In this note we deal with some admissibility conditions proved by G. B. Tranquilli to be sufficient in the class of unbiased estimators of finite population parameters and with respect to (w.r.t.) a quadratic loss function. We show that the same conditions:/) are sufficient for the admissibility of an unbiased estimator with any loss function; ii) imply hyperadmissibility with reference to a particular (critical) population of the. From this fact we deduce that, for a fixed critical population, there is at most one estimator, in the class of all unbiased estimator of a finite population parameter, which satisfies Tranquilli condition.

Some Remarks on admissibility conditions / DE GIOVANNI, Livia; PIER LUIGI, Conti. - In: JOURNAL OF THE ITALIAN STATISTICAL SOCIETY. - ISSN 1121-9130. - 1:3(1992), pp. 315-323.

Some Remarks on admissibility conditions

DE GIOVANNI, LIVIA;
1992

Abstract

In this note we deal with some admissibility conditions proved by G. B. Tranquilli to be sufficient in the class of unbiased estimators of finite population parameters and with respect to (w.r.t.) a quadratic loss function. We show that the same conditions:/) are sufficient for the admissibility of an unbiased estimator with any loss function; ii) imply hyperadmissibility with reference to a particular (critical) population of the. From this fact we deduce that, for a fixed critical population, there is at most one estimator, in the class of all unbiased estimator of a finite population parameter, which satisfies Tranquilli condition.
Finite populations; sampling design; parameter estimation; admissibility; hyperadmissibility.
File in questo prodotto:
File Dimensione Formato  
J.It.Sta.Soc.1992.pdf

Solo gestori archivio

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 361.11 kB
Formato Adobe PDF
361.11 kB Adobe PDF   Visualizza/Apri
abstractJISS1992.pdf

Solo gestori archivio

Tipologia: Abstract
Licenza: DRM non definito
Dimensione 58.32 kB
Formato Adobe PDF
58.32 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11385/6037
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact