Ranking algorithms are the information gatekeepers of the Internet era. We develop a stylized model to study the interplay between a ranking algorithm and individual clicking behavior. We consider a search engine that uses an algorithm based on popularity and on personalization. The analysis shows the presence of a feedback effect, whereby individuals clicking on websites indirectly provide information about their private signals to successive searchers through the popularity-ranking algorithm. Accordingly, when individuals provide sufficiently positive feedback to the ranking algorithm, popularity-based rankings tend to aggregate information while personalization acts in the opposite direction. Moreover, we find that, under fairly general conditions, popularity-based rankings generate an advantage of the fewer effect: fewer websites reporting a given signal attract relatively more traffic overall. This highlights a novel, ranking-driven channel that can potentially explain the diffusion of misinformation, as websites reporting incorrect information may attract an amplified amount of traffic precisely because they are few.
Germano, Fabrizio; Sobbrio, Francesco. (2020). Opinion dynamics via search engines (and other algorithmic gatekeepers). JOURNAL OF PUBLIC ECONOMICS, (ISSN: 0047-2727), 187: 1-25. Doi: 10.1016/j.jpubeco.2020.104188.
Opinion dynamics via search engines (and other algorithmic gatekeepers)
Sobbrio, Francesco
2020
Abstract
Ranking algorithms are the information gatekeepers of the Internet era. We develop a stylized model to study the interplay between a ranking algorithm and individual clicking behavior. We consider a search engine that uses an algorithm based on popularity and on personalization. The analysis shows the presence of a feedback effect, whereby individuals clicking on websites indirectly provide information about their private signals to successive searchers through the popularity-ranking algorithm. Accordingly, when individuals provide sufficiently positive feedback to the ranking algorithm, popularity-based rankings tend to aggregate information while personalization acts in the opposite direction. Moreover, we find that, under fairly general conditions, popularity-based rankings generate an advantage of the fewer effect: fewer websites reporting a given signal attract relatively more traffic overall. This highlights a novel, ranking-driven channel that can potentially explain the diffusion of misinformation, as websites reporting incorrect information may attract an amplified amount of traffic precisely because they are few.| File | Dimensione | Formato | |
|---|---|---|---|
|
JPUBE_GERMANO_SOBBRIO_2020.pdf
Solo gestori archivio
Tipologia:
Versione dell'editore
Licenza:
Tutti i diritti riservati
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



