We consider Bayesian estimation of state space models when the measurement density is not available but estimating equations for the parameters of the measurement density are available from moment conditions. The most common applications are partial equilibrium models involving moment conditions that depend on dynamic latent variables (e.g., time varying parameters, stochastic volatility) and dynamic general equilibrium models when moment equations from the first order conditions are available but computing an accurate approximation to the measurement density is difficult.
Bayesian estimation of state space models using moment conditions / Gallant, Ronald; Giacomini, Raffaella; Ragusa, Giuseppe. - In: JOURNAL OF ECONOMETRICS. - ISSN 0304-4076. - 201:2(2017), pp. 198-211. [10.1016/j.jeconom.2017.08.003]
Bayesian estimation of state space models using moment conditions
RAGUSA, GIUSEPPE
2017
Abstract
We consider Bayesian estimation of state space models when the measurement density is not available but estimating equations for the parameters of the measurement density are available from moment conditions. The most common applications are partial equilibrium models involving moment conditions that depend on dynamic latent variables (e.g., time varying parameters, stochastic volatility) and dynamic general equilibrium models when moment equations from the first order conditions are available but computing an accurate approximation to the measurement density is difficult.File | Dimensione | Formato | |
---|---|---|---|
bliml.pdf
Open Access
Descrizione: Articolo principale
Tipologia:
Documento in Pre-print
Licenza:
DRM (Digital rights management) non definiti
Dimensione
309.61 kB
Formato
Adobe PDF
|
309.61 kB | Adobe PDF | Visualizza/Apri |
JE MS2015122-2 Decision letter.pdf
Solo gestori archivio
Descrizione: Acceptance letter
Tipologia:
Altro materiale allegato
Licenza:
DRM (Digital rights management) non definiti
Dimensione
27.57 kB
Formato
Adobe PDF
|
27.57 kB | Adobe PDF | Visualizza/Apri |
blim_acc.pdf
Solo gestori archivio
Descrizione: Articolo principale
Tipologia:
Documento in Pre-print
Licenza:
DRM (Digital rights management) non definiti
Dimensione
815.63 kB
Formato
Adobe PDF
|
815.63 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.