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Abstract
In this paper, by using a lifecycle perspective, four stages related to the extraction, refining and
processing of copperwere identified. The different behaviors of countries in the import/export
networks at the four stages synthetically reflect their position in the global network of copper
production and consumption. The trade flows of four commodities related to the extraction,
refining and processing of copper of 142 nationswith population above 2millions based on the
UN Comtrade website (https://comtrade.un.org/data/), in five years from 2017 to 2021, were
considered. The observed trade flows in each year have beenmodelled as a directedmultilayer
network. Then the countries have been grouped according to their structural equivalence in
the international copper flow by using a Multilayer Stochastic Block Model. To put further
insight in the obtained community structure of the countries, a deep learning model based
on adapting the node2vec to a multilayer setting has been used to embed the countries in
an Euclidean plane. To identify groups of nations that play the same role across time, some
distances between the parameters obtained in consecutive years were introduced.We observe
that 97 countries out of 142 consistently occupy the same position in the copper supply chain
throughout the five years, while the other 45move through different roles in the copper supply
chain.
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1 Introduction

Large systems can be modelled and studied as complex networks. A complex network is
defined by vertices (nodes) and edges. A “vertex” represents an element that has any kind
of relationship with another element in the network, and this relationship is namely the
“edge”. For example, in a social network, a node could be an individual and an edge the
friendship/acquaintance between a couple of individuals, or in air-traffic networks, a node
could be an airport and an edge a flight route between two airports. In the present case, the
node is a country and the edge a trade relation between countries with respect to a commodity.
The complex networks theory offers many tools for analyzing a network (Caldarelli, 2007;
Newman, 2003, 2018).

Applications of complex networks have appeared in the literature to study both artificial
and natural systems. Beyond applications in computer simulation, complex networks have
provided understanding of a number of subjects such as: Social Networks, the World Wide
Web, human interactions, food webs, the spread of diseases, genomes and protein’ structures.
For a review of these applications, see Albert and Barabási (2002); Newman (2003).
A fast growing research branch in complex networks attains the detection of communities
(for a review, see Newman (2018)). Detection of communities (groups, clusters) in systems
represented as graphs (networks) is of great importance in many disciplines. A thorough
exposition of the topic, the definition of the main elements of the problem, the presentation
ofmostmethods developed, the discussion of crucial issues can be found in Fortunato (2010).

One of the most interesting lines of research is the study of whether the network accom-
modates a community structure (Newman, 2006; Newman & Girvan, 2004).

On a network level a community structure is any partition of the vertices into a set of
communities which enables defining, for each community, internal and external edges, that
is edges connecting two vertices of the given community and edges connecting a node of
the given community with a node of some other community. This definition still leaves open
many possibilities, and there are correspondingly many computational approaches. Many
algorithms have been proposed in the literature to perform such a task (Fortunato, 2010).

The most common approaches are based on optimization. A score is assigned to each
possible partition of a network into communities such that ‘good’ divisions get high scores,
then the partition with the highest score is chosen. There are a variety of ways to assign
scores. The most popular approach makes use of the quality function known as modularity,
which rewards partitions that have a high number of edges between nodes in the same cluster.
The modularity is based on the difference between the edges observed between communities
and the edges expected in a randomized version of the network (Girvan & Newman, 2002;
Newman, 2006).

Other approaches are model-based, with a variety of proposals (Matias & Robin, 2014).
In the model-based approach communities are not merely a feature of the network but a
primary driver of it: vertices are connected precisely because of the groups they belong to.
A ‘good’ community structure is one for which the model generates the observed network
with high probability, so that the probability can be used as a score function for finding the
best partition into communities. These models have the advantage of not requiring a prior
definition of what a ‘good’ partition is, but are able to find any kind of similarity structure
among the vertices that is statistically significant.

Quantitative analysis on international trade flowswith social network analysis (Wasserman
& Faust, 1994) has been addressed in the literature in testing various hypotheses on the
structure and dynamics of the global economy, including the core peripheral structure of
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the world system, the new international division of labor, and the rise of semi-peripheral
countries in several newly industrializing areas (Kim & Shin, 2002; Smith & White, 1992;
Snyder & Kick, 1979). In Tong and Lifset (2007), with an example based on the data of Yale
STAF project on the global copper cycle, community detection in social networks is used to
depict the pattern of material movement through international trade. The main characteristics
of the analysis are: (i) lifecycle perspective; and (ii) the combination of physical flows with
intangible social and economic relations.

For a review on the use of complex networks to model material flows in manufacturing,
logistic and supply chain see Bonaccorsi et al. (2019), Funke and Becker (2020) and related
references.

For a review on the use of deep learning in operation research see Kraus et al. (2020).
An extended classical input–output analysis through a multilayer network has been con-

sidered in Cornaro and Rizzini (2022). In particular, a multilayer network where sectors of
each economy are connected by weighted edges representing the directed embodied energy
flows has been used to detect relevant sectors and economies in the whole system.

In this paper, as in Tong and Lifset (2007), by using a lifecycle perspective, four stages
related to the extraction, refining and processing of copper were identified. The different
behaviors of countries in the import/export networks at the four stages synthetically reflect
their position in the global network of copper production and consumption. The trade flows of
four commodities related to the extraction, refining and processing of copper of 142 nations
with population above 2 millions based on the UN Comtrade website (https://comtrade.un.
org/data/), in five years from 2017 to 2021, were considered. The observed trade flows in
each year have been modelled as a directed multilayer network. Then the countries have
been grouped according to their structural equivalence in the international copper flow by
using a Multilayer Stochastic Block Model. To identify clusters of nations that play the same
role across time, some distances between the parameters obtained in consecutive years were
introduced. To put further insight in the obtained community structure of the countries, a
deep learning model has been used to embed the countries in an Euclidean plane. Different
embedding models based on deep learning have been discussed in the literature, however, the
implementation on the case of a directedmultilayer networks is, to the best of our knowledge,
a novel contribution.

The paper is organized as follows. In Sect. 2 the Multilayer Stochastic Block Model is
presented. In Sect. 3 an application of theMultilayer StochasticModel for grouping countries
according to their structural equivalence in the international copper flow is presented, along
with the deep learning analysis. Conclusions and future outlooks are proposed in Sect. 5.

2 Community detection in complex networks

2.1 Stochastic blockmodel

In the Stochastic BlockModel (SBM) the probability that two vertices are connected depends
solely on the communities they belong to (Karrer & Newman, 2011; Nowicki & Snijders,
2001). A ‘good’ community structure is one for which the model generates the observed
networkwith highprobability, so that the probability canbeused as a score function forfinding
the best partition into communities. Statistical inference is used to estimate the parameters
of the probabilistic model.

123

https://comtrade.un.org/data/
https://comtrade.un.org/data/


940 Annals of Operations Research (2024) 339:937–963

Consider a network with n vertices, labeled in {1, . . . , n}. In the SBM model the vertices
are distributed among K communities or groups so that each vertex i is associated to a
random vector Zi = (Zi1, . . . , ZiK ), with Zik equal to 1 if vertex i belongs to community
k and 0 otherwise. Since each vertex i can belong to only one community, we then have∑K

k=1 Zik = 1. The vectors {Zi , i = 1, . . . , n} are the rows of thematrixZ having dimension
n × K . The Zi are supposed to be independent identically distributed random variables with
a multinomial distribution:

Zi ∼ M(1,α) (1)

where α = (α1, . . . , αK ) and
∑K

k=1 αik = 1.
Each edge from a vertex i to a vertex j is associated to a random variable Xi j , representing the
weight (strength) of the edge between vertex i and vertex j . The vectors {Xi , i = 1, . . . , n}
are the rows of the adjacency matrix X having dimension n × n. In undirected networks
Xi j = X ji . Specifically, conditionally on the community of each vertex, the edges and their
weights are supposed to be independent. If community k of vertex i and community l of vertex
j are known, Xi j is distributed as f (·, θkl) := fθkl (·), where fθkl is a probability distribution
known up to a finite dimensional parameter θkl depending only on the communities of the
two end vertices of the edge:

Xi j |Zik = 1, Z jl = 1 ∼ f (·, θkl) := fθkl (·) (2)

In the SBM the edges with extremes in the same pair of communities (k, l) are independent
and identically distributed, giving rise to a block in the adjacency matrix X. The parameters
{θkl , k, l = 1, . . . , K } are arranged in the (K × K )-dimensional matrix �.
For computational reasons in the estimation of the parameters, distributions of the exponential
family are the most used for the Xi j (Mariadassou et al., 2010). In the case of a binary
network, Xi j |Zik = 1, Z jl = 1 ∼ B(θkl) where B(θkl) denotes the Bernoulli distribution
with parameter θkl (0 ≤ θkl ≤ 1). In the case of a weighted network the Poisson distribution
or the Gaussian distribution are the most used.
Themodel is completely specified by the vectorα together with thematrix�. The parameters
of the model are denoted by γ = (α,�).
The estimation of the parameter γ = (α,�) relies on the likelihood of the observed data.

The complete data is referred to as (X,Z), whereasX is referred to as the incomplete data.
The decomposition log P(X,Z) = log P(Z)+log P(X|Z) holds true. From the independence
of the row vectors Zi of Z and the conditional independence of the edges Xi j knowing Z and
from (1), (2) it then follows that the log-likelihood of the complete data is:

log L(α,�) = log
n∏

i=1

K∏

k=1

α
Zik
k + log

n∏

i, j=1

K∏

k,l=1

fθkl (Xi j )
Zik Z jl =

=
n∑

i=1

K∑

k=1

Ziklog αk +
n∑

i, j=1

K∑

k,l=1

Zik Z jl log fθkl (Xi j ) (3)

The likelihood of the incomplete data (without knowing the labels Z) can be obtained by
summing P(X,Z) over all possible realizations of the matrix Z: P(X) = ∑

Z P(X,Z). This
summation involves Kn terms (for each vertex i the K possible positions of the number 1
in the K -dimensional vector Zi ), and thus may not be tractable except for small values of
n. The likelihood of the incomplete data is maximized with respect to the model parameter
γ = (α,�) and the community assignments of the vertices Z via the variational extension
of the expectation-maximization (EM) algorithm. The variational EM algorithm aims at
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optimizing a lower bound of the log-likelihood, alternating between the expectation with
respect to Z (E-step) and the maximization with respect to γ (M-step). The convergence of
the method towards the maximum likelihood estimates of the parameters is studied in Bickel
et al. (2013) and Celisse et al. (2011).

