MANIFOLD ESTIMATION AND SINGULAR DECONVOLUTION UNDER HAUSDORFF LOSS

BY CHRISTOPHER R. GENOVESE¹, MARCO PERONE-PACIFICO², ISABELLA VERDINELLI² AND LARRY WASSERMAN³

Carnegie Mellon University, Sapienza University of Rome, Carnegie Mellon University and Sapienza University of Rome, and Carnegie Mellon University

We find lower and upper bounds for the risk of estimating a manifold in Hausdorff distance under several models. We also show that there are close connections between manifold estimation and the problem of deconvolving a singular measure.

1. Introduction. Manifold learning is an area of intense research activity in machine learning and statistics. Yet a very basic question about manifold learning is still open, namely, how well can we estimate a manifold from n noisy samples? In this paper we investigate this question under various assumptions.

Suppose we observe a random sample $Y_1, \ldots, Y_n \in \mathbb{R}^D$ that lies on or near a d-manifold M where $d < D$. The question we address is: what is the minimax risk under Hausdorff distance for estimating M? Our main assumption is that M is a d-dimensional, smooth Riemannian submanifold in \mathbb{R}^D; the precise conditions on M are given in Section 2.

Let Q denote the distribution of Y_i. We shall see that Q depends on several things, including the manifold M, a distribution G supported on M and a model for the noise. We consider three noise models. The first is the noiseless model in which Y_1, \ldots, Y_n is a random sample from G. The second is the clutter noise model, in which $Y_1, \ldots, Y_n \sim (1 - \pi)U + \pi G$, (1)

where U is a uniform distribution on a compact set $K \subset \mathbb{R}^D$ with nonempty interior, and G is supported on M. (When $\pi = 1$ we recover the noiseless case.) The third is the additive model,

$Y_i = X_i + Z_i$, (2)
where $X_1, \ldots, X_n \sim G$, G is supported on M, and the noise variables Z_1, \ldots, Z_n are a sample from a distribution Φ on \mathbb{R}^D which we take to be Gaussian. In this case, the distribution Q of Y is a convolution of G and Φ written $Q = G \ast \Phi$.

In a previous paper [Genovese et al. (2010)], we considered a noise model in which the noise is perpendicular to the manifold. This model is also considered in Niyogi, Smale and Weinberger (2011). Since we have already studied that model, we shall not consider it further here.

In the additive model, estimating M is related to estimating the distribution G, a problem that is usually called deconvolution [Fan (1991)]. The problem of deconvolution is well studied in the statistical literature, but in the manifold case there is an interesting complication: the measure G is singular because it puts all its mass on a subset of \mathbb{R}^D that has zero Lebesgue measure (since the manifold has dimension $d < D$). Deconvolution of singular measures has not received as much attention as standard deconvolution problems and raises interesting challenges.

Each noise model gives rise to a class of distributions Q for Y defined more precisely in Section 2. We are interested in the minimax risk

$$R_n \equiv R_n(Q) = \inf_{\hat{M}} \sup_{Q \in Q} \mathbb{E}_Q[H(\hat{M}, M)],$$

where the infimum is over all estimators \hat{M}, and H is the Hausdorff distance [defined in equation (4)]. Note that finding the minimax risk is equivalent to finding the sample complexity $n(\varepsilon) = \inf\{n: R_n \leq \varepsilon\}$. We emphasize that the goal of this paper is to find the minimax rates, not to find practical estimators. We use the Hausdorff distance because it is one of the most commonly used metrics for assessing the accuracy of set-valued estimators. One could of course create other loss functions and study their properties, but this is beyond the scope of this paper. Finally, we remark that our upper bounds sometimes differ from our lower bounds by a logarithmic factor. This is a common phenomenon when dealing with Hausdorff distance (and sup norm in function estimation problems). Currently, we do not know how to eliminate the log factor.

1.1. Related work. In the additive noise case, estimating a manifold is related to deconvolution problems such as those in Fan (1991), Fan and Truong (1993) and Stefanski (1990). More closely related is the problem of estimating the support of a distribution in the presence of noise as discussed, for example, in Meister (2006).

There is a vast literature on manifold estimation. Much of the literature deals with using manifolds for the purpose of dimension reduction. See, for example, Baraniuk and Wakin (2009) and references therein. We are interested instead in actually estimating the manifold itself. There is a literature on this problem in the field of computational geometry; see Dey (2007). However, very few papers allow for noise in the statistical sense, by which we mean observations drawn randomly from a distribution. In the literature on computational geometry, observations are called noisy if they depart from the underlying manifold in a very specific way: the
observations have to be close to the manifold but not too close to each other. This notion of noise is quite different from random sampling from a distribution. An exception is Niyogi, Smale and Weinberger (2008), who constructed the following estimator: Let \(I = \{ i : \hat{p}(Y_i) > \lambda \} \) where \(\hat{p} \) is a density estimator. They define \(\hat{M} = \bigcup_{i \in I} B_D(Y_i, \varepsilon) \) where \(B_D(Y_i, \varepsilon) \) is a ball in \(\mathbb{R}^D \) of radius \(\varepsilon \) centered at \(Y_i \). Niyogi, Smale and Weinberger (2008) show that if \(\lambda \) and \(\varepsilon \) are chosen properly, then \(\hat{M} \) is homologous to \(M \). This means that \(M \) and \(\hat{M} \) share certain topological properties. However, the result does not guarantee closeness in Hausdorff distance.

A very relevant paper is Caillerie et al. (2011). These authors consider observations generated from a manifold and then contaminated by additive noise as we do in Section 5. Also, they use deconvolution methods as we do. However, their interest is in upper bounding the Wasserstein distance between an estimator \(\hat{G} \) and the distribution \(G \), as a prelude to estimating the homology of \(M \). They do not establish Hausdorff bounds. Koltchinskii (2000) considers estimating the number of connected components of a set, contaminated by additive noise. This corresponds to estimating the zeroth order homology.

There is also a literature on estimating principal surfaces. A recent paper on this approach with an excellent review is Ozertem and Erdogmus (2011). This is similar to estimating manifolds but, to the best of our knowledge, this literature does not establish minimax bounds for estimation in Hausdorff distance. Finally we would like to mention the related problem of testing for a set of points on a surface in a field of uniform noise [Arias-Castro et al. (2005)], but, despite some similarity, this problem is quite different.

1.2. Notation

We let \(B_D(x, r) \) denote a \(D \)-dimensional open ball centered at \(x \) with radius \(r \). If \(A \) is a set, and \(x \) is a point, then we write \(d(x, A) = \inf_{y \in A} \|x - y\| \) where \(\| \cdot \| \) is the Euclidean norm. Given two sets \(A \) and \(B \), the Hausdorff distance between \(A \) and \(B \) is

\[
H(A, B) = \inf\{\varepsilon : A \subset B \oplus \varepsilon \text{ and } B \subset A \oplus \varepsilon\},
\]

where

\[
A \oplus \varepsilon = \bigcup_{x \in A} B_D(x, \varepsilon).
\]

The \(L_1 \) distance between two distributions \(P \) and \(Q \) with densities \(p \) and \(q \) is \(\ell_1(p, q) = \int |p - q| \) and the total variation distance between \(P \) and \(Q \) is

\[
\text{TV}(P, Q) = \sup_A |P(A) - Q(A)|,
\]

where the supremum is over all measurable sets \(A \). Recall that \(\text{TV}(P, Q) = (1/2)\ell_1(p, q) \).

Let \(p(x) \wedge q(x) = \min\{p(x), q(x)\} \). The affinity between \(P \) and \(Q \) is

\[
\|P \wedge Q\| = \int p \wedge q = 1 - \frac{1}{2} \int |p - q|.
\]
Let P^n denote the n-fold product measure based on n independent observations from P. It can be shown that

\[\|P^n \land Q^n\| \geq \frac{1}{8} \left(1 - \frac{1}{2} \int |p - q| \right)^{2n}. \]

The convolution between two measures P and Φ—denoted by $P \star \Phi$—is the measure defined by

\[(P \star \Phi)(A) = \int \Phi(A - x) \, dP(x). \]

If Φ has density ϕ, then $P \star \Phi$ has density $\int \phi(y - u) \, dP(u)$. The Fourier transform of P is denoted by

\[p^*(t) = \int e^{it^T u} \, dP(u) = \int e^{it \cdot u} \, dP(u), \]

where we use both $t^T u$ and $t \cdot u$ to denote the dot product.

We write $X_n = O_P(a_n)$ to mean that for every $\varepsilon > 0$, there exists $C > 0$ such that $\mathbb{P}(\|X_n\|/a_n > C) \leq \varepsilon$ for all large n. Throughout, we use symbols like C, C_0, c_0, c_1, \ldots to denote generic positive constants whose value may be different in different expressions. We write $\text{poly}(\varepsilon)$ to denote any expression of the form $a \varepsilon^b$ for some positive real numbers a and b. We write $a_n \leq b_n$ if there exists $c > 0$ such that $a_n \leq cb_n$ for all large n. Similarly, write $a_n \geq b_n$ if $b_n \leq a_n$. Finally, write $a_n \asymp b_n$ if $a_n \leq b_n$ and $b_n \leq a_n$.

We will use Le Cam’s lemma to derive lower bounds, which we now state. This version is from Yu (1997).

LEMMA 1 (Le Cam 1973). Let Q be a set of distributions. Let $\theta(Q)$ take values in a metric space with metric ρ. Let $Q_0, Q_1 \in Q$ be any pair of distributions in Q. Let Y_1, \ldots, Y_n be drawn i.i.d. from some $Q \in Q$ and denote the corresponding product measure by Q^n. Let $\hat{\theta} = \hat{\theta}(Y_1, \ldots, Y_n)$ be any estimator. Then

\[\sup_{Q \in Q} \mathbb{E}_{Q^n}[\rho(\hat{\theta}, \theta(Q))] \geq \rho(\theta(Q_0), \theta(Q_1)) \|Q_0^n \land Q_1^n\| \]

\[\geq \rho(\theta(Q_0), \theta(Q_1)) \frac{1}{8} (1 - \text{TV}(Q_0, Q_1))^{2n}. \]

2. Assumptions. We shall be concerned with d-dimensional Riemannian submanifolds of \mathbb{R}^D where $d < D$. Usually, we assume that M is contained in some compact set $K \subset \mathbb{R}^D$. An exception is Section 5 where we allow noncompact manifolds. Let $\Delta(M)$ be the largest r such that each point in $M \oplus r$ has a unique projection onto M. The quantity $\Delta(M)$ will be small if either M is not smooth or if M is close to being self-intersecting. The quantity $\Delta(M)$ has been rediscovered many times. It is called the condition number in Niyogi, Smale and Weinberger...
(2008) and the reach in Federer (1959). Let $\mathcal{M}(\kappa)$ denote all d-dimensional manifolds embedded in \mathbb{R}^D such that $\Delta(M) \geq \kappa$. Throughout this paper, κ is a fixed positive constant.

We consider three different distributional models:

1. **Noiseless.** We observe $Y_1, \ldots, Y_n \sim G$ where G is supported on a manifold M where $M \in \mathcal{M} = \{M \in \mathcal{M}(\kappa), M \subset \mathcal{K}\}$. In this case, $Q = G$ and the observed data fall exactly on the manifold. We assume that G has density g with respect to the uniform distribution on M and that
 \begin{equation}
 0 < b(M) \leq \inf_{y \in M} g(y) \leq \sup_{y \in M} g(y) \leq B(M) < \infty,
 \end{equation}
 where $b(M)$ and $B(M)$ are allowed to depend on the class \mathcal{M}, but not on the particular manifold M. Let $\mathcal{G}(M)$ denote all such distributions. In this case we define
 \begin{equation}
 Q = G = \bigcup_{M \in \mathcal{M}} \mathcal{G}(M).
 \end{equation}

2. **Clutter noise.** Define \mathcal{M} and $\mathcal{G}(M)$ as in the noiseless case. We observe
 \begin{equation}
 Y_1, \ldots, Y_n \sim Q = (1 - \pi)U + \pi G,
 \end{equation}
 where $0 < \pi \leq 1$, U is uniform on the compact set $\mathcal{K} \subset \mathbb{R}^D$ and $G \in \mathcal{G}(M)$. Define
 \begin{equation}
 Q = \{Q = (1 - \pi)U + \pi G : G \in \mathcal{G}(M), M \in \mathcal{M}\}.
 \end{equation}

3. **Additive noise.** In this case we allow the manifolds to be noncompact. However, we do require that each G put nontrivial probability in some fixed compact set. Specifically, we again fix a compact set \mathcal{K}. Let $\mathcal{M} = \mathcal{M}(\kappa)$. Fix positive constants $0 < b(M) < B(M) < \infty$. For any $M \in \mathcal{M}$, let $\mathcal{G}(M)$ be the set of distributions G supported on M, such that G has density g with respect to Hausdorff measure on M, and such that
 \begin{equation}
 0 < b(M) \leq \inf_{y \in M \cap \mathcal{K}} g(y) \leq \sup_{y \in M \cap \mathcal{K}} g(y) \leq B(M) < \infty.
 \end{equation}
 Let $X_1, X_2, \ldots, X_n \sim G \in \mathcal{G}(M)$, and define
 \begin{equation}
 Y_i = X_i + Z_i, \quad i = 1, \ldots, n,
 \end{equation}
 where Z_i are i.i.d. draws from a distribution Φ on \mathbb{R}^D, and where Φ is a standard D-dimensional Gaussian. Let $Q = G \ast \Phi$ be the distribution of each Y_i and Q^n be the corresponding product measure. Let $Q = \{G \ast \Phi : G \in \mathcal{G}(M), M \in \mathcal{M}\}$.

These three models are an attempt to capture the idea that we have data falling on or near a manifold. These appear to be the most commonly used models. No doubt, one could create other models as well which is a topic for future research. As we mentioned earlier, a different noise model is considered in Niyogi, Smale and Weinberger (2011) and in Genovese et al. (2010). Those authors consider the case where the noise is perpendicular to the manifold. The former paper considers estimating the homology groups of M while the latter paper shows that the minimax Hausdorff rate is $n^{-2/(2+d)}$ in that case.
3. **Noiseless case.** We now derive the minimax bounds in the noiseless case.

Theorem 2. Under the noiseless model, we have

\[\inf_{\hat{M}} \sup_{Q \in \mathcal{Q}} \mathbb{E}_{Q^n}[H(\hat{M}, M)] \geq Cn^{-2/d}. \]

Proof. Fix \(\gamma > 0 \). By Theorem 6 of Genovese et al. (2010) there exist manifolds \(M_0, M_1 \) that satisfy the following conditions:

1. \(M_0, M_1 \in \mathcal{M} \).
2. \(H(M_0, M_1) = \gamma \).
3. There is a set \(B \subseteq M_1 \) such that:
 a. \(\inf_{y \in M_0} \|x - y\| > \gamma / 2 \) for all \(x \in B \).
 b. \(\mu_1(B) \geq \gamma^{d/2} \) where \(\mu_1 \) is the uniform measure on \(M_1 \).
 c. There is a point \(x \in B \) such that \(\|x - y\| = \gamma \) where \(y \in M_0 \) is the closest point on \(M_0 \) to \(x \). Moreover, \(T_x M_1 \) and \(T_y M_0 \) are parallel where \(T_x M \) is the tangent plane to \(M \) at \(x \).
4. If \(A = \{y : y \in M_1, y \notin M_0\} \), then \(\mu_1(A) \leq C\gamma^{d/2} \) for some \(C > 0 \).

Let \(Q_i = G_i \) be the uniform measure on \(M_i \), for \(i = 0, 1 \), and let \(A \) be the set defined in the last item. Then \(\text{TV}(G_0, G_1) = G_1(A) - G_0(A) = G_1(A) \leq C\gamma^{d/2} \).

From Le Cam’s lemma,

\[\sup_{Q \in \mathcal{Q}} \mathbb{E}_{Q^n} H(\hat{M}, M) \geq \gamma(1 - \gamma^{d/2})^{2n}. \]

Setting \(\gamma = (1/n)^{2/d} \) yields the stated lower bound. \(\square \)

See Figure 1 for a heuristic explanation of the construction of the two manifolds, \(M_0 \) and \(M_1 \), used in the above proof. Now we derive an upper bound.

Theorem 3. Under the noiseless model, we have

\[\inf_{\hat{M}} \sup_{Q \in \mathcal{Q}} \mathbb{E}_{Q^n}[H(\hat{M}, M)] \leq C \left(\frac{\log n}{n} \right)^{2/d}. \]

Hence, the rate is tight, up to logarithmic factors. The proof is a special case of the proof of the upper bound in the next section and so is omitted.

Remark. The Associate Editor pointed out that the rate \((1/n)^{2/d} \) might seem counterintuitive. For example, when \(d = 1 \), this yields \((1/n)^2 \) which would seem to contradict the usual \(1/n \) rate for estimating the support of a uniform distribution. However, the slower \(1/n \) rate is actually a boundary effect much like the boundary effects that occur in density estimation and regression. If we embed the uniform into \(\mathbb{R}^2 \) and wrap it into a circle to eliminate the boundary, we do indeed get a rate of \(1/n^2 \). Our assumption of smooth manifolds without boundary removes the boundary effect.
4. Clutter noise. Recall that
\[Y_1, \ldots, Y_n \sim Q = (1 - \pi)U + \pi G, \]
where \(U \) is uniform on \(\mathcal{K} \), \(0 < \pi \leq 1 \) and \(G \in \mathcal{G} \).

Theorem 4. Under the clutter model, we have
\[
\inf_{\hat{M}} \sup_{Q \in \mathcal{Q}} \mathbb{E}_{Q^n}[H(\hat{M}, M)] \geq C \left(\frac{1}{n \pi} \right)^{2/d}.
\]

Proof. We define \(M_0, M_1 \) and \(A \) as in the proof of Theorem 2. Let \(Q_0 = (1 - \pi)U + \pi G_0 \) and \(Q_1 = (1 - \pi)U + \pi G_1 \). Then \(TV(Q_0, Q_1) = \pi TV(G_0, G_1) \).
Hence \(TV(Q_0, Q_1) \leq \pi (G_1(A) - G_0(A)) = \pi G_1(A) \leq C \pi \gamma^{d/2} \).
From Le Cam’s lemma,
\[
\sup_{Q \in \mathcal{Q}} \mathbb{E}_{Q^n}[H(\hat{M}, M)] \geq \gamma (1 - \pi \gamma^{d/2})^{2n}.
\]
Setting \(\gamma = (1/n\pi)^{2/d} \) yields the stated lower bound. \(\square \)

Now we consider the upper bound. Let \(\hat{Q}_n \) be the empirical measure. Let \(\varepsilon_n = (K \log n/n)^{2/d} \) where \(K > 0 \) is a large positive constant. Given a manifold \(M \) and a point \(y \in M \) let \(S_M(y) \) denote the slab, centered at \(y \), with size \(b_1 \sqrt{\varepsilon_n} \).

Fig. 1. The proof of Theorem 2 uses two manifolds, \(M_0 \) and \(M_1 \). A sphere of radius \(\kappa \) is pushed upward into the plane \(M_0 \) (top left). The resulting manifold \(M'_0 \) is not smooth (top right). A sphere is then rolled around the manifold (bottom left) to produce a smooth manifold \(M_1 \) (bottom right). The construction is made rigorous in Theorem 6 of Genovese et al. (2010).
Given a manifold M and a point $y \in M$, $S_M(y)$ is a slab, centered at y, with size $O(\sqrt{\varepsilon n})$ in the d directions corresponding to the tangent space $T_y M$ and size $O(\varepsilon n)$ in the $D - d$ normal directions.

in the d directions corresponding to the tangent space $T_y M$ and size $b_2 \varepsilon_n$ in the $D - d$ normal directions to the tangent space. Here, b_1 and b_2 are small, positive constants. See Figure 2.

Define

$$s(M) = \inf_{y \in M} \hat{Q}_n[S_M(y)] \quad \text{and} \quad \hat{M}_n = \arg\max_M s(M).$$

In case of ties we take any maximizer.

Theorem 5. Let $\xi > 1$ and let $\varepsilon_n = (K \log n/n)^{2/d}$ where K is a large, positive constant. Then

$$\sup_{Q \in \mathcal{Q}} Q^n(\hat{H}(M_0, \hat{M}_n) > \varepsilon_n) < n^{-\xi}$$

and hence

$$\sup_{Q \in \mathcal{Q}} \mathbb{E} Q^n(\hat{H}(M_0, \hat{M}_n)) \leq C \varepsilon_n.$$

We will use the following result, which follows from Theorem 7 of Bousquet, Boucheron and Lugosi (2004). This version of the result is from Chaudhuri and Dasgupta (2010).

Lemma 6. Let A be a class of sets with VC dimension V. Let $0 < u < 1$ and

$$\beta_n = \sqrt{\left(\frac{4}{n}\right)^{V \log(2n) + \log\left(\frac{8}{u}\right)}}.$$

Then for all $A \in \mathcal{A}$,

$$- \min\{\beta_n \sqrt{\hat{Q}_n(A)}, \beta_n^2 + \beta_n \sqrt{Q(A)}\}$$

$$\leq Q(A) - \hat{Q}_n(A) \leq \min\{\beta_n^2 + \beta_n \sqrt{\hat{Q}_n(A)}, \beta_n \sqrt{Q(A)}\}$$

with probability at least $1 - u$.

The set of hyper-rectangles in \mathbb{R}^D (which contains all the slabs) has finite VC dimension V, say. Hence, we have the following lemma obtained by setting $u = (1/n)^\xi$.
Lema 7. Let A denote all hyper-rectangles in \mathbb{R}^D. Let $C = 4[V + \max\{3, \xi\}]$. Then for all $A \in A$,

\begin{align}
\hat{Q}_n(A) &\leq Q(A) + \frac{C \log n}{n} + \sqrt{\frac{C \log n}{n}} \sqrt{Q(A)} \quad \text{and} \\
\hat{Q}_n(A) &\geq Q(A) - \sqrt{\frac{C \log n}{n}} \sqrt{Q(A)} \quad \text{(22)}
\end{align}

(23)\]

with probability at least $1 - (1/n)\xi$.

Now we can prove Theorem 5.

Proof of Theorem 5. Let M_0 denote the true manifold. Assume that (22) and (23) hold. Let $y \in M_0$ and let $A = S_{M_0}(y)$. Note that $Q(A) = (1 - \pi)U(A) + \pi G(A)$. Since $y \in M_0$ and G is singular, the term $U(A)$ is of lower order and so there exist $0 < c_1 \leq c_2 < \infty$ such that, for all large n,

$$
\frac{c_1 K \log n}{n} = c_1 \varepsilon_n^{d/2} \leq Q(A) \leq c_2 \varepsilon_n^{d/2} = \frac{c_2 K \log n}{n}.
$$

Hence

$$
\hat{Q}_n(A) \geq Q(A) - \sqrt{\frac{C \log n}{n}} \sqrt{Q(A)} \geq \frac{c_1 K \log n}{n} - \sqrt{\frac{c'_2 K \log n}{n}} > \frac{c_3 K \log n}{n}.
$$

Thus $s(M_0) > \frac{c_3 K \log n}{n}$ with high probability.

