In continual learning applications on -the -edge multiple self-centered devices (SCD) learn different local tasks independently, with each SCD only optimizing its own task. Can we achieve (almost) zero -cost collaboration between different devices? We formalize this problem as a Distributed Continual Learning (DCL) scenario, where SCDs greedily adapt to their own local tasks and a separate continual learning (CL) model perform a sparse and asynchronous consolidation step that combines the SCD models sequentially into a single multi -task model without using the original data. Unfortunately, current CL methods are not directly applicable to this scenario. We propose Data -Agnostic Consolidation (DAC), a novel double knowledge distillation method which performs distillation in the latent space via a novel Projected Latent Distillation loss. Experimental results show that DAC enables forward transfer between SCDs and reaches state-of-the-art accuracy on Split CIFAR100, CORe50 and Split TinyImageNet, both in single device and distributed CL scenarios. Somewhat surprisingly, a single out -of -distribution image is sufficient as the only source of data for DAC.
Carta, Antonio; Cossu, Andrea; Lomonaco, Vincenzo; Bacciu, Davide; Van De Weijer, Joost. (2024). Projected Latent Distillation for Data-Agnostic Consolidation in distributed continual learning. NEUROCOMPUTING, (ISSN: 0925-2312), 598: 1-9. Doi: 10.1016/j.neucom.2024.127935.
Projected Latent Distillation for Data-Agnostic Consolidation in distributed continual learning
Lomonaco, Vincenzo;
2024
Abstract
In continual learning applications on -the -edge multiple self-centered devices (SCD) learn different local tasks independently, with each SCD only optimizing its own task. Can we achieve (almost) zero -cost collaboration between different devices? We formalize this problem as a Distributed Continual Learning (DCL) scenario, where SCDs greedily adapt to their own local tasks and a separate continual learning (CL) model perform a sparse and asynchronous consolidation step that combines the SCD models sequentially into a single multi -task model without using the original data. Unfortunately, current CL methods are not directly applicable to this scenario. We propose Data -Agnostic Consolidation (DAC), a novel double knowledge distillation method which performs distillation in the latent space via a novel Projected Latent Distillation loss. Experimental results show that DAC enables forward transfer between SCDs and reaches state-of-the-art accuracy on Split CIFAR100, CORe50 and Split TinyImageNet, both in single device and distributed CL scenarios. Somewhat surprisingly, a single out -of -distribution image is sufficient as the only source of data for DAC.| File | Dimensione | Formato | |
|---|---|---|---|
|
Projected Latent Distillation.pdf
Open Access
Tipologia:
Versione dell'editore
Licenza:
Creative commons
Dimensione
2.28 MB
Formato
Adobe PDF
|
2.28 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