The SBMmodel requires the number of communities (blocks) K as an input argument. The
number of communities K can be obtained by using the Integrated Classification Likelihood
(ICL) criterion tha relies on the computation of the integrated (over the model parameters
γ = (α,�)) complete log-likelihood (ICL) in order to focus on inference on Z and K
(Biernacki et al., 2000; Celisse et al., 2011; Côme & Latouche, 2015).

Degree-corrected versions have also been proposed to account for a strong degree het-
erogeneity inside blocks, displayed by real-world networks (Karrer & Newman, 2011). In
the degree-corrected SBM a new set of parameters controlling the expected degree of each
vertex is introduced.

2.2 Multilayer Stochastic blockmodel

When several relationships of various types can occur jointly between vertices, the data are
represented by multilayer (multiplex) networks. Multilayer networks refer to a collection
of networks involving the same set of vertices, each network corresponding to a given type
of interaction. The main objective in this paper is to group the vertices into communities
sharing connection properties with other vertices of the multilayer network. We introduce
the multilayer version of the SBM (Barbillon et al., 2017). Let Z be the n × K -dimensional
matrix identifying the belonging of each vertex i of n vertices to one of K communities.
With the same notation in Sect. 2.1, Zi are supposed to be independent identically distributed
random variables over K communities with multinomial distribution with parameter α. Let
{X1, . . . ,XM } be M directed networks (layers) relying on the same set of n vertices; it is
necessary to add a subscript to each edge to take into account the layer:Xm = {Xi jm, i, j =
1, . . . , n} is the square (n × n)-dimensional adjacency matrix among the n vertices in layer
m. The model assumes that conditionally on Z the random variables {Xi jm, i, j = 1, . . . , n}
are independent, whereas the M random variables {Xi jm, m = 1, . . . , M} for the same edge
among layers are dependent.
If community k of vertex i and community l of vertex j are known, the M-dimensional
random variable (Xi j1, . . . , Xi jM ) is distributed as f (·, θkl1, . . . , θklM ) := fθkl1,...,θklM (·),
where fθkl1,...,θklM is a probability distribution known up to a finite dimensional parameter
(θkl1, . . . , θklM ) depending only on the communities of the two end vertices of the edge. The
parameters {θklm, k, l = 1, . . . , K ,m = 1, . . . , M} are arranged in the (K×K )-dimensional
matrices �1, . . . ,�M .
In case of a binary network (Xi j1, . . . , Xi jM )|Zik = 1, Z jl = 1 could be a M-variate
Bernoulli; in case of weighted networks M-variate Poisson or M-dimensional Gaussian.

Consistency results on the maximum likelihood estimators obtained by using a variational
expectation-maximization procedure are proved in Barbillon et al. (2017). The number of
communities is chosen by using the ICL criterion.

The optimization is performed thanks to a combination of greedy local search and a genetic
algorithm.

In the Multinomial Stochastic Block Model the distribution of (Xi j1, . . . , Xi jM ) condi-
tionally on Z is multinomial (Côme et al., 2021; Côme & Jouvin, 2022):

(Xi j1, . . . , Xi jM )|Zik = 1, Z jl = 1 ∼ M(Li j , θkl1, . . . , θklM ) (4)
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with Li j = ∑M
m=1 Xi jm is computed from the observed data {X1, . . . ,XM }. This specific

formulation of amultilayer stochastic blockmodel reduces significantly the number of param-
eters.

3 Complex networks and copper flow across countries

Our case study in this paper is the analysis of the flows of the global copper supply chain
over 5 years from 2017 to 2021. In particular, we want to use complex network theory to
classify countries based on the role they play in the copper supply chain. We have chosen
specifically copper as a commodity whose supply chain to study as it was already analysed in
detail by Tong and Lifset in Tong and Lifset (2007) with different network analysis tools so
we have a benchmark to which we can compare our results. We downloaded all the trade data
from the UN Comtrade website [45] from 2017 to 2021 related to the copper supply chain.
In particular, we focused on 4 commodities related to the extraction, refining, and processing
of copper, identified by their HS commodity codes [21] as follows:

• 260300, Copper ores and concentrates.
• 74, Copper and articles thereof.
• 7404, Copper waste and scrap.
• 841989, Machinery, plant, and laboratory equipment; for treating materials by change of

temperature, other than for making hot drinks or cooking or heating food.

