In this paper we introduce the literature on regression models with tensor variables and present a Bayesian linear model for inference, under the assumption of sparsity of the tensor coefficient. We exploit the CONDECOMP/PARAFAC (CP) representation for the tensor of coefficients in order to reduce the number of pa- rameters and adopt a suitable hierarchical shrinkage prior for inducing sparsity. We propose a MCMC procedure via Gibbs sampler for carrying out the estimation, dis- cussing the issues related to the initialisation of the vectors of parameters involved in the CP representation.

Billio, Monica; Casarin, Roberto; Iacopini, Matteo. (2017). Bayesian Tensor Regression Models. In Proceedings of the Conference of the Italian Statistical Society. Statistics and Data Science: new challenges, new generations (pp. 179- 186). Firenze University Press. Isbn: 978-88-6453-521-0.

Bayesian Tensor Regression Models

IACOPINI, MATTEO
2017

Abstract

In this paper we introduce the literature on regression models with tensor variables and present a Bayesian linear model for inference, under the assumption of sparsity of the tensor coefficient. We exploit the CONDECOMP/PARAFAC (CP) representation for the tensor of coefficients in order to reduce the number of pa- rameters and adopt a suitable hierarchical shrinkage prior for inducing sparsity. We propose a MCMC procedure via Gibbs sampler for carrying out the estimation, dis- cussing the issues related to the initialisation of the vectors of parameters involved in the CP representation.
2017
978-88-6453-521-0
Tensor regression, Sparsity, Bayesian Inference, Hierarchical Shrinkage Prior
Billio, Monica; Casarin, Roberto; Iacopini, Matteo. (2017). Bayesian Tensor Regression Models. In Proceedings of the Conference of the Italian Statistical Society. Statistics and Data Science: new challenges, new generations (pp. 179- 186). Firenze University Press. Isbn: 978-88-6453-521-0.
File in questo prodotto:
File Dimensione Formato  
proceedings_SIS.pdf

Solo gestori archivio

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati
Dimensione 181.7 kB
Formato Adobe PDF
181.7 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11385/242506
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact