We study a continuous-time financial market with continuous price processes under model uncertainty, modeled via a family P of possible physical measures. A robust notion NA 1(P) of no-arbitrage of the first kind is introduced; it postulates that a nonnegative, nonvanishing claim cannot be superhedged for free by using simple trading strategies. Our first main result is a version of the fundamental theorem of asset pricing: NA 1(P) holds if and only if every P∈P admits a martingale measure that is equivalent up to a certain lifetime. The second main result provides the existence of optimal superhedging strategies for general contingent claims and a representation of the superhedging price in terms of martingale measures.
Robust fundamental theorem for continuous processes / Biagini, Sara; Bouchard, Bruno; Kardaras, Constantinos; Nutz, Marcel. - In: MATHEMATICAL FINANCE. - ISSN 0960-1627. - 27:4(2017), pp. 963-987. [10.1111/mafi.12110]
Titolo: | Robust fundamental theorem for continuous processes | |
Autori: | ||
Data di pubblicazione: | 2017 | |
Rivista: | ||
Citazione: | Robust fundamental theorem for continuous processes / Biagini, Sara; Bouchard, Bruno; Kardaras, Constantinos; Nutz, Marcel. - In: MATHEMATICAL FINANCE. - ISSN 0960-1627. - 27:4(2017), pp. 963-987. [10.1111/mafi.12110] | |
Handle: | http://hdl.handle.net/11385/171320 | |
Appare nelle tipologie: | 01.1 - Articolo su rivista (Article) |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
BBKN14 (1).pdf | Documento in Pre-print | DRM non definito | Open Access Visualizza/Apri | |
mafi.12110.pdf | Versione dell'editore | DRM non definito | Administrator |