We find the minimax rate of convergence in Hausdorff distance for estimating a manifold M of dimension d embedded in R-D given a noisy sample from the manifold. Under certain conditions, we show that the optimal rate of convergence is n(-2/(2+d)). Thus, the minimax rate depends only on the dimension of the manifold, not on the dimension of the space in which M is embedded.
Minimax Manifold Estimation / Genovese, C. R.; Perone Pacifico, Marco; Verdinelli, Isabella; Wasserman, L.. - In: JOURNAL OF MACHINE LEARNING RESEARCH. - ISSN 1532-4435. - 13:(2012), pp. 1263-1291.
Minimax Manifold Estimation
Marco Perone Pacifico;
2012
Abstract
We find the minimax rate of convergence in Hausdorff distance for estimating a manifold M of dimension d embedded in R-D given a noisy sample from the manifold. Under certain conditions, we show that the optimal rate of convergence is n(-2/(2+d)). Thus, the minimax rate depends only on the dimension of the manifold, not on the dimension of the space in which M is embedded.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2012_JMLR.pdf
Open Access
Tipologia:
Versione dell'editore
Licenza:
DRM (Digital rights management) non definiti
Dimensione
2.27 MB
Formato
Adobe PDF
|
2.27 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.