We study a continuous-time financial market with continuous price processes under model uncertainty, modeled via a family P of possible physical measures. A robust notion NA 1(P) of no-arbitrage of the first kind is introduced; it postulates that a nonnegative, nonvanishing claim cannot be superhedged for free by using simple trading strategies. Our first main result is a version of the fundamental theorem of asset pricing: NA 1(P) holds if and only if every P∈P admits a martingale measure that is equivalent up to a certain lifetime. The second main result provides the existence of optimal superhedging strategies for general contingent claims and a representation of the superhedging price in terms of martingale measures.

Robust fundamental theorem for continuous processes / Biagini, Sara; Bouchard, Bruno; Kardaras, Constantinos; Nutz, Marcel. - In: MATHEMATICAL FINANCE. - ISSN 0960-1627. - 27:4(2017), pp. 963-987. [10.1111/mafi.12110]

Robust fundamental theorem for continuous processes

BIAGINI, SARA;
2017

Abstract

We study a continuous-time financial market with continuous price processes under model uncertainty, modeled via a family P of possible physical measures. A robust notion NA 1(P) of no-arbitrage of the first kind is introduced; it postulates that a nonnegative, nonvanishing claim cannot be superhedged for free by using simple trading strategies. Our first main result is a version of the fundamental theorem of asset pricing: NA 1(P) holds if and only if every P∈P admits a martingale measure that is equivalent up to a certain lifetime. The second main result provides the existence of optimal superhedging strategies for general contingent claims and a representation of the superhedging price in terms of martingale measures.
2017
Arbitrage of the first kind; Fundamental theorem of asset pricing; Nondominated model; Superhedging duality; Applied Mathematics; Finance; Accounting; Economics and Econometrics; Social Sciences (miscellaneous)
Robust fundamental theorem for continuous processes / Biagini, Sara; Bouchard, Bruno; Kardaras, Constantinos; Nutz, Marcel. - In: MATHEMATICAL FINANCE. - ISSN 0960-1627. - 27:4(2017), pp. 963-987. [10.1111/mafi.12110]
File in questo prodotto:
File Dimensione Formato  
BBKN14 (1).pdf

Open Access

Tipologia: Documento in Pre-print
Licenza: DRM (Digital rights management) non definiti
Dimensione 563.34 kB
Formato Adobe PDF
563.34 kB Adobe PDF Visualizza/Apri
mafi.12110.pdf

Solo gestori archivio

Tipologia: Versione dell'editore
Licenza: DRM (Digital rights management) non definiti
Dimensione 304.04 kB
Formato Adobe PDF
304.04 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11385/171320
Citazioni
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 44
  • OpenAlex ND
social impact