k + 1

ce,k · (x∗e,n)
k+1

≤ (d+ 1)
∑
e∈E

Ce(x̃e,n) +
∑

e∈Eslow

x∗e,n · ce(x∗e,n), (C.32)
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where in the last inequality we used the fact that x∗e,n minimizes the first sum,
while in the double sum we dropped the edges e 6∈ Eslow since (k − d)/(k + 1) ≤ 0
for all k ≤ de ≤ d, and we used the inequality (k − d)/(k + 1) ≤ 1 to bound the
remaining terms e ∈ Eslow by factoring out x∗e,n and using the expression (7.1) for
ce(x). Now, the first sum in (C.32) can be further bounded as

(d+ 1)
∑
e∈E

Ce(x̃e,n) =
∑
e∈E

de∑
k=qe

d+ 1

k + 1
ce,k · (x̃e,n)

k+1

=
∑
e∈E

de∑
k=qe

ce,k · (x̃e,n)
k+1

+
∑
e∈E

de∑
k=qe

d− k
k + 1

ce,k · (x̃e,n)
k+1

≤ Opt(Γn) +
∑
e∈E

d−1∑
k=qe

d− k
k + 1

ce,k · (x̃e,n)
k+1

,

where in the inequality we used the optimality of x̃n for the first sum and we
dropped the negative terms in the second sum. Putting all this together we obtain
the bound

Ln(y∗n) ≤ Opt(Γn) +
∑
e∈E

d−1∑
k=qe

d− k
k + 1

ce,k · (x̃e,n)
k+1

+
∑

e∈Eslow

x∗e,n · ce(x∗e,n). (C.33)

Now, call LI
n the first double sum and LII

n the last sum in (C.33). In order to
bound LI

n we assume that n is large enough so that Mn ≥ 1. Then, denoting

G =
∑
e∈E

d−1∑
k=qe

d− k
k + 1

ce,k (C.34)

and using the fact that x̃e,n ≤Mn, we can bound LI
n as

LI
n ≤

∑
e∈E

d−1∑
k=qe

d− k
k + 1

ce,k ·Mk+1
n ≤ GMd

n. (C.35)

In order to bound LII
n we note that this term vanishes whenever Eslow is empty.

Otherwise, consider any edge e ∈ Eslow that contributes to the sum with x∗e,n > 0.
Since y∗n is an equilibrium, the edge e must belong to a path p ∈ Pi with minimal
cost for some i ∈ I. Hence, taking any alternative path p′ ∈ Pi which is not slow,
and denoting

B =
∑

e′ 6∈Eslow

de′∑
k=q′e

ce′,k, (C.36)

we get the bound

ce(x
∗
e,n) ≤

∑
e′∈p

ce′(x
∗
e,n) ≤

∑
e′∈p′

ce′(x
∗
e,n) ≤

∑
e′∈p′

ce′(Mn) ≤ BMd
n. (C.37)

In particular, letting c0 = mine∈Eslow ce,de we have

c0 ·
(
x∗e,n

)de ≤ ce,de · (x∗e,n)de ≤ ce(x∗e,n) ≤ BMd
n. (C.38)

Now, for n large we have BMd
n/c0 ≥ 1 and since de ≥ dslow we get x∗e,n ≤(

BMd
n/c0

)1/dslow . Combining this latter bound with (C.37), and denoting D =
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B (B/c0)
1/dslow |Eslow|, we deduce

LII
n =

∑
e∈Eslow

x∗e,n · ce(x∗e,n) ≤
∑

e∈Eslow

(
BMd

n/c0
)1/dslow

BMd
n ≤ DMd+d/dslow

n . (C.39)

Plugging (C.35) and (C.39) into (C.33) we get

PoA(Γn) =
Ln(y∗n)

Opt(Γn)
≤ Opt(Γn) +GMd

n +DM
d+d/dslow
n

Opt(Γn)
. (C.40)

Now, if we set H = mine∈E ce,de , we have the following lower bound for the
optimal cost

Opt(Γn) =
∑
e∈E

x̃e,n · ce(x̃e,n) ≥ H
∑
e∈E

(x̃e,n)
de+1

. (C.41)

We claim that the latter is of order at least O(Md+1
n ). Indeed, let us take ε > 0

with
∑
i∈Itight

λin ≥ ε for sufficiently large n. For each n ∈ N we may find i ∈ Itight

such that λin ≥ ε/|Itight| and, similarly, there exists a path p ∈ Pi with ỹp,n ≥
1/|Pi| ≥ 1/|P|. Then, setting κ = 1/(|Itight| × |P|) we have ζe(ỹn, λn) ≥ κε and
therefore x̃e,n ≥Mnκε for all e ∈ p. For n large we may assume thatMnκε ≥ 1 and,
since the path p contains at least one edge e ∈ p with de ≥ d, setting H̄ = H(κε)d+1

we get
Opt(Γn) ≥ H (Mnκε)

de+1 ≥ H̄Md+1
n . (C.42)

This lower bound, combined with (C.40), yields (C.31) with K1 = G/H̄ and
Ka = D/H̄. We conclude by noting that when Eslow = ∅ we have LII

n = 0 and
therefore we may take Ka = 0. �
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