The need to account for multiple commodity types to represent the entire copper supply chain
requires us to build a multilayer network, in which each layer corresponds to one of the 4
selected commodities. We also had to find a good way to model the data as a network in
each layer, taking into account the huge differences in size and populations of the countries
and dependencies in the dataset, which are reflected in trade flows that are in very different
orders of magnitude. We decided to fix thresholds on the population of the countries and on
the volume of the transactions above which they are included in the network. We consider
the trade flows of the 142 sovereign nations with populations above 2 million. We do not
consider all the dependencies and the smaller nations because they very rarely have large
value transactions related to the copper supply chain and their inclusion would make the
network exceedingly sparse. We also decide to model each layer as a simple network, and
not to weigh the edges according to the value of the transaction, but only choose a threshold
above which the transaction is considered important enough to be included in the network.
This is necessary to prevent the model from over-fitting around the largest countries (China
above all), whose trade volumes can be orders of magnitude larger than the average, and treat
the transactions in the rest of the network as noise.

After all these considerations,wemodel the evolutionof the global copper supply chain as a
sequenceof directedmultilayer networksG(t) = {Xm(t),m ∈ {260300, 74, 7404, 841989}},
each representing the status of the supply chain in each year t ∈ {2017, . . . , 2021}, as follows:
• The vertex set V (G(t)) is always made up of the 142 nations we analyzed.
• For each couple of vertices (i, j) and layer m, Xi jm = 1 if during year t there was a

transaction of value at least 1 million US dollars in which i exported commodity m to
nation j and Xi jm = 0 otherwise.

In Fig. 1 we show a graphical representation of the adjacency matrices at time t = 2017.
For each multilayer directed network G(t), we look for the best fit of a multinomial

stochastic blockmodel using the greed R package with the function MultSbm Côme and
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Fig. 1 Visualization of Xm (2017),m ∈ {260300, 74, 7404, 841989}. Black squares indicate that Xi jm=1

Jouvin (2022); Côme et al. (2021). As a result, for each year t we estimate the latent vari-
ables Z(t) and �(t) := {�1(t), . . . , �M (t)} = {θklm(t), k, l = 1, . . . , K ,m = 1, . . . , M}
as defined in Sect. 2.2. Our goal is not to directly compare the observed networks with those
generated according to the best fit distribution of a multinomial stochastic blockmodel we
found, but to use the assignment of nodes to communities represented by the latent parti-
tion Z(t) estimated by the function MultSbm to classify the nodes. We indeed observe that
the real multilayer graphs G(t), t = 2017, . . . , 2021 can look significantly different from
those sampled from the probability distribution P(X1, . . . ,XM |Z(t),�(t)), generated using
the latent variables estimated by MultSbm. This is the case both because the multinomial
stochastic blockmodel produces multigraphs as its layers and because there might be extra
randomness not explained by the model. Still, the algorithmwhen producing the best approx-
imation of the observed data will group together nodes that have similar neighbours in the
same layers, giving us valuable insight into the role they play in the copper supply chain.

3.1 Measuring theMatching of communities at different times

The MultSbm algorithm takes as input the observed tensorX(t) = {Xm(t),m = 1, . . . , M}
of adjacency in the multilayer network G(t) at a single time (see Fig. 1 for the adjacency
in the year 2017, for the subsequent years, the plots are in Appendix A) and optimizes the
values of the number of clusters K and the matrices Z(t) of cluster memberships and �(t)
of estimated probabilities, as they are defined in Sect. 2.2 in order to maximize the ICL of the
observed data X(t). They are presented in Table 5 (with names we will derive and describe
later in this section) and Table 1, respectively, and the link densities (number of edges from
cluster k to cluster l divided by the product of the sizes of k and l) in Fig. 2. Consequently,
the MultSbm algorithm finds on its own coherent clusters of similar nodes for all layers
at the same moment but does not provide a matching of the identities of the clusters at
different times, as the parameters of the model for every multilayer network are estimated
independently of the others. The MultSbm model outputs clusters that are just numbered
from 1 to K , independently at each time, with no direct indication of how the clusters at
different times relate to each other.

To understand better the evolution of the copper supply chain, the next important step is to
find out whether it is possible to find some persistent properties in the data across the 5 years.
The 5 multilayer networks are analysed separately and the parameters of the Multinomial
Blockmodels are estimated independently of each other. What we want to understand is if it
is possible to find a posteriori a persistent labeling of the clusters so that we can identify at
each time which are the clusters of nodes which play the same role in the supply chain. What
we see is that the nations are consistently classified in 5 clusters. Furthermore, we measure
the Rand Index Campello (2007); Hubert and Arabie (1985) of partitions at different times
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Table 1 The probability tensor �(2017)

260300 1 2 3 4 5 74 1 2 3 4 5

1 0.052 0.008 0.027 0.011 0.002 1 0.379 0.453 0.459 0.470 0.493

2 0.017 0.000 0.000 0.087 0.000 2 0.494 0.548 0.617 0.478 0.631

3 0.158 0.000 0.037 0.167 0.023 3 0.401 0.517 0.543 0.389 0.591

4 0.260 0.120 0.286 0.647 0.000 4 0.413 0.460 0.452 0.235 0.893

5 0.044 0.000 0.086 0.353 0.014 5 0.533 0.608 0.571 0.529 0.768

7404 1 2 3 4 5 841989 1 2 3 4 5

1 0.240 0.157 0.032 0.054 0.009 1 0.329 0.382 0.481 0.465 0.496

2 0.304 0.277 0.043 0.087 0.071 2 0.185 0.176 0.340 0.348 0.298

3 0.228 0.242 0.074 0.083 0.017 3 0.213 0.242 0.346 0.361 0.369

4 0.310 0.360 0.167 0.059 0.036 4 0.017 0.060 0.095 0.059 0.071

5 0.418 0.380 0.286 0.118 0.070 5 0.005 0.012 0.057 0.000 0.148

Fig. 2 The plots of the edge densities between the 5 different groups consistently identified by the MultSbm

and find that indeed they agree very strongly, in particular, if compared at consecutive times
(Table 2). This suggests that even if we did not choose a model that actively favors consistent
clustering at different times, in practice the data produce partitions of the vertices that agree
substantially with each across all the 5 years considered, and in particular at consecutive
times. Vertices that are in the same cluster at time t are extremely likely to also be in the
same cluster at time t + 1 and still very likely to be in the same cluster at any time t ′. Still,
the Rand Index does not automatically find a way to consistently label clusters at different
times so that clusters that represent similar properties are labeled the same (for example, we
want to consistently label at all times the cluster of extractors of raw materials in the same
way).

To define this labeling, we want to understand if the properties (as described by the
model parameters �(t) (see e.g. Table 1 for �(2017), the others are in Appendix A) and
the memberships as described by the matrices Z(t) = {Zi (t), i = 1, . . . , n} (see Table 5
for the detailed membership at any time) of these clusters are somewhat inherited from one
time to the next one. For example, we want to see if at any time there are identifiable clusters
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Table 2 Rand Index between
partitions

2017 2018 2019 2020 2021

2017 0.86 0.85 0.86 0.85

2018 0,93 0.90 0.88

2019 0.95 0.89

2020 0.91

2021

of countries that export raw materials (layer 260300). In particular, we recall that by the
definition of the multinomial blockmodel the vectors θkl(t) = {θklm(t),m = 1, . . . , M} are
probability distributions. We want to find a consistent labeling such that if clusters k, l at
time t and clusters k′, l ′ at time t + 1 are labeled in the same way, then the total variation
distance dTV

(
θkl(t), θk′l ′(t + 1)

)
between the two probability distributions is small.

Formally, for each t we define the set C(t) of clusters at time t , and we want to find a
bijection σt,t+1 : C(t) → C(t + 1) such that for every cluster cit , we define σt,t+1(cit ) as
the equivalent cluster to cit at time t + 1. We will then give common labels at the sequences
of clusters (cit , σt,t+1(cit ), σt+1,t+2(σt,t+1(cit )), . . . ) for all cit . As at any time we have 5
clusters, the set of all the possible σt,t+1 is just the set S5 of permutations of {1, 2, 3, 4, 5},
and consequently there are 5! = 120 possible choices of σt,t+1.Wewill denote any σ ∈ S5 by
the sequence (σ (1), σ (2), σ (3), σ (4), σ (5)) (for example (1, 2, 3, 4, 5) is the σ that matches
any cluster at time t with the cluster with the same number at time t + 1, while (5, 4, 3, 2, 1)
is the σ that inverts the order of the clusters). To ground in quantitative analysis the choice of
how to identify clusters of nations that play the same role in different years, we want to find
a bijection σt,t+1 at any interval of time [t, t + 1] that minimizes the difference between the
parameters�(t) andZ(t) of themodel at times t and t+1. Tomeasure the difference between
the parameters �(t), we define the following distance between the matrices of distributions
�(t) and �(t + 1)

d1(�(t),�(t + 1), σ ) =
(∑

k,l

dT V
(
θkl(t), θσ(k)σ (l)(t + 1)

)2
)1/2

. (5)

This is also known as the product distanceDeza and Deza (2009) over the 25-fold product of
the metric space of real-valued random variables equipped with the total variation distance.
We want to minimize this distance to make sure that the probability distributions θkl(t) and
θσ(k)σ (l)(t+1) of the layer towhich a randomedge between equivalent clusters ad consecutive
times belongs are as similar as possible. In the same way, we define a distance between Z(t)
and Z(t + 1) as

d2(Z(t),Z(t + 1), σ ) =
∑

i,k

|Zik(t) − Ziσ(k)(t + 1))|
2

, (6)

that is, d2(Z(t),Z(t + 1), σ ) counts the number of nodes which are in cluster k at time t but
not in cluster σ(k) at time t + 1 for some k.

