Clustering categorical data presents unique challenges that traditional techniques do not adequately address. This paper proposes an extension of the fuzzy C-modes algorithm. By incorporating a noise cluster and integrating spatial contiguity relationships among units, the algorithm’s robustness is significantly enhanced. Performance evaluations using synthetic data demonstrate the efficacy of the proposed algorithm in handling both global and local outliers. Furthermore, the paper discusses the application of the algorithm to real-world data on sustainable urban mobility in the Italian provincial capitals during 2021, highlighting its practical relevance and potential impact in real-world scenarios.

D’Urso, Pierpaolo; De Giovanni, Livia; Federico, Lorenzo; Vitale, Vincenzina. (9999). Fuzzy C‑modes clustering with spatial regularization and noise cluster. ASTA ADVANCES IN STATISTICAL ANALYSIS, (ISSN: 1863-8171), 1-39. Doi: 10.1007/s10182-025-00547-0.

Fuzzy C‑modes clustering with spatial regularization and noise cluster

Livia De Giovanni;Lorenzo Federico;
In corso di stampa

Abstract

Clustering categorical data presents unique challenges that traditional techniques do not adequately address. This paper proposes an extension of the fuzzy C-modes algorithm. By incorporating a noise cluster and integrating spatial contiguity relationships among units, the algorithm’s robustness is significantly enhanced. Performance evaluations using synthetic data demonstrate the efficacy of the proposed algorithm in handling both global and local outliers. Furthermore, the paper discusses the application of the algorithm to real-world data on sustainable urban mobility in the Italian provincial capitals during 2021, highlighting its practical relevance and potential impact in real-world scenarios.
In corso di stampa
Fuzzy C-modes; Spatial contiguity; Noise cluster; Sustainability
D’Urso, Pierpaolo; De Giovanni, Livia; Federico, Lorenzo; Vitale, Vincenzina. (9999). Fuzzy C‑modes clustering with spatial regularization and noise cluster. ASTA ADVANCES IN STATISTICAL ANALYSIS, (ISSN: 1863-8171), 1-39. Doi: 10.1007/s10182-025-00547-0.
File in questo prodotto:
File Dimensione Formato  
ASTA_2025_D-Urso_et_al-2025-AStA_Advances_in_Statistical_Analysis.pdf

Open Access

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 51.41 MB
Formato Adobe PDF
51.41 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11385/255398
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact