Motivated by global analysis of aircraft-based measurements of air pollutants and climate variables, and specifically the COVID-19 pandemic’s possible impact on ozone concentrations, a functional autoregressive model is proposed to capture global spatio-temporal variability, incorporating solar radiation cycles. Efficient estimation techniques are developed and means of suitable visualization demonstrated, paving the way for similar analyses in the future.

Stöcker, Almond; Caponera, Alessia. (2024). Functional autoregressive processes on a spherical domain for global aircraft-based atmospheric measurements. In Proceedings of the Statistics and Data Science 2024 Conference: New Perspectives on Statistics and Data Science (pp. 161- 167). Università degli Studi di Palermo. Isbn: 978-88-5509-645-4. https://unipapress.com/book/proceedings-of-the-statistics-and-data-science-2024-conference/.

Functional autoregressive processes on a spherical domain for global aircraft-based atmospheric measurements

Alessia Caponera
2024

Abstract

Motivated by global analysis of aircraft-based measurements of air pollutants and climate variables, and specifically the COVID-19 pandemic’s possible impact on ozone concentrations, a functional autoregressive model is proposed to capture global spatio-temporal variability, incorporating solar radiation cycles. Efficient estimation techniques are developed and means of suitable visualization demonstrated, paving the way for similar analyses in the future.
2024
978-88-5509-645-4
functional autoregressive processes, spherical domain, ozone concentrations, aircraft-based, measurements, COVID-19
Stöcker, Almond; Caponera, Alessia. (2024). Functional autoregressive processes on a spherical domain for global aircraft-based atmospheric measurements. In Proceedings of the Statistics and Data Science 2024 Conference: New Perspectives on Statistics and Data Science (pp. 161- 167). Università degli Studi di Palermo. Isbn: 978-88-5509-645-4. https://unipapress.com/book/proceedings-of-the-statistics-and-data-science-2024-conference/.
File in questo prodotto:
File Dimensione Formato  
Caponera_ Atti-SDS-2024-9788855096454-2.pdf

Open Access

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 3.68 MB
Formato Adobe PDF
3.68 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11385/251040
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact