Complexity surrounding the holistic nature of customer experience has made measuring customer perceptions of interactive service experiences challenging. At the same time, advances in technology and changes in methods for collecting explicit customer feedback are generating increasing volumes of unstructured textual data, making it difficult for managers to analyze and interpret this information. Consequently, text mining, a method enabling automatic extraction of information from textual data, is gaining in popularity. However, this method has performed below expectations in terms of depth of analysis of customer experience feedback and accuracy. In this study, we advance linguistics-based text mining modeling to inform the process of developing an improved framework. The proposed framework incorporates important elements of customer experience, service methodologies, and theories such as cocreation processes, interactions, and context. This more holistic approach for analyzing feedback facilitates a deeper analysis of customer feedback experiences, by encompassing three value creation elements: activities, resources, and context (ARC). Empirical results show that the ARC framework facilitates the development of a text mining model for analysis of customer textual feedback that enables companies to assess the impact of interactive service processes on customer experiences. The proposed text mining model shows high accuracy levels and provides flexibility through training. As such, it can evolve to account for changing contexts over time and be deployed across different (service) business domains; we term it an "open learning" model. The ability to timely assess customer experience feedback represents a prerequisite for successful cocreation processes in a service environment. © The Author(s) 2014.

Analyzing Customer Experience Feedback Using Text Mining: A Linguistics-Based Approach / Villarroel Ordenes, Francisco Javier; Theodoulidis, Babis; Burton, Jamie; Gruber, Thorsten; Zaki, Mohamed.. - In: JOURNAL OF SERVICE RESEARCH. - ISSN 1094-6705. - 17:3(2014), pp. 278-295. [10.1177/1094670514524625]

Analyzing Customer Experience Feedback Using Text Mining: A Linguistics-Based Approach

VILLARROEL ORDENES, FRANCISCO JAVIER;
2014

Abstract

Complexity surrounding the holistic nature of customer experience has made measuring customer perceptions of interactive service experiences challenging. At the same time, advances in technology and changes in methods for collecting explicit customer feedback are generating increasing volumes of unstructured textual data, making it difficult for managers to analyze and interpret this information. Consequently, text mining, a method enabling automatic extraction of information from textual data, is gaining in popularity. However, this method has performed below expectations in terms of depth of analysis of customer experience feedback and accuracy. In this study, we advance linguistics-based text mining modeling to inform the process of developing an improved framework. The proposed framework incorporates important elements of customer experience, service methodologies, and theories such as cocreation processes, interactions, and context. This more holistic approach for analyzing feedback facilitates a deeper analysis of customer feedback experiences, by encompassing three value creation elements: activities, resources, and context (ARC). Empirical results show that the ARC framework facilitates the development of a text mining model for analysis of customer textual feedback that enables companies to assess the impact of interactive service processes on customer experiences. The proposed text mining model shows high accuracy levels and provides flexibility through training. As such, it can evolve to account for changing contexts over time and be deployed across different (service) business domains; we term it an "open learning" model. The ability to timely assess customer experience feedback represents a prerequisite for successful cocreation processes in a service environment. © The Author(s) 2014.
2014
activities; case study; context; customer experience; customer feedback; resources; text mining; value cocreation
Analyzing Customer Experience Feedback Using Text Mining: A Linguistics-Based Approach / Villarroel Ordenes, Francisco Javier; Theodoulidis, Babis; Burton, Jamie; Gruber, Thorsten; Zaki, Mohamed.. - In: JOURNAL OF SERVICE RESEARCH. - ISSN 1094-6705. - 17:3(2014), pp. 278-295. [10.1177/1094670514524625]
File in questo prodotto:
File Dimensione Formato  
Villarroel Ordenes et al 2014 JSR.pdf

Solo gestori archivio

Descrizione: PUBLISHED PAPER
Tipologia: Versione dell'editore
Licenza: Tutti i diritti riservati
Dimensione 440.44 kB
Formato Adobe PDF
440.44 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11385/197053
Citazioni
  • Scopus 158
  • ???jsp.display-item.citation.isi??? 115
  • OpenAlex ND
social impact