Now consider any M for which $H(M_0, M) > \varepsilon_n$. There exists a point $y \in M$ such that $d(y, M_0) > \varepsilon_n$. It can be seen, since $M \in \mathcal{M}$, that $S_{M}(y) \cap M_0 = \emptyset$. [To see this, note that $\Delta(M) \geq \kappa > 0$ implies that the interior of any ball of radius κ tangent to M at y has empty intersection with M and the slab $S_{M}(y)$ is strictly contained in such a ball for b_1 and b_2 small enough relative to κ.] Hence

$$
Q(S_{M}(y)) = (1 - \pi)U(S_{M}(y)) = c_4 \varepsilon_n^{d/2} \varepsilon_n^{D - d} = \left(\frac{K \log n}{n}\right) c_4 \left(\frac{K \log n}{n}\right)^{2(D - d)/d} = C \left(\frac{\log n}{n}\right)^{(2D - d)/d}.
$$

So, from the previous lemma,

$$
s(M) = \inf_{x \in M} \hat{Q}_n(S_{M}(x)) \leq \hat{Q}_n(S_{M}(y)) \leq Q(S_{M}(y)) + \frac{C \log n}{n} + \sqrt{\frac{C \log n}{n}} \sqrt{Q(S_{M}(y))}
$$

$$
= \left(\frac{K \log n}{n}\right)^{(2D - d)/d} + \frac{C \log n}{n} + \left(\frac{K \log n}{n}\right)^{D/d} < \frac{C_3 K \log n}{n} = s(M_0)
$$

MANIFOLD ESTIMATION 949
since \(D > d \) and \(K \) is large. Let \(\mathcal{M}_n = \{ M \in \mathcal{M} : H(M_0, M) > \varepsilon n \} \). We conclude that
\[
Q^n(s(M) > s(M_0) \text{ for some } M \in \mathcal{M}_n) < \left(\frac{1}{n} \right)^{\xi}.
\]
\[\square\]

5. Additive noise. Let us recall the model. Let \(\mathcal{M} = \mathcal{M}(\kappa) \). We allow the manifolds to be noncompact. Fix positive constants \(0 < b(M) < B(M) < \infty \). For any \(M \in \mathcal{M} \) let \(\mathcal{G}(M) \) be the set of distributions \(G \) supported on \(M \) such that \(G \) has density \(g \) with respect to Hausdorff measure on \(M \) and such that
\[
0 < b(M) \leq \inf_{y \in M \cap K} g(y) \leq \sup_{y \in M \cap K} g(y) \leq B(M) < \infty,
\]
where \(K \) is a compact set. Let \(X_1, X_2, \ldots, X_n \sim G \in \mathcal{G}(M) \), and define
\[
Y_i = X_i + Z_i, \quad i = 1, \ldots, n,
\]
where \(Z_i \) are i.i.d. draws from a distribution \(\Phi \) on \(\mathbb{R}^D \), and where \(\Phi \) is a standard \(D \)-dimensional Gaussian. Let \(Q = G \ast \Phi \) be the distribution of each \(Y_i \) and \(Q^n \) be the corresponding product measure. Let \(Q = \{ G \ast \Phi : G \in \mathcal{G}(M), M \in \mathcal{M} \} \).

Since we allow the manifolds to be noncompact, the Hausdorff distance could be unbounded. Hence we define a truncated loss function,
\[
L(M, \hat{M}) = H(M \cap K, \hat{M} \cap K).
\]

Theorem 8. For all large enough \(n \),
\[
\inf_M \sup_{Q \in \mathcal{Q}} \mathbb{E}_Q[L(M, \hat{M})] \geq \frac{C \log n}{n}.
\]

Proof. Define \(\tilde{c} : \mathbb{R} \to \mathbb{R} \) and \(c : \mathbb{R}^d \to \mathbb{R}^{D-d} \) as follows: \(\tilde{c}(x) = \cos(x / (a \sqrt{\gamma})) \) and \(c(u) = (\prod_{i=1}^d \tilde{c}(u_i), 0, \ldots, 0)^T \). Let \(M_0 = \{(u, \gamma c(u)) : u \in \mathbb{R}^d\} \) and \(M_1 = \{(u, -\gamma c(u)) : u \in \mathbb{R}^d\} \). See Figure 3 for a picture of \(M_0 \) and \(M_1 \) when \(D = 2, d = 1 \). Later, we will show that \(M_0, M_1 \in \mathcal{M} \).

Let \(U \) be a \(d \)-dimensional random variable with density \(\zeta \) where \(\zeta \) is \(d \)-dimensional standard Gaussian density. Let \(\tilde{\zeta} \) be a one-dimensional \(N(0, 1) \) density. And define \(G_0 \) and \(G_1 \) by \(G_0(A) = \mathbb{P}((U, \gamma c(U)) \in A) \) and \(G_1(A) = \mathbb{P}((U, -\gamma c(U)) \in A) \).

![Fig. 3. The two least favorable manifolds \(M_0 \) and \(M_1 \) in the proof of Theorem 8 in the special case where \(D = 2 \) and \(d = 1 \).](image)
We begin by bounding $\int |q_1 - q_0|^2$. Define the D-cube $Z = [-1/(2a\sqrt{\gamma}), 1/(2a\sqrt{\gamma})]^D$. Then, by Parseval’s identity, and that fact that $q_j^* = \phi^* g_j^*$,

$$(2\pi)^D \int |q_1 - q_0|^2 = \int |q_1^* - q_0^*|^2 = \int |\phi^*|^2 |g_1^* - g_0^*|^2$$

$$= \int_Z |\phi^*|^2 |g_1^* - g_0^*|^2 + \int_{Z^c} |\phi^*|^2 |g_1^* - g_0^*|^2$$

$$\equiv I + II.$$

Then

$$II = \int_{Z^c} |g_1^*(t) - g_0^*(t)|^2 |\phi^*(t)|^2$$

$$\leq \int_{Z^c} |\phi^*(t)|^2 \leq C \left(\int_{1/(2a\sqrt{\gamma})}^\infty e^{-r^2} \, dt \right)^D$$

$$\leq \text{poly}(\gamma)e^{-D/4a^2\gamma}.$$

Now we bound I. Write $t \in \mathbb{R}^D$ as (t_1, t_2) where $t_1 = (t_{11}, \ldots, t_{1d}) \in \mathbb{R}^d$ and $t_2 = (t_{21}, \ldots, t_{2(D-d)}) \in \mathbb{R}^{D-d}$. Let $c_1(u) = \prod_{\ell=1}^d \tilde{c}(u_\ell)$ denote the first component of the vector-valued function c. We have

$$g_1^*(t) - g_0^*(t) = \int_{\mathbb{R}^d} (e^{i t_1 \cdot u + i t_{21} \gamma c_1(u)} - e^{i t_1 \cdot u - it_{21} \gamma c_1(u)}) \xi(u) \, du$$

$$= 2i \int e^{i t_1 \cdot u} \sin(t_{21} \gamma c_1(u)) \xi(u) \, du$$

$$= 2i \int e^{i t_1 \cdot u} \sum_{k=0}^\infty \frac{(-1)^k t_{21}^{2k+1} \gamma^{2k+1}}{(2k+1)!} c_1^{2k+1}(u) \xi(u) \, du$$

$$= 2i \sum_{k=0}^\infty (-1)^k t_{21}^{2k+1} \gamma^{2k+1} \int e^{i t_1 \cdot u} c_1^{2k+1}(u) \xi(u) \, du$$

$$= 2i \sum_{k=0}^\infty (-1)^k t_{21}^{2k+1} \gamma^{2k+1} \prod_{\ell=1}^d \int e^{i t_1 \cdot u} \tilde{c}^{2k+1}(u_\ell) \tilde{\xi}(u_\ell) \, du_\ell$$

$$= 2i \sum_{k=0}^\infty (-1)^k t_{21}^{2k+1} \gamma^{2k+1} \prod_{\ell=1}^d \tilde{c}^{2k+1} \tilde{\xi}^*(t_{1\ell})$$

$$= 2i \sum_{k=0}^\infty (-1)^k t_{21}^{2k+1} \gamma^{2k+1} \prod_{\ell=1}^d m_k(t_{1\ell}),$$

where

$$m_k(t_{1\ell}) = (\tilde{c}^{2k+1} \tilde{\xi}^*)^* (t_{1\ell}) = (\tilde{c}^* \tilde{c}^* \cdots \tilde{c}^* \tilde{\xi}^*)^* (t_{1\ell}).$$

(28)
Note that
\[\tilde{c}^* = \frac{1}{2} \delta_{-1/(a\sqrt{\gamma})} + \frac{1}{2} \delta_{1/(a\sqrt{\gamma})}, \]
where \(\delta_y \) a Dirac delta function at \(y \), that is, a generalized function corresponding to point evaluation at \(y \). For any integer \(r \), if we convolve \(\tilde{c}^* \) with itself \(r \) times, we have that
\[
(29) \quad \tilde{c}^* \ast \tilde{c}^* \ast \cdots \ast \tilde{c}^* = \left(\frac{1}{2} \right)^r \sum_{j=0}^{r} \binom{r}{j} \delta_{a_j},
\]
where \(a_j = (2j - r)/(a\sqrt{\gamma}) \). Thus
\[
(30) \quad m_k(t_{1\ell}) = \left(\frac{1}{2} \right)^{2k+1} \sum_{j=0}^{2k+1} \binom{2k+1}{j} \tilde{\zeta}^*(t_{1\ell} - a_j).
\]
Now \(\tilde{\zeta}^*(t_{1\ell}) = \exp(-\frac{t_{1\ell}^2}{2}) \) and \(\tilde{\zeta}^*(s) \leq 1 \) for all \(s \in \mathbb{R} \). For \(t \in \mathcal{Z} \), \(\tilde{\zeta}^*(t_{1\ell} - a_j) \leq e^{-1/(2a^2\gamma)} \), and thus \(|m_k(t_{1\ell})| \leq e^{-1/(2a^2\gamma)} \). Hence, \(\prod_{\ell=1}^{d} |m_k(t_{1\ell})| \leq e^{-d/(2a^2\gamma)} \). It follows that for \(t \in \mathcal{Z} \),
\[
|g_1^*(t) - g_0^*(t)| \leq 2 \sum_{k=0}^{\infty} \frac{|t_{21}|^{2k+1} \gamma^{2k+1}}{(2k+1)!} \prod_{\ell=1}^{d} |m_k(t_{1\ell})| \leq e^{-d/(2a^2\gamma)} \sum_{k=0}^{\infty} \frac{|t_{21}|^{2k+1} \gamma^{2k+1}}{(2k+1)!} \leq e^{-d/(2a^2\gamma)} \sinh(|t_{21}|\gamma) \leq e^{-d/(2a^2\gamma)}.
\]
So,
\[
I = \int_{\mathcal{Z}} |g_1^*(t) - g_0^*(t)|^2 |\phi^*(t)|^2 \, dt \\
\leq \int_{\mathcal{Z}} |g_1^*(t) - g_0^*(t)|^2 \, dt \\
\leq \text{Volume}(\mathcal{Z}) e^{-d/(a^2\gamma)} = \text{poly}(\gamma) e^{-d/(a^2\gamma)}.
\]
Hence,
\[
\int |q_1 - q_0|^2 \leq I + II \leq \text{poly}(\gamma) e^{-d/a^2\gamma} + \text{poly}(\gamma) e^{-D/4a^2\gamma}
\]
(31) \quad = \text{poly}(\gamma) e^{-2w/\gamma},
\]
where \(2w = \min\{d/a^2, D/(4a^2)\} \).
Next we bound \(\int |q_1 - q_0| \) so that we can apply Le Cam’s lemma. Let \(T_\gamma \) be a ball centered at the origin with radius \(1/\gamma \). Then, by Cauchy–Schwarz,

\[
\int |q_1 - q_0| = \int_{T_\gamma} |q_1 - q_0| + \int_{T_\gamma^c} |q_1 - q_0| \\
\leq \sqrt{\text{Volume}(T_\gamma)} \sqrt{\int |q_1 - q_0|^2 + \int_{T_\gamma^c} |q_1 - q_0|} \\
\leq \text{poly}(\gamma)e^{-w/\gamma} + \int_{T_\gamma^c} |q_1 - q_0|.
\]

For all small \(\gamma \) we have that \(\mathcal{K} \subset T_\gamma \). Hence,

\[
\int_{T_\gamma^c} |q_1 - q_0| \leq \int_{M_1} \int_{T_\gamma^c} \phi(\|y - u\|) + \int_{M_0} \int_{T_\gamma^c} \phi(\|y - u\|) \leq \text{poly}(\gamma)e^{-D/\gamma^2} \\
\leq \text{poly}(\gamma)e^{-w/\gamma}.
\]

Putting this all together, we have that \(\int |q_1 - q_0| \leq \text{poly}(\gamma)e^{-w/\gamma} \).

Now we apply Lemma 1 and conclude that, for every \(\gamma > 0 \),

\[
\sup_Q \mathbb{E}(L(M, \widehat{M})) \geq \frac{\gamma}{8} (1 - \text{poly}(\gamma)e^{-w/\gamma})^{2n}.
\]

Set \(\gamma \asymp w/\log n \) and conclude that, for all large \(n \),

\[
\sup_Q \mathbb{E}(L(M, \widehat{M})) \geq \frac{w}{8e^2 \log n}.
\]

This concludes the proof of the lower bound except that it remains to show that \(M_0, M_1 \in \mathcal{M}(\kappa) \). Note that \(|\hat{c}''(u)| = a^{-2} |\cos(u/(a\sqrt{\gamma})| \). Hence, as long as \(a > \sqrt{\kappa}, \sup_u |\hat{c}''(u)| < 1/\kappa \). It now follows that \(M_0, M_1 \in \mathcal{M}(\kappa) \). This completes the proof. \(\square \)

Remark. Consider the special case where \(D = 2, d = 1 \) and the manifold has the special form \(\{(u, m(u)) : u \in \mathbb{R}\} \) for some function \(m : \mathbb{R} \to \mathbb{R} \). In this case, estimating the manifold is like estimating a regression function with errors in variables. (More on this in Section 6.) The rate obtained for estimating a regression function with errors in variables under these conditions [Fan and Truong (1993)] is \(1/\log n \) in agreement with our rate. However, the proof technique is not quite the same as we explain in Section 6.

Remark. The proof of the lower bound is similar to other lower bounds in deconvolution problems. There is an interesting technical difference, however. In standard deconvolution, we can choose \(G_0 \) and \(G_1 \) so that \(g_1^*(t) - g_0^*(t) \) is zero in a large neighborhood around the origin. This simplifies the proof considerably. It appears we cannot do this in the manifold case since \(G_0 \) and \(G_1 \) have different supports.
Next we construct an upper bound. We use a standard deconvolution density estimator \(\hat{g} \) (even though \(G \) has no density), and then we threshold this estimator.

Theorem 9. Fix any \(0 < \delta < 1/2 \). Let \(\lambda_n \) be such that
\[
C'(\frac{1}{h})^{D-d} < \lambda_n < C''(\frac{1}{L})^{2k}(\frac{1}{h})^{D-d},
\]
where \(k \geq d/(2\delta) \). \(C' \) is defined in Lemma 11 and \(C'' \) and \(L \) are defined in Lemma 12. Define \(\tilde{M} = \{ y : \hat{g}(y) > \lambda_n \} \) where \(\hat{g} \) is defined in (34). Then for all large \(n \),
\[
\inf_{\tilde{M}} \sup_{Q \in \mathcal{Q}} E_Q[L(M, \tilde{M})] \leq C \left(\frac{1}{\log n} \right)^{(1-\delta)/2}.
\]

Let us now define the estimator in more detail. Define \(\psi_k(y) = \text{sinc}^{2k}(y/(2k)) \). By elementary calculations, it follows that
\[
\psi_k^*(t) = 2kB_2k \left(\frac{t}{2k} \right),
\]
where \(B_r = \underbrace{J \star \cdots \star J}_r \) where \(J = \frac{1}{2} I_{[-1,1]} \). The following properties of \(\psi_k \) and \(\psi_k^* \) follow easily:

1. The support of \(\psi_k^* \) is \([−1, 1] \).
2. \(\psi_k \geq 0 \) and \(\psi_k^* \geq 0 \).
3. \(\int \psi_k^*(t) \, dt = \psi_k(0) = 1 \).
4. \(\psi_k^* \) and \(\psi_k \) are spherically symmetric.
5. \(|\psi_k(y)| \leq 1/((2k)^{2k} |y|^{2k}) \) for all \(|y| > \pi/(2k) \).

Abusing notation somewhat, when \(u \) is a vector, we take \(\psi_k(u) \equiv \psi_k(\|u\|) \).

Define
\[
\hat{g}^*(t) = \frac{\hat{q}^*(t)}{\hat{\phi}^*(t)} \psi_k^*(ht),
\]
where \(\hat{q}^*(t) = \frac{1}{n} \sum_{i=1}^n e^{-it^T Y_i} \) is the empirical characteristic function. Now define
\[
\hat{g}(y) = \left(\frac{1}{2\pi} \right)^D \int e^{-it^T y} \frac{\psi_k^*(ht) \hat{q}^*(t)}{\hat{\phi}^*(t)} \, dt.
\]
Let \(\overline{g}(y) = \mathbb{E}(\hat{g}(y)) \).

Lemma 10. For all \(y \in \mathbb{R}^D \),
\[
\overline{g}(y) = \left(\frac{1}{2\pi h} \right)^D \int \psi_k \left(\frac{\|y - u\|}{h} \right) dG(u).
\]
MANIFOLD ESTIMATION

PROOF. Let $\psi_{k, h}(x) = h^{-D} \psi_k(x/h)$. Hence, $\psi_{k, h}^*(t) = \psi_k^*(th)$. Now,

\[
\overline{g}(y) = \left(\frac{1}{2\pi} \right)^D \int e^{-it^Ty} \frac{\psi_k^*(th)}{\phi^*(t)} \frac{q^*(t)}{\phi^*(t)} dt \n = \left(\frac{1}{2\pi} \right)^D \int e^{-it^Ty} \psi_k^*(th) g^*(t) \phi^*(t) dt \n = \left(\frac{1}{2\pi} \right)^D \int e^{-it^Ty} \psi_k^*(th) g^*(t) dt \n = \left(\frac{1}{2\pi} \right)^D \int e^{-it^Ty} \psi_{k, h}^*(t) dt \n = \left(\frac{1}{2\pi} \right)^D \int e^{-it^Ty} (g \ast \psi_{k, h})^*(t) dt \n = \left(\frac{1}{2\pi} \right)^D \frac{(g \ast \psi_{k, h})(y)}{h^D} dG(u). \quad \Box
\]

LEMMA 11. We have that $\inf_{y \in M \cap K} \overline{g}(y) \geq C' h^{d-D}$.

PROOF. Choose any $x \in M \cap K$ and let $B = B(x, Ch)$. Note that $G(B) \geq b(M) ch^d$. Hence,

\[
\overline{g}(x) = (2\pi)^{-D} h^{-D} \int \psi_k \left(\frac{x - u}{h} \right) dG(u) \n \geq (2\pi)^{-D} h^{-D} \int_B \psi_k \left(\frac{x - u}{h} \right) dG(u) \n \geq (2\pi)^{-D} h^{-D} G(B) = C' h^{d-D}. \quad \Box
\]

LEMMA 12. Fix $0 < \delta < 1/2$. Suppose that $k \geq d/(2\delta)$. Then,

(35) $\sup \{ \overline{g}(y) : y \in K, d(y, M) > Lh^{1-\delta} \} \leq C'' L^{-2k} \left(\frac{1}{h} \right)^{D-d}$.

PROOF. Let y be such that $d(y, M) > Lh^{1-\delta}$. For integer $j \geq 1$, define

\[
A_j = [B(y, (j + 1)Lh^{1-\delta}) - B(y, jLh^{1-\delta})] \cap M \cap K.
\]

Then

\[
\overline{g}(y) = \left(\frac{1}{2\pi h} \right)^D \int_{A_j} \psi_k \left(\frac{\| u - y \|}{h} \right) dG(u) \n \leq \left(\frac{1}{2\pi h} \right)^D \sum_{j=1}^{\infty} \int_{A_j} \psi_k \left(\frac{\| u - y \|}{h} \right) dG(u)
\]

\[
\leq \left(\frac{1}{2\pi h} \right)^D \sum_j \int_{A_j} \left(\frac{2kh}{\|u - y\|} \right)^{2k} dG(u)
\]
\[
\leq C \left(\frac{1}{h} \right)^D \sum_j \int_{A_j} \left(\frac{h}{jLh^{1-\delta}} \right)^{2k} dG(u)
\]
\[
\leq C \left(\frac{1}{h} \right)^D L^{-2k} h^{2k\delta} \sum_j \left(\frac{1}{j} \right)^{2k} G(A_j)
\]
\begin{equation}
(*)
\end{equation}
\[
\leq C \left(\frac{1}{h} \right)^D L^{-2k} h^{2k\delta}
\]
\begin{equation}
(**)
\end{equation}
\[
\leq C \left(\frac{1}{h} \right)^D L^{-2k} h^d
\]
\[
\leq C'' L^{-2k} \left(\frac{1}{h} \right)^{D-d},
\]
where equation (*) follows because \(G \) is a probability measure and \(\sum_j j^{-2k} < \infty \), and equation (**) follows because \(2k\delta \geq d \). □

Now define \(\Gamma_n = \sup_y |\hat{g}(y) - \bar{g}(y)| \).

Lemma 13. Let \(h = 1/\sqrt{\log n} \), and let \(\xi > 1 \). Then, for large \(n \),

\begin{equation}
(36)
\Gamma_n = \left(\frac{1}{\sqrt{\log n}} \right)^{4k+4-D}
\end{equation}
on an event \(A_n \) of probability at least \(1 - n^{-\xi} \).

Proof. We proceed as in Theorem 2.3 of Stefanski (1990). Note that

\begin{equation}
(37)
\hat{g}(y) - \bar{g}(y) = \left(\frac{1}{2\pi} \right)^D \int e^{-i t^T y} \frac{\psi_k^*(th)}{\phi^*(t)} (q^*(t) - \bar{q}^*(t)) \, dt,
\end{equation}
and also note that the integrand is 0 for \(\|t\| > 1/h \). So

\begin{equation}
(38)
\sup_y |\hat{g}(y) - \bar{g}(y)| \leq \frac{\Delta_n}{(2\pi)^D} \int_{\|t\| \leq 1/h} \frac{\psi_k^*(th)}{\phi^*(t)} \, dt,
\end{equation}
where \(\Delta_n = \sup_{\|t\| < 1/h} |\bar{q}^*(t) - q^*(t)| \).

For \(D = 1 \), it follows from Theorem 4.3 of Yukich (1985) that

\begin{equation}
(39)
Q''(\Delta_n > 4\varepsilon) \leq 4N(\varepsilon) \exp \left(-\frac{n\varepsilon^2}{8 + 4\varepsilon/3} \right) + 8N(\varepsilon) \exp \left(-\frac{n\varepsilon}{96} \right),
\end{equation}
where $N(\varepsilon)$ is the bracketing number of the set of complex exponentials, which is given by $N(\varepsilon) = 1 + \frac{24M_{\varepsilon}T_{n}}{\varepsilon}$, and M_{ε} is defined by $Q\left(\|Y\| > M_{\varepsilon}\right) \leq \varepsilon/4$. By a similar argument, we have that in D dimensions,

\begin{equation}
(40) \quad \sup_{Q \in \mathcal{Q}_n} Q^n(\Delta_n > 4\varepsilon) \leq 4N(\varepsilon) \exp\left(-\frac{n\varepsilon^2}{8 + 4\varepsilon/3}\right) + 8N(\varepsilon) \exp\left(-\frac{n\varepsilon}{96}\right),
\end{equation}

where now

\begin{equation}
(41) \quad N(\varepsilon) = C \left[1 + \frac{24M_{\varepsilon}T_{n}}{\varepsilon}\right] \varepsilon^{-(D-1)},
\end{equation}

and M_{ε} is defined by $\sup_{Q \in \mathcal{Q}_n} Q\left(\|Y\| > M_{\varepsilon}\right) \leq \varepsilon/4$. Note that $M_{\varepsilon} = O(1)$. It follows that $\Delta_n \leq \sqrt{\frac{C\log n}{n}}$ except on a set of probability $n^{-\bar{\xi}}$ where $\bar{\xi}$ can be made arbitrarily large by taking C large.

Now, note that $\psi^*_k(ht)/\phi^*(t)$ is a spherically symmetric function $R(\|t\|)$. Hence,

\[\int_{\|t\| \leq 1/h} \frac{\psi^*_k(ht)}{\phi^*(t)} dt = C \int_{s=0}^{1/h} R(s)s^{D-1} ds \leq Ch^{4k+4-D}e^{1/(2h^2)}, \]

where the last result follows from Lemma 3.1 in Stefanski (1990) using parameters $\delta = 2$, $\gamma = 1/2$, $r = 2k + 2$, $\beta = D - 1$, with $\lambda = h$. The value of r follows from the definition of ψ^*_k. The result now follows by combining this bound with (38).

\[\square \]

Now we can complete the proof of the upper bound.

Proof of Theorem 9. On the event A_n where $\Gamma_n \leq (1/\sqrt{\log n})^{4k+4-D}$ (defined in the previous lemma), we have

\[\inf_{y \in M \cap \mathcal{K}} \hat{g}(y) \geq \inf_{y \in M \cap \mathcal{K}} g(y) - \Gamma_n \geq C \left(\frac{1}{h}\right)^{D-d} - \left(\frac{1}{\sqrt{\log n}}\right)^{4k+4-D} \]

\[\geq (C/2) \left(\frac{1}{h}\right)^{D-d} > \lambda_n. \]

This implies that $M \cap \mathcal{K} \subset \hat{M} \cap \mathcal{K}$

Next, we have

\[\sup_{y \in \mathcal{K}} \hat{g}(y) \leq \sup_{d(y, M) \geq Lh^{1-\delta}} g(y) + \Gamma_n \]

\[\leq CL^{-2k}\left(\frac{1}{h}\right)^{D-d} + \left(\frac{1}{\sqrt{\log n}}\right)^{4k+4-D} \]

\[\leq 2CL^{-2k}\left(\frac{1}{h}\right)^{D-d} < \lambda_n \]
for large enough L. This implies that

\[\{ y : y \in \mathcal{K} \text{ and } d(y, M) \geq L h^{1-\delta} \} \cap \hat{M} = \emptyset. \]

Therefore, on A_n, $L(M, \hat{M}) \leq C \left(\frac{1}{\log n} \right)^{(1-\delta)/2}$ and hence,

\[
\mathbb{E}(L(M, \hat{M})) = \mathbb{E}(L(M, \hat{M}) 1_{A_n}) + \mathbb{E}(L(M, \hat{M}) 1_{A_n^c}) \\
\leq C \left(\frac{1}{\log n} \right)^{(1-\delta)/2} + Q^n(\mathcal{A}_n^c) \\
\leq C \left(\frac{1}{\log n} \right)^{(1-\delta)/2} + n^{-\xi} \leq C \left(\frac{1}{\log n} \right)^{(1-\delta)/2},
\]

and the theorem is proved. \(\square\)

Remark. Again, the proof of the upper bound is similar to proofs used in other deconvolution problems. But once more, there are interesting differences. In particular, the density estimator \hat{g} is not estimating any underlying density since the measure G is singular and hence does not have a density. Hence, the usual bias calculation is meaningless.

Remark. Note that \hat{M} is a set, not a manifold; if desired, we can replace \hat{M} with any manifold in $\{ M \in \mathcal{M} : M \subset \hat{M} \}$, and then the estimator is a manifold and the rate is the same.

Remark. The upper bound is slightly slower than the lower bound. The rate is consistent with the results in Caillerie et al. (2011) who show that $\mathbb{E}(W_2(\hat{g}, G)) \leq C/\sqrt{\log n}$ where W_2 is the Wasserstein distance. In the special case where the manifold has the form $\{(u, m(u)) : u \in \mathbb{R}\}$ for some function m, the problem can be viewed as nonparametric regression with measurement error; see Section 6. In this special case, we can use the deconvolution kernel regression estimator in Fan and Truong (1993) which achieves the rate $1/\log n$. We do not know of any estimator in the general case that achieves the rate $1/\log n$, although we conjecture that the following estimator might have a better rate: let (\hat{M}, \hat{G}) minimize $\sup_{\|t\| \leq T_n} |\hat{q}^*(y) - q_{M,G}^*(t)|$ where $T_n = O(\sqrt{\log n})$. In any case, as with all Gaussian deconvolution problems, the rate is very slow, and the difference between $1/\log n$ and $1/\sqrt{\log n}$ is not of practical consequence.

6. **Singular deconvolution.** Estimating a manifold under additive noise is related to deconvolution. It is also related to regression with errors in variables. The purpose of this section is to explain the connections between the problems.
6.1. Relationship to density deconvolution. Recall that the model is \(Y = X + Z \) where \(X \sim G \), \(G \) is supported on a manifold \(M \) and \(Z \sim \Phi \). \(G \) is a singular measure supported on the \(d \)-dimensional manifold \(M \).

Now consider a somewhat simpler model: suppose again that \(Y_i = X_i + Z_i \), but suppose that \(X \) has a density \(g \) on \(\mathbb{R}^D \) (instead of being supported on a manifold). All three distributions \(Q \), \(G \) and \(\Phi \) have \(D \)-dimensional support and \(Q = G \ast \Phi \). The problem of recovering the density \(g \) of \(X \) from \(Y_1, \ldots, Y_n \) is the usual density deconvolution problem. A key reference is Fan (1991).

Most of the existing literature on deconvolution assumes that \(X \) and \(Y \) have the same support, or at least that the supports have the same dimension; an exception is Koltchinskii (2000). Manifold learning may be regarded as the problem of deconvolution for singular measures.

It is instructive to compare the least favorable pair used for proving the lower bounds in the ordinary case versus the singular case. Figure 4 shows a typical least favorable pair for proving a lower bound in ordinary deconvolution. The top left plot is a density \(g_0 \), and the top right plot is a density \(g_1 \) which is a perturbed version of \(g_0 \). The \(L_1 \) distance between the densities is \(\varepsilon \). The bottom plots are \(q_0 = \int \phi(y - x)g_0(x)\,dx \) and \(q_1 = \int \phi(y - x)g_1(x)\,dx \). These densities are nearly indistinguishable, and, in fact, their total variation distance is of order \(e^{-1/\varepsilon} \). Of course, these distributions have the same support and hence such a least favorable pair will not suffice for proving lower bounds in the manifold case where we will need two densities with different support.

Figure 5 shows the type of least favorable pair we used for manifold learning. The top two plots do not show the densities; rather they show the support of the densities. The distribution \(g_0 \) is uniform on the circle in the top left plot. The distribution \(g_1 \) is uniform on the perturbed circle in the top right plot. The

\[
\begin{align*}
\text{FIG. 4. A typical least favorable pair for proving a lower bounds in ordinary deconvolution. The top left plot is a density } g_0 \text{ and the top right plot is a density } g_1 \text{ which is a perturbed version of } g_0. \text{ The } L_1 \text{ distance between the densities is } \varepsilon. \text{ The bottom plots are } q_0 = \int \phi(y - x)g_0(x)\,dx \text{ and } q_1 = \int \phi(y - x)g_1(x)\,dx. \text{ These densities are nearly indistinguishable and, in fact, their total variation distance is } e^{-1/\varepsilon}.
\end{align*}
\]
The type of least favorable pair needed for proving lower bounds in manifold learning. The distribution g_0 is uniform on the circle in the top left plot. The distribution g_1 is uniform on the perturbed circle in the top right plot. The Hausdorff distance between the supports of the densities is ε. The bottom plots are heat maps of $q_0 = \int \phi(y - x)g_0(x)\,dx$ and $q_1 = \int \phi(y - x)g_1(x)\,dx$. These densities are nearly indistinguishable and, in fact, their total variation distance is $e^{-1/\varepsilon}$.

Hausdorff distance between the supports of densities is ε. The bottom plots are $q_0 = \int \phi(y - x)g_0(x)\,dx$ and $q_1 = \int \phi(y - x)g_1(x)\,dx$. Again, these densities are nearly indistinguishable, and, in fact, their total variation distance is $e^{-1/\varepsilon}$. In this case, however, g_0 and g_1 have different supports.

6.2. Relationship to regression with measurement error. We can also relate the manifold estimation problem with nonparametric regression with measurement error. Suppose that

$$U_i = X_i + Z_{2i},$$

$$Y_i = m(X_i) + Z_{1i},$$

and we want to estimate the regression function m. If we observe $(X_1, Y_1), \ldots, (X_n, Y_n)$, then this is a standard nonparametric regression problem. But if we only observe $(U_1, Y_1), \ldots, (U_n, Y_n)$, then this is the usual nonparametric regression with measurement error problem. The rates of convergence are similar to deconvolution. Indeed, Fan and Truong (1993) have an argument that converts nonparametric regression with measurement error into a density deconvolution problem. Let us see how this related to manifold learning.

Suppose that $D = 2$ and $d = 1$. Further, suppose that the manifold is function-like, meaning that the manifold is a curve of the form $M = \{(u, m(u)) : u \in \mathbb{R}\}$ for some function m. Then each Y_i can be written in the form

$$Y_i = \begin{pmatrix} Y_{i1} \\ Y_{i2} \end{pmatrix} = \begin{pmatrix} U_i \\ m(U_i) \end{pmatrix} + \begin{pmatrix} Z_{1i} \\ Z_{2i} \end{pmatrix}$$

which is exactly of the form (42). Let Q be all such distributions obtained this way with $|m''(u)| \leq 1/\kappa$. However, this only holds when the manifold has the function-
like form. Moreover, the lower bound argument in Fan and Truong (1993) cannot directly be transferred to the manifold setting as we now explain.

In our lower bound proof, we defined a least favorable pair \(q_0 \) and \(q_1 \) for the distribution of \(Y \) as follows. Take \(M_0 = \{ (u, 0) : u \in \mathbb{R} \} \) and \(M_1 = \{ (u, m(u)) : u \in \mathbb{R} \} \). [In fact, we used \((u, m(u)) \) and \((u, -m(u)) \), but the present discussion is clearer if we use \((u, 0) \) and \((u, m(u)) \).] Let \(Y = (Y_1, Y_2) \). For \(M_0 \), the distribution \(q_0 \) for \(Y \) is based on

\[
\begin{pmatrix}
Y_1 \\
Y_2
\end{pmatrix} = \begin{pmatrix}
U \\
0
\end{pmatrix} + \begin{pmatrix}
Z_1 \\
Z_2
\end{pmatrix}.
\]

The density of \((U, Y_2) \) is \(f_0(u, y_2) = \zeta(u) \phi(y_2) \) where \(\zeta \) is some density for \(U \). Then

\[
q_0(y_1, y_2) = f_0 \ast \Phi = \int f_0(y_1 - Z_1, y_2) d\Phi(z_1),
\]

where the convolution symbol here and in what follows, refers to convolution only over \(U + Z_1 \).

Now let \(q_1(y_1, y_2) \) denote the distribution of \(Y \) in the model

\[
\begin{pmatrix}
Y_1 \\
Y_2
\end{pmatrix} = \begin{pmatrix}
U \\
m(U)
\end{pmatrix} + \begin{pmatrix}
Z_1 \\
Z_2
\end{pmatrix}.
\]

This generates the least favorable pair \(q_0, q_1 \) used in our proof (restricted to this special case).

The least favorable pair used by Fan and Truong is different in a subtle way. The first distribution \(q_0 \) is the same. The second, which we will denote \(w_1 \), is constructed as follows. Let

\[
w_1(y_1, y_2) = f_1 \ast \Phi,
\]

where the convolution is only over \(U \),

\[
f_1(\xi, y_2) = f_0(\xi, y_2) + \gamma H(\xi/\sqrt{\gamma})h_0(y_2),
\]

where \(f_1(\xi) = g(\xi), \gamma H(\xi/\sqrt{\gamma})/g(\xi) = b(\xi), H \) is a perturbation function such as a cosine, and \(h_0 \) is chosen so that \(\int h_0(y_2) dy_2 = 0 \) and \(\int y_2 h_0(y_2) dy_2 = 1 \). Now we show that \(w_1(y_1, y_2) \neq q_1(y_1, y_2) \). In fact, \(w_1 \) is not in \(Q \). Note that

\[
w_1(y_1, y_2) = f_1 \ast \Phi = q_0(y_1, y_2) + \gamma h_0(y_2) \int H\left(\frac{y_1 - z_1}{\sqrt{\gamma}}\right) d\Phi(z_1).
\]

Now,

\[
q_1(y_2|u) = \phi(y_2 - m(u)),
\]

but

\[
f_1(y_2|u) = \frac{f_1(y_2, u)}{f_1(u)} = \phi(y_2) + m(u)h_0(y_2).
\]
These both have mean $m(u)$ but the distributions are different. Indeed, the marginals $w_1(y_2)$ and $q_1(y_2)$ are different. In fact,

$$w_1(y_2) = q_0(y_2) + ch_0(y_2)$$

for some c. This is not in our class because it is not of the form $\phi(y_2 - m(u))$. Hence, w_1 is not in our class Q: it does not correspond to drawing a point on a manifold and adding noise.

The point is that manifold learning reduces to nonparametric regression with errors only in the special case that the manifold is function-like. And even in this case, the proofs of the bounds are somewhat different than the usual proofs.

7. Discussion. The purpose of this paper is to establish minimax bounds on estimating manifolds. The estimators used to prove the upper bounds are theoretical constructions for the purposes of the proofs. They are not practical estimators.

There is a large literature on methodology for estimating manifolds. However, these estimators are not likely to be optimal except under stringent conditions. In current work we are trying to bridge the gap between the theory and the methodology.

Probably the most realistic noise condition is the additive model. In this case, we are dealing with a singular deconvolution problem. The upper bound used deconvolution techniques. Such methods require that the noise distribution is known (or is at least restricted to some narrow class of distributions). This seems unrealistic in real problems. A more realistic goal is to estimate some proxy manifold M^* that, in some sense, approximates M. We are currently working on such techniques.

REFERENCES

GENOVESE, C. R., PERONE-PACIFICO, M., VERDINELLI, I. and WASSERMAN, L. (2010). Mini-
Ann. Statist. 28 591–629. MR1790011
J. Multivariate Anal. 97 1702–1717. MR2298884
Learn. Res. 12 1249–1286. MR2804600
New York. MR1462963
245–260. MR0813235

C. R. GENOVESE
L. WASSERMAN
DEPARTMENT OF STATISTICS
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213
USA
E-MAIL: genovese@stat.cmu.edu
larry@stat.cmu.edu

M. PERONE-PACIFICO
DEPARTMENT OF STATISTICAL SCIENCES
SAPIENZA UNIVERSITY OF ROME
Rome
ITALY
E-MAIL: marco.peronepacifico@uniroma1.it

I. VERDINELLI
DEPARTMENT OF STATISTICS
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213
USA
AND
DEPARTMENT OF STATISTICAL SCIENCES
SAPIENZA UNIVERSITY OF ROME
Rome
ITALY
E-MAIL: isabella@stat.cmu.edu