Shannon’s entropy is a clear lower bound for statistical compression. The situation is not so well understood for dictionary-based compression. A plausible lower bound is b, the least number of phrases of a general bidirectional parse of a text, where phrases can be copied from anywhere else in the text. Since computing b is NP-complete, a popular gold standard is z, the number of phrases in the Lempel-Ziv parse of the text, where phrases can be copied only from the left. While z can be computed in linear time, almost nothing has been known for decades about its approximation ratio with respect to b. In this paper we prove that z= O(blog (n/ b)), where n is the text length. We also show that the bound is tight as a function of n, by exhibiting a string family where z= Ω(blog n). Our upper bound is obtained by building a run-length context-free grammar based on a locally consistent parsing of the text. Our lower bound is obtained by relating b with r, the number of equal-letter runs in the Burrows-Wheeler transform of the text. On our way, we prove other relevant bounds between compressibility measures.
On the approximation ratio of Lempel-Ziv parsing / Gagie, T.; Navarro, G.; Prezza, Nicola. - 13th International Symposium on Latin American Theoretical Informatics, LATIN 2018, (2018), pp. 490-503. (13th International Symposium on Latin American Theoretical Informatics, LATIN 2018, Buenos Aires, Argentina, April 16-19, 2018). [10.1007/978-3-319-77404-6_36].
On the approximation ratio of Lempel-Ziv parsing
Prezza N.
2018
Abstract
Shannon’s entropy is a clear lower bound for statistical compression. The situation is not so well understood for dictionary-based compression. A plausible lower bound is b, the least number of phrases of a general bidirectional parse of a text, where phrases can be copied from anywhere else in the text. Since computing b is NP-complete, a popular gold standard is z, the number of phrases in the Lempel-Ziv parse of the text, where phrases can be copied only from the left. While z can be computed in linear time, almost nothing has been known for decades about its approximation ratio with respect to b. In this paper we prove that z= O(blog (n/ b)), where n is the text length. We also show that the bound is tight as a function of n, by exhibiting a string family where z= Ω(blog n). Our upper bound is obtained by building a run-length context-free grammar based on a locally consistent parsing of the text. Our lower bound is obtained by relating b with r, the number of equal-letter runs in the Burrows-Wheeler transform of the text. On our way, we prove other relevant bounds between compressibility measures.File | Dimensione | Formato | |
---|---|---|---|
latin18.pdf
Solo gestori archivio
Tipologia:
Documento in Pre-print
Licenza:
DRM (Digital rights management) non definiti
Dimensione
287.75 kB
Formato
Adobe PDF
|
287.75 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.