We develop a continuum of stochastic dominance rules, covering preferences from first- to second-order stochastic dominance. The motivation for such a continuum is that while decision makers have a preference for “more is better,” they are mostly risk averse but cannot assert that they would dislike any risk. For example, situations with targets, aspiration levels, and local convexities in induced utility functions in sequential decision problems may lead to preferences for some risks. We relate our continuum of stochastic dominance rules to utility classes, the corresponding integral conditions, and probability transfers and discuss the usefulness of these interpretations. Several examples involving, e.g., finite-crossing cumulative distribution functions, location-scale families, and induced utility, illustrate the implementation of the framework developed here. Finally, we extend our results to a combined order including convex (risk-taking) stochastic dominance.
Between first and second-order stochastic dominance / Müller, Alfred; Scarsini, Marco; Tsetlin, Ilia; Winkler, Robert L.. - In: MANAGEMENT SCIENCE. - ISSN 1526-5501. - 63:9(2017), pp. 2933-2947. [10.1287/mnsc.2016.2486]
Between first and second-order stochastic dominance
SCARSINI, MARCO;
2017
Abstract
We develop a continuum of stochastic dominance rules, covering preferences from first- to second-order stochastic dominance. The motivation for such a continuum is that while decision makers have a preference for “more is better,” they are mostly risk averse but cannot assert that they would dislike any risk. For example, situations with targets, aspiration levels, and local convexities in induced utility functions in sequential decision problems may lead to preferences for some risks. We relate our continuum of stochastic dominance rules to utility classes, the corresponding integral conditions, and probability transfers and discuss the usefulness of these interpretations. Several examples involving, e.g., finite-crossing cumulative distribution functions, location-scale families, and induced utility, illustrate the implementation of the framework developed here. Finally, we extend our results to a combined order including convex (risk-taking) stochastic dominance.File | Dimensione | Formato | |
---|---|---|---|
MS2017MSTW.pdf
Solo gestori archivio
Tipologia:
Versione dell'editore
Licenza:
Tutti i diritti riservati
Dimensione
597.71 kB
Formato
Adobe PDF
|
597.71 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.