Using data from the Internet Engineering Task Force, a voluntary organization that develops protocols for managing Internet infrastructure, we estimate a dynamic discrete choice model of the decision to continue or abandon a line of research. The model’s key parameters measure the speed at which authors learn whether their project will become a technology standard. We use the model to simulate two innovation policies: an R&D subsidy and a publication-prize. While subsidies have a larger impact on research output, the optimal policy depends on the level of R&D spillovers.

Learning When to Quit: An Empirical Model Of Experimentation in Standards Development / Ganglmair, Bernhard; Simcoe, Tomothy; Tarantino, Emanuele. - In: AMERICAN ECONOMIC JOURNAL. MICROECONOMICS. - ISSN 1945-7685. - (In corso di stampa), pp. 1-31.

Learning When to Quit: An Empirical Model Of Experimentation in Standards Development

Emanuele Tarantino
In corso di stampa

Abstract

Using data from the Internet Engineering Task Force, a voluntary organization that develops protocols for managing Internet infrastructure, we estimate a dynamic discrete choice model of the decision to continue or abandon a line of research. The model’s key parameters measure the speed at which authors learn whether their project will become a technology standard. We use the model to simulate two innovation policies: an R&D subsidy and a publication-prize. While subsidies have a larger impact on research output, the optimal policy depends on the level of R&D spillovers.
In corso di stampa
Learning, Experimentation, Standardization
Learning When to Quit: An Empirical Model Of Experimentation in Standards Development / Ganglmair, Bernhard; Simcoe, Tomothy; Tarantino, Emanuele. - In: AMERICAN ECONOMIC JOURNAL. MICROECONOMICS. - ISSN 1945-7685. - (In corso di stampa), pp. 1-31.
File in questo prodotto:
File Dimensione Formato  
21534.pdf

Solo gestori archivio

Tipologia: Versione dell'editore
Licenza: Tutti i diritti riservati
Dimensione 633.38 kB
Formato Adobe PDF
633.38 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11385/244759
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact