In this paper we present a binary regression model with tensor coefficients and present a Bayesian model for inference, able to recover different levels of sparsity of the tensor coefficient. We exploit the CONDECOMP/PARAFAC (CP) representation for the tensor of coefficients in order to reduce the number of parameters and adopt a suitable hierarchical shrinkage prior for inducing sparsity. We propose a MCMC procedure with data augmentation for carrying out the estimation and test the performance of the sampler in small simulated examples.

Billio, Monica; Casarin, Roberto; Iacopini, Matteo. (2018). Bayesian Tensor Binary Regression. In Marco Corazza, María Durbán, Aurea Grané, Cira Perna, Marilena Sibillo (Eds.), Mathematical and Statistical Methods for Actuarial Sciences and Finance (pp. 143-147). Springer. Isbn: 978-3-319-89823-0. Doi: 10.1007/978-3-319-89824-7_27.

Bayesian Tensor Binary Regression

Matteo Iacopini
Formal Analysis
2018

Abstract

In this paper we present a binary regression model with tensor coefficients and present a Bayesian model for inference, able to recover different levels of sparsity of the tensor coefficient. We exploit the CONDECOMP/PARAFAC (CP) representation for the tensor of coefficients in order to reduce the number of parameters and adopt a suitable hierarchical shrinkage prior for inducing sparsity. We propose a MCMC procedure with data augmentation for carrying out the estimation and test the performance of the sampler in small simulated examples.
2018
978-3-319-89823-0
Billio, Monica; Casarin, Roberto; Iacopini, Matteo. (2018). Bayesian Tensor Binary Regression. In Marco Corazza, María Durbán, Aurea Grané, Cira Perna, Marilena Sibillo (Eds.), Mathematical and Statistical Methods for Actuarial Sciences and Finance (pp. 143-147). Springer. Isbn: 978-3-319-89823-0. Doi: 10.1007/978-3-319-89824-7_27.
File in questo prodotto:
File Dimensione Formato  
Bayesian tensor binary regression.pdf

Solo gestori archivio

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati
Dimensione 370.63 kB
Formato Adobe PDF
370.63 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11385/242458
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact