We implement a risky choice experiment based on one-dimensional choice variables and risk neutrality induced via binary lottery incentives. Each participant confronts many parameter constellations with varying optimal payoffs. We assess (sub)optimality, as well as (non)optimal satisficing by eliciting aspirations in addition to choices. Treatments differ in the probability that a binary random event, which are payoff—but not optimal choice—relevant is experimentally induced and whether participants choose portfolios directly or via satisficing, i.e., by forming aspirations and checking for satisficing before making their choice. By incentivizing aspiration formation, we can test satisficing, and in cases of satisficing, determine whether it is optimal.

(Sub) Optimality and (non) optimal satisficing in risky decision experiments / Di Cagno, Daniela Teresa; Galliera, Arianna; Gueth, Werner; Marzo, Francesca; Pace, Noemi. - In: THEORY AND DECISION. - ISSN 1573-7187. - 83:2(2017), pp. 195-243. [10.1007/s11238-017-9591-2]

(Sub) Optimality and (non) optimal satisficing in risky decision experiments

Di Cagno, D.;Galliera, A.;Gueth, W.;Marzo, F.;Pace, N.
2017

Abstract

We implement a risky choice experiment based on one-dimensional choice variables and risk neutrality induced via binary lottery incentives. Each participant confronts many parameter constellations with varying optimal payoffs. We assess (sub)optimality, as well as (non)optimal satisficing by eliciting aspirations in addition to choices. Treatments differ in the probability that a binary random event, which are payoff—but not optimal choice—relevant is experimentally induced and whether participants choose portfolios directly or via satisficing, i.e., by forming aspirations and checking for satisficing before making their choice. By incentivizing aspiration formation, we can test satisficing, and in cases of satisficing, determine whether it is optimal.
2017
(Sub) Optimality and (non) optimal satisficing in risky decision experiments / Di Cagno, Daniela Teresa; Galliera, Arianna; Gueth, Werner; Marzo, Francesca; Pace, Noemi. - In: THEORY AND DECISION. - ISSN 1573-7187. - 83:2(2017), pp. 195-243. [10.1007/s11238-017-9591-2]
File in questo prodotto:
File Dimensione Formato  
DI CAGNO-SUB-OPTIMALITY.pdf

Solo gestori archivio

Tipologia: Versione dell'editore
Licenza: DRM (Digital rights management) non definiti
Dimensione 3.53 MB
Formato Adobe PDF
3.53 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11385/177967
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact