In this paper, we investigate a class of spherical functional autoregressive processes, and we discuss the estimation of the corresponding autoregressive kernels. In particular, we first establish a consistency result (in mean-square and sup norm), then a quantitative central limit theorem (in Wasserstein distance), and finally a weak convergence result, under more restrictive regularity conditions. Our results are validated by a small numerical investigation.

Caponera, Alessia; Marinucci, D. (2021). Asymptotics for spherical functional autoregressions. ANNALS OF STATISTICS, (ISSN: 0090-5364), 49:1, 346-369. Doi: 10.1214/20-AOS1959.

Asymptotics for spherical functional autoregressions

Caponera, A;
2021

Abstract

In this paper, we investigate a class of spherical functional autoregressive processes, and we discuss the estimation of the corresponding autoregressive kernels. In particular, we first establish a consistency result (in mean-square and sup norm), then a quantitative central limit theorem (in Wasserstein distance), and finally a weak convergence result, under more restrictive regularity conditions. Our results are validated by a small numerical investigation.
2021
Quantitative central limit theorem. Spherical functional autoregressions. Spherical harmonics. Wasserstein distance. Weak convergence.
Caponera, Alessia; Marinucci, D. (2021). Asymptotics for spherical functional autoregressions. ANNALS OF STATISTICS, (ISSN: 0090-5364), 49:1, 346-369. Doi: 10.1214/20-AOS1959.
File in questo prodotto:
File Dimensione Formato  
6-CM21.pdf

Solo gestori archivio

Tipologia: Versione dell'editore
Licenza: Tutti i diritti riservati
Dimensione 570.06 kB
Formato Adobe PDF
570.06 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11385/236418
Citazioni
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
  • OpenAlex ND
social impact