In this paper we introduce the literature on regression models with tensor variables and present a Bayesian linear model for inference, under the assumption of sparsity of the tensor coefficient. We exploit the CONDECOMP/PARAFAC (CP) representation for the tensor of coefficients in order to reduce the number of parameters and adopt a suitable hierarchical shrinkage prior for inducing sparsity. We propose a MCMC procedure via Gibbs sampler for carrying out the estimation, discussing the issues related to the initialisation of the vectors of parameters involved in the CP representation.
Billio, Monica; Casarin, Roberto; Iacopini, Matteo. (2018). Bayesian Tensor Regression Models. In Marco Corazza, María Durbán, Aurea Grané, Cira Perna, Marilena Sibillo (Eds.), Mathematical and Statistical Methods for Actuarial Sciences and Finance (pp. 159-163). Springer. Isbn: 978-3-319-89823-0. Doi: 10.1007/978-3-319-89824-7_28.
Bayesian Tensor Regression Models
Matteo Iacopini
2018
Abstract
In this paper we introduce the literature on regression models with tensor variables and present a Bayesian linear model for inference, under the assumption of sparsity of the tensor coefficient. We exploit the CONDECOMP/PARAFAC (CP) representation for the tensor of coefficients in order to reduce the number of parameters and adopt a suitable hierarchical shrinkage prior for inducing sparsity. We propose a MCMC procedure via Gibbs sampler for carrying out the estimation, discussing the issues related to the initialisation of the vectors of parameters involved in the CP representation.| File | Dimensione | Formato | |
|---|---|---|---|
|
Bayesian tensor regression models.pdf
Solo gestori archivio
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati
Dimensione
402.88 kB
Formato
Adobe PDF
|
402.88 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



