We consider an infinite horizon optimal control problem for a continuous-time Markov chain $X$ in a finite set $I$ with noise-free partial observation. The observation process is defined as $Y_t = h(X_t)$, $t geq 0$, where $h$ is a given map defined on $I$. The observation is noise-free in the sense that the only source of randomness is the process $X$ itself. The aim is to minimize a discounted cost functional and study the associated value function $V$. After transforming the control problem with partial observation into one with complete observation (the separated problem) using filtering equations, we provide a link between the value function $v$ associated with the latter control problem and the original value function $V$. Then, we present two different characterizations of $v$ (and indirectly of $V$): on one hand as the unique fixed point of a suitably defined contraction mapping and on the other hand as the unique constrained viscosity solution (in the sense of Soner) of a HJB integro-differential equation. Under suitable assumptions, we finally prove the existence of an optimal control.
Optimal control of continuous-time markov chains with noise-free observation / Calvia, Alessandro. - In: SIAM JOURNAL ON CONTROL AND OPTIMIZATION. - ISSN 0363-0129. - 56:3(2018), pp. 2000-2035. [10.1137/17M1139989]
Optimal control of continuous-time markov chains with noise-free observation
CALVIA, ALESSANDRO
2018
Abstract
We consider an infinite horizon optimal control problem for a continuous-time Markov chain $X$ in a finite set $I$ with noise-free partial observation. The observation process is defined as $Y_t = h(X_t)$, $t geq 0$, where $h$ is a given map defined on $I$. The observation is noise-free in the sense that the only source of randomness is the process $X$ itself. The aim is to minimize a discounted cost functional and study the associated value function $V$. After transforming the control problem with partial observation into one with complete observation (the separated problem) using filtering equations, we provide a link between the value function $v$ associated with the latter control problem and the original value function $V$. Then, we present two different characterizations of $v$ (and indirectly of $V$): on one hand as the unique fixed point of a suitably defined contraction mapping and on the other hand as the unique constrained viscosity solution (in the sense of Soner) of a HJB integro-differential equation. Under suitable assumptions, we finally prove the existence of an optimal control.File | Dimensione | Formato | |
---|---|---|---|
A. Calvia - Opt ctrl of cont-time MC w noise-free obs.pdf
Solo gestori archivio
Tipologia:
Versione dell'editore
Licenza:
DRM (Digital rights management) non definiti
Dimensione
588.94 kB
Formato
Adobe PDF
|
588.94 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.