This paper establishes bounds on the performance of empirical risk minimization for large-dimensional linear regression. We generalize existing results by allowing the data to be dependent and heavy-tailed. The analysis covers both the cases of identically and heterogeneously distributed observations. Our analysis is nonparametric in the sense that the relationship between the regressand and the regressors is not specified. The main results of this paper show that the empirical risk minimizer achieves the optimal performance (up to a logarithmic factor) in a dependent data setting.

Brownlees, Christian-Timothy; Gudmundsson, G. S.. (2025). Performance of empirical risk minimization for linear regression with dependent data. ECONOMETRIC THEORY, (ISSN: 0266-4666), 41:2, 391-420. Doi: 10.1017/S0266466623000348.

Performance of empirical risk minimization for linear regression with dependent data

Brownlees C.;
2025

Abstract

This paper establishes bounds on the performance of empirical risk minimization for large-dimensional linear regression. We generalize existing results by allowing the data to be dependent and heavy-tailed. The analysis covers both the cases of identically and heterogeneously distributed observations. Our analysis is nonparametric in the sense that the relationship between the regressand and the regressors is not specified. The main results of this paper show that the empirical risk minimizer achieves the optimal performance (up to a logarithmic factor) in a dependent data setting.
2025
Brownlees, Christian-Timothy; Gudmundsson, G. S.. (2025). Performance of empirical risk minimization for linear regression with dependent data. ECONOMETRIC THEORY, (ISSN: 0266-4666), 41:2, 391-420. Doi: 10.1017/S0266466623000348.
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream--1246012965.pdf

Open Access

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 379.37 kB
Formato Adobe PDF
379.37 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11385/253058
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact