We study novel combinatorial properties of graphs that allow us to devise a completely new approach to dynamic all pairs shortest paths problems. Our approach yields a fully dynamic algorithm for general directed graphs with non-negative real-valued edge weights that supports any sequence of operations in O(n2 log3 n) amortized time per update and unit worst-case time per distance query, where n is the number of vertices. We can also report shortest paths in optimal worst-case time. These bounds improve substantially over previous results and solve a long-standing open problem. Our algorithm is deterministic, uses simple data structures, and appears to be very fast in practice.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | A new approach to dynamic all pairs shortest paths |
Autori: | |
Data di pubblicazione: | 2004 |
Rivista: | |
Handle: | http://hdl.handle.net/11385/199817 |
Appare nelle tipologie: | 01.1 - Articolo su rivista (Article) |