In this paper we present CrumbTrail, an algorithm to clean large and dense knowledge graphs. CrumbTrail removes cycles, out-of-domain nodes and non-essential nodes, i.e., those that can be safely removed without breaking the knowledge graph’s connectivity. It achieves this through a bottom-up topological pruning on the basis of a set of input concepts that, for instance, a user can select in order to identify a domain of interest. Our technique can be applied to both noisy hypernymy graphs – typically generated by ontology learning algorithms as intermediate representations – as well as crowdsourced resources like Wikipedia, in order to obtain clean, domain-focused concept hierarchies. CrumbTrail overcomes the time and space complexity limitations of current state-of-art algorithms. In addition, we show in a variety of experiments that it also outperforms them in tasks such as pruning automatically acquired taxonomy graphs, and domain adaptation of the Wikipedia category graph.
CrumbTrail: an Efficient Methodology to Reduce Multiple Inheritance in Knowledge Graphs / Faralli, Stefano; Finocchi, Irene; Paolo Ponzetto, Simone; Velardi, Paola. - In: KNOWLEDGE-BASED SYSTEMS. - ISSN 0950-7051. - 151:July(2018), pp. 180-197. [10.1016/j.knosys.2018.03.030]
CrumbTrail: an Efficient Methodology to Reduce Multiple Inheritance in Knowledge Graphs
Irene Finocchi;
2018
Abstract
In this paper we present CrumbTrail, an algorithm to clean large and dense knowledge graphs. CrumbTrail removes cycles, out-of-domain nodes and non-essential nodes, i.e., those that can be safely removed without breaking the knowledge graph’s connectivity. It achieves this through a bottom-up topological pruning on the basis of a set of input concepts that, for instance, a user can select in order to identify a domain of interest. Our technique can be applied to both noisy hypernymy graphs – typically generated by ontology learning algorithms as intermediate representations – as well as crowdsourced resources like Wikipedia, in order to obtain clean, domain-focused concept hierarchies. CrumbTrail overcomes the time and space complexity limitations of current state-of-art algorithms. In addition, we show in a variety of experiments that it also outperforms them in tasks such as pruning automatically acquired taxonomy graphs, and domain adaptation of the Wikipedia category graph.File | Dimensione | Formato | |
---|---|---|---|
KBS18.pdf
Solo gestori archivio
Tipologia:
Versione dell'editore
Licenza:
DRM (Digital rights management) non definiti
Dimensione
2.16 MB
Formato
Adobe PDF
|
2.16 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.