We consider the problem of estimating the autocorrelation operator of an autoregressive Hilbertian process. By means of a Tikhonov approach, we establish a general result that yields the convergence rate of the estimated autocorrelation operator as a function of the rate of convergence of the estimated lag zero and lag one autocovariance operators. The result is general in that it can accommodate any consistent estimators of the lagged autocovariances. Consequently it can be applied to processes under any mode of observation: complete, discrete, sparse, and/or with measurement errors. An appealing feature is that the result does not require delicate spectral decay assumptions on the autocovariances but instead rests on natural source conditions. The result is illustrated by application to important special cases. (C) 2022 The Author(s). Published by Elsevier B.V.
On the rate of convergence for the autocorrelation operator in functional autoregression / Caponera, Alessia; Panaretos, Vm. - In: STATISTICS & PROBABILITY LETTERS. - ISSN 0167-7152. - 189:(2022), pp. 1-6. [10.1016/j.spl.2022.109575]
On the rate of convergence for the autocorrelation operator in functional autoregression
Caponera, A;
2022
Abstract
We consider the problem of estimating the autocorrelation operator of an autoregressive Hilbertian process. By means of a Tikhonov approach, we establish a general result that yields the convergence rate of the estimated autocorrelation operator as a function of the rate of convergence of the estimated lag zero and lag one autocovariance operators. The result is general in that it can accommodate any consistent estimators of the lagged autocovariances. Consequently it can be applied to processes under any mode of observation: complete, discrete, sparse, and/or with measurement errors. An appealing feature is that the result does not require delicate spectral decay assumptions on the autocovariances but instead rests on natural source conditions. The result is illustrated by application to important special cases. (C) 2022 The Author(s). Published by Elsevier B.V.File | Dimensione | Formato | |
---|---|---|---|
1-S&PL.pdf
Solo gestori archivio
Tipologia:
Versione dell'editore
Licenza:
Tutti i diritti riservati
Dimensione
394.98 kB
Formato
Adobe PDF
|
394.98 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.