A statistical framework for labeling unlabelled data: a case study on anomaly detection in pressurization systems for high-speed railway trains / De Santis, Enrico; Arnò, Francesco; Martino, Alessio; Rizzi, Antonello. - 2022 International Joint Conference on Neural Networks (IJCNN), (2022), pp. 1-8. (2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18-23 July 2022). [10.1109/IJCNN55064.2022.9892880].
A statistical framework for labeling unlabelled data: a case study on anomaly detection in pressurization systems for high-speed railway trains
Martino, Alessio;
2022
File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
A_statistical_framework_for_labeling_unlabelled_data_a_case_study_on_anomaly_detection_in_pressurization_systems_for_high-speed_railway_trains.pdf
Solo gestori archivio
Tipologia:
Versione dell'editore
Licenza:
Tutti i diritti riservati
Dimensione
695.06 kB
Formato
Adobe PDF
|
695.06 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.