We find out that in our case the sequence of permutations:

(5, 4, 3, 2, 1), (1, 2, 3, 4, 5), (1, 2, 3, 4, 5), (1, 2, 3, 4, 5), (7)

minimizes both d1(�(t),�(t + 1), σ ) and d2(Z(t),Z(t + 1), σ ) at all 4 time intervals, thus
making it a natural choice for the matching of clusters at different times, without the need
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Table 3 The 5 best choices of σt,t+1 at each time to minimize d2(Z(t),Z(t + 1), σ )

2017–2018 – 2018–2019 – 2019–2020 – 2020–2021 –

(5, 4, 3, 2, 1) 27 (1, 2, 3, 4, 5) 16 (1, 2, 3, 4, 5) 8 (1, 2, 3, 4, 5) 17

(5, 3, 4, 2, 1) 41 (1, 3, 2, 4, 5) 34 (1, 3, 2, 4, 5) 27 (1, 2, 5, 4, 3) 37

(5, 4, 2, 3, 1) 45 (1, 5, 3, 4, 2) 36 (1, 5, 3, 4, 2) 28 (1, 3, 2, 4, 5) 37

(5, 4, 1, 2, 3) 47 (1, 2, 5, 4, 3) 39 (1, 2, 5, 4, 3) 29 (1, 5, 3, 4, 2) 40

(5, 2, 3, 4, 1) 47 (1, 2, 4, 3, 5) 40 (1, 3, 5, 4, 2) 38 (1, 2, 3, 5, 4) 44

Table 4 The 5 best choices of σt,t+1 at each time to minimize d1(�(t), �(t + 1), σ )

2017–2018 – 2018–2019 – 2019–2020 – 2020–2021 –

(5, 4, 3, 2, 1) 0.542 (1, 2, 3, 4, 5) 0.316 (1, 2, 3, 4, 5) 0.262 (1, 2, 3, 4, 5) 0.357

(4, 5, 3, 2, 1) 0.737 (1, 2, 3, 5, 4) 0.593 (1, 2, 3, 5, 4) 0.595 (1, 2, 3, 5, 4) 0.650

(5, 3, 4, 2, 1) 0.771 (1, 2, 4, 3, 5) 0.651 (1, 2, 4, 3, 5) 0.692 (1, 2, 4, 3, 5) 0.668

(4, 3, 5, 2, 1) 0.866 (1, 2, 4, 5, 3) 0.743 (1, 2, 5, 4, 3) 0.763 (1, 2, 5, 4, 3) 0.764

(3, 4, 5, 2, 1) 0.879 (1, 2, 5, 4, 3) 0.747 (1, 2, 5, 3, 4) 0.802 (1, 2, 4, 5, 3) 0.786

to make a more complex decision based on a trade-off between the minimization of the two
distances (Tables 3, 4).

We visualize the movement across the different clusters of the nodes in the alluvial plot
in Fig. 3, the individual evolution of each country is presented in full detail in Table 5.

This consistency in the classification made us decide not to use more complex models for
dynamic networks such as the dynsbm developed by Matias and Miele in Matias and Miele
(2017) which would trade off some specificity in the identification of the multilayer structure
of the network at any time in exchange for an automated matching between the communities
found at two different instants. We finally label the consistent clusters throughout the 5 years
according to the role that they play in the supply chain (Table 5):

• Core: Countries that import raw materials and take part in the entire processing chain.
This is represented by cluster 1 in 2017 and 5 in the subsequent years.

• PostCore: Countries that do not participate in the initial extraction and processing but
deal in processed copper. This is represented by cluster 2 in 2017 and 4 in the subsequent
years.

• ExtIn: Countries that extract raw material and have a role in the entire processing chain.
This is always represented by cluster 3.

• ExtOut: Countries that extract and export raw materials but do not participate in their
refining and processing. This is represented by cluster 4 in 2017 and 2 in the subsequent
years.

• Per: Countries that have a very minor role in the supply chain. This is represented by
cluster 5 in 2017 and 1 in the subsequent years.

We notice that the MultSbm algorithm has a higher definition on the denser part of the
network. Nodes with a very high degree are classified in a more specific way because their
imprecise classification would cause a much larger decrease in the likelihood, while the
algorithm tends to group the low-degree nodes in a single cluster that makes up roughly half
of the entire vertex set (see Fig. 3 and Table 6).
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Table 5 Clustering of the countries in each year

