This article presents a review of traditional and current methods of classification in the framework of unsupervised learning, in particular cluster analysis and self-organizing neural networks. Both are vector quantization methods aiming at minimizing the distance between an input vec- tor and its representation. The learning is unsupervised as no predefined cluster structure of the input data is as- sumed. The review of cluster analysis methods covers hard clustering, hierarchical and nonhierarchical, whose aim is to assign exact (with membership degree equal to 1) units (objects) to clusters; fuzzy clustering, where the member- ship degree of a unit to a cluster is allowed to stay in the interval [0; 1]; mixture clustering, a model-based clus- tering consisting in fitting a mixture model to data and identifying each cluster with one of its components. All these methods are reviewed in all the variants related to the presence of complex or big data structures or to the presence of outliers. The self-organizing maps are also presented as artifi- cial neural network, the cells (neurons) of which become specifically tuned to various input data patterns or classes of patterns through an unsupervised learning process. The resulting vector

Unsupervised Learning / De Giovanni, Livia; D'Urso, Pierpaolo. - (2018), pp. 1-23. [https://doi.org/10.1002/047134608X.W8379]

Unsupervised Learning

Livia De Giovanni;Pierpaolo D'Urso
2018

Abstract

This article presents a review of traditional and current methods of classification in the framework of unsupervised learning, in particular cluster analysis and self-organizing neural networks. Both are vector quantization methods aiming at minimizing the distance between an input vec- tor and its representation. The learning is unsupervised as no predefined cluster structure of the input data is as- sumed. The review of cluster analysis methods covers hard clustering, hierarchical and nonhierarchical, whose aim is to assign exact (with membership degree equal to 1) units (objects) to clusters; fuzzy clustering, where the member- ship degree of a unit to a cluster is allowed to stay in the interval [0; 1]; mixture clustering, a model-based clus- tering consisting in fitting a mixture model to data and identifying each cluster with one of its components. All these methods are reviewed in all the variants related to the presence of complex or big data structures or to the presence of outliers. The self-organizing maps are also presented as artifi- cial neural network, the cells (neurons) of which become specifically tuned to various input data patterns or classes of patterns through an unsupervised learning process. The resulting vector
9780471346081
unsupervised learning, clustering, neural networks, classification
Unsupervised Learning / De Giovanni, Livia; D'Urso, Pierpaolo. - (2018), pp. 1-23. [https://doi.org/10.1002/047134608X.W8379]
File in questo prodotto:
File Dimensione Formato  
W8379_5_OK.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 701.22 kB
Formato Adobe PDF
701.22 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11385/182884
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact