Reinforcement-learning pricing algorithms sometimes converge to supra-competitive prices even in markets where collusion is impossible by design or cannot be an equilibrium outcome. We analyze when such spurious collusion may arise, and when instead the algorithms learn genuinely collusive strategies, focusing on the role of the rate and mode of exploration.
Algorithmic collusion: Genuine or spurious? / Calvano, Emilio; Calzolari, G; Denicolò, V; Pastorello, S. - In: INTERNATIONAL JOURNAL OF INDUSTRIAL ORGANIZATION. - ISSN 0167-7187. - 90:(2023), pp. 102973-102993. [10.1016/j.ijindorg.2023.102973]
Algorithmic collusion: Genuine or spurious?
Calvano, E;
2023
Abstract
Reinforcement-learning pricing algorithms sometimes converge to supra-competitive prices even in markets where collusion is impossible by design or cannot be an equilibrium outcome. We analyze when such spurious collusion may arise, and when instead the algorithms learn genuinely collusive strategies, focusing on the role of the rate and mode of exploration.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
IJIO genuine or spurious editorial.pdf
Solo gestori archivio
Descrizione: editorial
Tipologia:
Versione dell'editore
Licenza:
Tutti i diritti riservati
Dimensione
821.54 kB
Formato
Adobe PDF
|
821.54 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.