Name 2017 2018 2019 2020 2021

1 Angola ExtIn Per Per Per Per

2 Albania Per Per Per ExtOut ExtOut

3 Argentina ExtIn ExtIn ExtIn ExtIn ExtIn

4 Algeria Per Per Per Per Per

5 Afghanistan Per Per Per Per Per

6 Australia ExtIn ExtIn ExtIn ExtIn ExtIn

7 Austria Core PostCore PostCore PostCore PostCore

8 Bangladesh Per Per Per Per Per

9 Armenia ExtOut ExtOut ExtOut ExtOut ExtOut

10 Azerbaijan Per Per Per Per ExtOut

11 Belgium Core Core PostCore PostCore Core

12 Bosnia Herzegovina Per Per Per Per Per

13 Bolivia Per Per Per Per Per

14 Benin Per Per Per Per Per

15 Belarus Per ExtIn PostCore PostCore PostCore

16 Brazil ExtIn ExtIn ExtIn ExtIn ExtIn

17 Bulgaria Core Core Core Core Core

18 Botswana Per Per Per Per ExtOut

19 Burkina Faso Per Per Per Per Per

20 Burundi Per Per Per Per Per

21 Canada ExtIn ExtIn ExtIn ExtIn ExtIn

22 Cameroon Per Per Per Per Per

23 Cambodia ExtIn Core Core Core Core

24 Chad Per Per Per Per Per

25 Central African Rep Per Per Per Per Per

26 China Core Core Core Core Core

27 Chile ExtOut ExtOut ExtOut ExtOut ExtOut

28 Colombia Per Per Per Per Per

29 Costa Rica Per Per Per Per Per

30 Congo Per Per Per Per Per

31 Croatia PostCore ExtIn PostCore PostCore PostCore

32 Czechia Core PostCore PostCore PostCore PostCore

33 Cuba Per Per Per Per Per

34 Dominican Rep Per Per Per Per Per

35 Côte d’Ivoire Per Per Per Per Per

36 Ecuador Per Per Per Per Per

37 Egypt Per Per Per Per Per

38 El Salvador Per Per Per Per Per

39 Ethiopia Per Per Per Per ExtOut

40 Finland Core Core Core Core Core
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Table 5 continued

Name 2017 2018 2019 2020 2021

41 France Core PostCore PostCore PostCore PostCore

42 Gabon Per Per Per Per Per

43 Georgia ExtOut ExtOut ExtOut ExtOut ExtOut

44 Gambia Per Per Per Per Per

45 Germany Core Core Core Core Core

46 Greece PostCore PostCore PostCore PostCore PostCore

47 Ghana Per Per Per Per Per

48 Guatemala Per Per Per Per Per

49 Guinea Per Per Per Per Per

50 Indonesia PostCore ExtIn ExtIn ExtIn ExtIn

51 India Core Core Core Core Core

52 Hungary Core PostCore PostCore PostCore PostCore

53 Haiti Per Per Per Per Per

54 Honduras Per Per Per Per Per

55 Italy Core PostCore PostCore PostCore Core

56 Israel PostCore PostCore PostCore PostCore PostCore

57 Iran Per ExtOut Per Per Per

58 Ireland Core ExtIn ExtIn PostCore PostCore

59 Iraq Per Per Per Per Per

60 Japan Core Core Core Core Core

61 Jordan Per Per Per Per Per

62 Kenya Per Per Per Per Per

63 Jamaica Per Per Per Per Per

64 Kazakhstan Per ExtOut ExtOut ExtOut ExtOut

65 Lebanon Per Per Per Per Per

66 Lao People’s Dem. Rep ExtOut ExtOut ExtOut ExtOut ExtOut

67 Kuwait Per Per Per Per Per

68 Kyrgyzstan Per Per Per Per Per

69 Lesotho Per Per Per Per Per

70 Lithuania PostCore PostCore PostCore PostCore PostCore

71 Libya Per Per Per Per Per

72 Liberia Per Per Per Per Per

73 Madagascar Per Per Per Per Per

74 Malawi Per Per Per Per Per

75 Malaysia Core Core Core Core Core

76 Mexico ExtIn ExtIn ExtIn ExtIn ExtIn
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Table 5 continued

Name 2017 2018 2019 2020 2021

77 Rep. of Moldova ExtIn ExtIn PostCore PostCore PostCore

78 Mali Per Per Per Per Per

79 Mauritania Per Per Per Per Per

80 Morocco ExtOut Per Per Per Per

81 Mozambique Per Per Per Per Per

82 Namibia ExtOut ExtOut ExtOut ExtOut ExtOut

83 Myanmar Per Per Per Per Per

84 Mongolia Per ExtOut ExtIn Per ExtOut

85 Netherlands Core PostCore PostCore PostCore Core

86 New Zealand PostCore PostCore PostCore PostCore PostCore

87 Nicaragua Per Per Per Per Per

88 Nepal PostCore PostCore PostCore PostCore PostCore

89 Niger Per Per Per Per Per

90 Pakistan PostCore PostCore PostCore PostCore PostCore

91 Nigeria Per Per Per Per Per

92 Oman ExtIn Per Per Per Per

93 Norway PostCore PostCore PostCore PostCore PostCore

94 Panama Per Per Per Per ExtOut

95 Papua New Guinea ExtOut ExtOut Per Per ExtOut

96 Paraguay Per Per Per Per Per

97 Peru ExtOut ExtOut ExtOut ExtOut ExtOut

98 Poland Core Core PostCore Core Core

99 Philippines ExtOut ExtIn ExtIn ExtIn Core

100 Rep. of Korea Core Core Core Core Core

101 Portugal Core ExtIn PostCore PostCore Core

