In this paper we introduce the literature on regression models with tensor variables and present a Bayesian linear model for inference, under the assumption of sparsity of the tensor coefficient. We exploit the CONDECOMP/PARAFAC (CP) representation for the tensor of coefficients in order to reduce the number of parameters and adopt a suitable hierarchical shrinkage prior for inducing sparsity. We propose a MCMC procedure via Gibbs sampler for carrying out the estimation, discussing the issues related to the initialisation of the vectors of parameters involved in the CP representation.

Billio, Monica; Casarin, Roberto; Iacopini, Matteo. (2018). Bayesian Tensor Regression Models. In Marco Corazza, María Durbán, Aurea Grané, Cira Perna, Marilena Sibillo (Eds.), Mathematical and Statistical Methods for Actuarial Sciences and Finance (pp. 159-163). Springer. Isbn: 978-3-319-89823-0. Doi: 10.1007/978-3-319-89824-7_28.

Bayesian Tensor Regression Models

Matteo Iacopini
2018

Abstract

In this paper we introduce the literature on regression models with tensor variables and present a Bayesian linear model for inference, under the assumption of sparsity of the tensor coefficient. We exploit the CONDECOMP/PARAFAC (CP) representation for the tensor of coefficients in order to reduce the number of parameters and adopt a suitable hierarchical shrinkage prior for inducing sparsity. We propose a MCMC procedure via Gibbs sampler for carrying out the estimation, discussing the issues related to the initialisation of the vectors of parameters involved in the CP representation.
2018
978-3-319-89823-0
Billio, Monica; Casarin, Roberto; Iacopini, Matteo. (2018). Bayesian Tensor Regression Models. In Marco Corazza, María Durbán, Aurea Grané, Cira Perna, Marilena Sibillo (Eds.), Mathematical and Statistical Methods for Actuarial Sciences and Finance (pp. 159-163). Springer. Isbn: 978-3-319-89823-0. Doi: 10.1007/978-3-319-89824-7_28.
File in questo prodotto:
File Dimensione Formato  
Bayesian tensor regression models.pdf

Solo gestori archivio

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati
Dimensione 402.88 kB
Formato Adobe PDF
402.88 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11385/242459
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact