We study a Mean Field Games (MFG) system in a real, separable infinite dimensional Hilbert space. The system consists of a second order parabolic type equation, called Hamilton-Jacobi-Bellman (HJB) equation in the paper, coupled with a nonlinear Fokker-Planck (FP) equation. Both equations contain a Kolmogorov operator. Solutions to the HJB equation are interpreted in the mild solution sense and solutions to the FP equation are interpreted in an appropriate weak sense. We prove well-posedness of the considered MFG system under certain conditions. The existence of a solution to the MFG system is proved using Tikhonov's fixed point theorem in a proper space. Uniqueness of solutions is obtained under typical separability and Lasry-Lions type monotonicity conditions.
Federico, Salvatore; Gozzi, Fausto; Święch, Andrzej. (2026). On mean field games in infinite dimension. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, (ISSN: 0021-7824), 205:January, 1-15. Doi: 10.1016/j.matpur.2025.103780.
On mean field games in infinite dimension
Gozzi, Fausto
;
2026
Abstract
We study a Mean Field Games (MFG) system in a real, separable infinite dimensional Hilbert space. The system consists of a second order parabolic type equation, called Hamilton-Jacobi-Bellman (HJB) equation in the paper, coupled with a nonlinear Fokker-Planck (FP) equation. Both equations contain a Kolmogorov operator. Solutions to the HJB equation are interpreted in the mild solution sense and solutions to the FP equation are interpreted in an appropriate weak sense. We prove well-posedness of the considered MFG system under certain conditions. The existence of a solution to the MFG system is proved using Tikhonov's fixed point theorem in a proper space. Uniqueness of solutions is obtained under typical separability and Lasry-Lions type monotonicity conditions.| File | Dimensione | Formato | |
|---|---|---|---|
|
1-s2.0-S0021782425001242-main.pdf
Open Access
Tipologia:
Versione dell'editore
Licenza:
Creative commons
Dimensione
1.26 MB
Formato
Adobe PDF
|
1.26 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



