The recent diffusion of online education (both MOOCs and e-courses) has led to an increased economic and scientific interest in e-learning environments. As widely documented, online students have a much higher chance of dropping out than those attending conventional classrooms. It is of paramount interest for institutions, students, and faculty members to find more efficient methodologies to mitigate withdrawals. Following the rise of attention on the Student Dropout Prediction (SDP) problem, the literature has witnessed a significant increase in contributions to this subject. In this survey, we present an in-depth analysis of the state-of-the-art literature in the field of SDP, under the central perspective, but not exclusive, of machine learning predictive algorithms. Our main contributions are the following: (i) we propose a comprehensive hierarchical classification of existing literature that follows the workflow of design choices in the SDP; (ii) to facilitate the comparative analysis, we introduce a formal notation to describe in a uniform way the alternative dropout models investigated by the researchers in the field; (iii) we analyse some other relevant aspects to which the literature has given less attention, such as evaluation metrics, gathered data, and privacy concerns; (iv) we pay specific attention to deep sequential machine learning methods—recently proposed by some contributors—which represent one of the most effective solutions in this area. Overall, our survey provides novice readers who address these topics with practical guidance on design choices, as well as directs researchers to the most promising approaches, highlighting current limitations and open challenges in the field.

Prenkaj, Bardh; Velardi, Paola; Stilo, Giovanni; Distante, Damiano; Faralli, Stefano. (2020). A Survey of Machine Learning Approaches for Student Dropout Prediction in Online Courses. ACM COMPUTING SURVEYS, (ISSN: 0360-0300), 53:3, 1-34. Doi: 10.1145/3388792.

A Survey of Machine Learning Approaches for Student Dropout Prediction in Online Courses

Giovanni Stilo
Membro del Collaboration Group
;
2020

Abstract

The recent diffusion of online education (both MOOCs and e-courses) has led to an increased economic and scientific interest in e-learning environments. As widely documented, online students have a much higher chance of dropping out than those attending conventional classrooms. It is of paramount interest for institutions, students, and faculty members to find more efficient methodologies to mitigate withdrawals. Following the rise of attention on the Student Dropout Prediction (SDP) problem, the literature has witnessed a significant increase in contributions to this subject. In this survey, we present an in-depth analysis of the state-of-the-art literature in the field of SDP, under the central perspective, but not exclusive, of machine learning predictive algorithms. Our main contributions are the following: (i) we propose a comprehensive hierarchical classification of existing literature that follows the workflow of design choices in the SDP; (ii) to facilitate the comparative analysis, we introduce a formal notation to describe in a uniform way the alternative dropout models investigated by the researchers in the field; (iii) we analyse some other relevant aspects to which the literature has given less attention, such as evaluation metrics, gathered data, and privacy concerns; (iv) we pay specific attention to deep sequential machine learning methods—recently proposed by some contributors—which represent one of the most effective solutions in this area. Overall, our survey provides novice readers who address these topics with practical guidance on design choices, as well as directs researchers to the most promising approaches, highlighting current limitations and open challenges in the field.
2020
Student dropout prediction; educational data mining; learning analytics
Prenkaj, Bardh; Velardi, Paola; Stilo, Giovanni; Distante, Damiano; Faralli, Stefano. (2020). A Survey of Machine Learning Approaches for Student Dropout Prediction in Online Courses. ACM COMPUTING SURVEYS, (ISSN: 0360-0300), 53:3, 1-34. Doi: 10.1145/3388792.
File in questo prodotto:
File Dimensione Formato  
A_Survey_of_Machine_Learning_approaches_for_Student_Dropout_Prediction_in_Online_Courses (3).pdf

Solo gestori archivio

Tipologia: Versione dell'editore
Licenza: Tutti i diritti riservati
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11385/253758
Citazioni
  • Scopus 107
  • ???jsp.display-item.citation.isi??? 71
  • OpenAlex ND
social impact