We consider Bayesian estimation of state space models when the measurement density is not available but estimating equations for the parameters of the measurement density are available from moment conditions. The most common applications are partial equilibrium models involving moment conditions that depend on dynamic latent variables (e.g., time varying parameters, stochastic volatility) and dynamic general equilibrium models when moment equations from the first order conditions are available but computing an accurate approximation to the measurement density is difficult.
Titolo: | Bayesian estimation of state space models using moment conditions |
Autori: | |
Data di pubblicazione: | 2017 |
Rivista: | |
Handle: | http://hdl.handle.net/11385/170943 |
Appare nelle tipologie: | 01.1 - Articolo su rivista (Article) |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
bliml.pdf | Articolo principale | Documento in Pre-print | DRM non definito | Open Access Visualizza/Apri |
JE MS2015122-2 Decision letter.pdf | Acceptance letter | Altro materiale allegato | DRM non definito | Administrator |
blim_acc.pdf | Articolo principale | Documento in Pre-print | DRM non definito | Administrator |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.