This paper proposes a fuzzy C-medoids-based clustering method with entropy regularization to solve the issue of grouping complex data as interval-valued time series. The dual nature of the data, that are both time-varying and interval-valued, needs to be considered and embedded into clustering techniques. In this work, a new dissimilarity measure, based on Dynamic Time Warping, is proposed. The performance of the new clustering procedure is evaluated through a simulation study and an application to financial time series.

Entropy-based fuzzy clustering of interval-valued time series / Vitale, Vincenzina; D'Urso, Pierpaolo; De Giovanni, Livia; Mattera, R.. - In: ADVANCES IN DATA ANALYSIS AND CLASSIFICATION. - ISSN 1862-5355. - (In corso di stampa), pp. 1-27. [10.1007/s11634-024-00586-6]

Entropy-based fuzzy clustering of interval-valued time series

Vitale V.
;
D'Urso P.;De Giovanni L.;
In corso di stampa

Abstract

This paper proposes a fuzzy C-medoids-based clustering method with entropy regularization to solve the issue of grouping complex data as interval-valued time series. The dual nature of the data, that are both time-varying and interval-valued, needs to be considered and embedded into clustering techniques. In this work, a new dissimilarity measure, based on Dynamic Time Warping, is proposed. The performance of the new clustering procedure is evaluated through a simulation study and an application to financial time series.
In corso di stampa
Interval-valued time series fuzzy clustering Dynamic Time Warping FTSE-MIB index
Entropy-based fuzzy clustering of interval-valued time series / Vitale, Vincenzina; D'Urso, Pierpaolo; De Giovanni, Livia; Mattera, R.. - In: ADVANCES IN DATA ANALYSIS AND CLASSIFICATION. - ISSN 1862-5355. - (In corso di stampa), pp. 1-27. [10.1007/s11634-024-00586-6]
File in questo prodotto:
File Dimensione Formato  
s11634-024-00586-6.pdf

Open Access

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11385/237598
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact