We study the problem of estimating the ridges of a density function. Ridge estimation is an extension of mode finding and is useful for understanding the structure of a density. It can also be used to find hidden structure in point cloud data. We show that, under mild regularity conditions, the ridges of the kernel density estimator consistently estimate the ridges of the true density. When the data are noisy measurements of a manifold, we show that the ridges are close and topologically similar to the hidden manifold. To find the estimated ridges in practice, we adapt the modified mean-shift algorithm proposed by Ozertem and Erdogmus [J. Mach. Learn. Res. 12 (2011) 1249–1286]. Some numerical experiments verify that the algorithm is accurate.
Nonparametric Ridge Estimation / Genovese Christopher, R.; Perone-Pacifico, Marco; Verdinelli, Isabella; Wasserman, Larry. - In: ANNALS OF STATISTICS. - ISSN 0090-5364. - 42:4(2014), pp. 1511-1545. [10.1214/14-AOS1218]
Titolo: | Nonparametric Ridge Estimation | |
Autori: | ||
Data di pubblicazione: | 2014 | |
Rivista: | ||
Citazione: | Nonparametric Ridge Estimation / Genovese Christopher, R.; Perone-Pacifico, Marco; Verdinelli, Isabella; Wasserman, Larry. - In: ANNALS OF STATISTICS. - ISSN 0090-5364. - 42:4(2014), pp. 1511-1545. [10.1214/14-AOS1218] | |
Handle: | http://hdl.handle.net/11385/182612 | |
Appare nelle tipologie: | 01.1 - Articolo su rivista (Article) |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Nonparametric Ridge Estimation.pdf | Versione dell'editore | DRM non definito | Open Access Visualizza/Apri |