102 Romania Core Core Core PostCore PostCore

103 Qatar Per Per Per Per Per

104 Russian Federation ExtIn ExtIn PostCore PostCore ExtIn

105 Saudi Arabia Per Per Per Per Per

106 Serbia PostCore PostCore ExtIn ExtIn ExtIn

107 Senegal Per Per Per Per Per

108 Rwanda Per Per Per Per Per

109 Sierra Leone Per Per Per Per Per

110 Singapore Core Core PostCore PostCore Core

111 Slovakia PostCore PostCore PostCore PostCore PostCore

112 Slovenia PostCore PostCore PostCore PostCore PostCore

113 South Africa ExtIn ExtIn ExtIn ExtIn ExtIn

114 Somalia Per Per Per Per Per
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Table 5 continued

Name 2017 2018 2019 2020 2021

115 Spain Core Core Core Core Core

116 Sudan Per Per Per Per Per

117 Sri Lanka PostCore Per PostCore PostCore PostCore

118 State of Palestine Per Per Per Per Per

119 Switzerland Core Core PostCore Core PostCore

120 Thailand PostCore PostCore PostCore PostCore Core

121 Sweden Core Core Core Core Core

122 Tajikistan ExtIn Per Per Per Per

123 Syria Per Per Per Per Per

124 Turkey Core Core PostCore PostCore Core

125 Tunisia PostCore Per Per Per Per

126 Togo Per Per Per Per Per

127 Uganda Per Per Per Per Per

128 Turkmenistan Per Per Per Per Per

129 United Kingdom Core PostCore PostCore PostCore PostCore

130 Uruguay Per Per Per Per Per

131 United Arab Emirates PostCore PostCore PostCore PostCore PostCore

132 Ukraine PostCore PostCore PostCore PostCore PostCore

133 United Rep. of Tanzania Per Per Per Per Per

134 Viet Nam PostCore ExtIn ExtIn PostCore PostCore

135 USA Core ExtIn ExtIn ExtIn ExtIn

136 Venezuela Per Per Per Per Per

137 Yemen Per Per Per Per Per

138 Uzbekistan Per Per ExtOut ExtOut ExtOut

139 Zambia Per ExtOut ExtOut ExtOut ExtOut

140 Zimbabwe Per Per Per Per ExtOut

141 Eritrea ExtOut Per Per ExtOut ExtOut

142 South Sudan Per Per Per Per Per

This shows that the Multinomial Blockmodel is very good at distinguishing the nodes in
the network both on the basis of the level of activity and the specific role they play in the
supply chain. We also tried to fit the MultSbm to the undirected version of the network, but
this resulted, as one might expect, in the loss of a lot of valuable information regarding the
distinction between extractors of raw material and producers of processed goods.

We observe that 97 countries out of 142 consistently occupy the same position in the
supply chain throughout the 5 years, while the other 45 changed their role in the supply
chain throughout the years considered. The only country to move to a new cluster every
single year is Mongolia, this might be a result of the troubled development of the Mongolian
extractive industry, which was mired in the last years by court cases involving both the
national authorities and the main mining companies Ahlers et al. (2020). The maximum
number of different clusters occupied by a nation is 3, for Mongolia, Portugal, Philippines,
Ireland, and Belarus. We also have to remark that this study is about international copper
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Table 6 Contingency tables between consecutive partitions

2017–2018 (12) 1 2 3 4 5 2018–2019 (23) 1 2 3 4 5

1 0 0 3 7 16 1 76 1 0 1 0

2 2 0 3 13 0 2 2 8 1 0 0

3 3 0 8 0 1 3 0 0 11 5 0

4 2 7 1 0 0 4 0 0 1 19 0

5 71 4 1 0 0 5 0 0 0 5 12

2019–2020 (34) 1 2 3 4 5 2020–2021 (45) 1 2 3 4 5

1 76 2 0 0 0 1 70 7 0 0 0

2 0 9 0 0 0 2 0 11 0 0 0

3 1 0 10 2 0 3 0 0 9 0 1

4 0 0 0 28 2 4 0 0 1 23 7

5 0 0 0 1 11 5 0 0 0 1 12

Fig. 3 Alluvial plots of the contingency tables between consecutive partitions (Table 6) (12: 2017–2018 23:
2018–2019 34:2019–2020 45:2020–2021). All individual changes are shown in Table 5

trade, not copper extraction and processing. Consequently, our model could put in peripheral
clusters countries that extract, refine, and process copper mostly within their own internal
market, with little international trade.
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4 Deep learning: node embedding

In this section we apply a simple deep learning model to produce an embedding of the nodes
of the supply-chain network studied in the previous sections into an Euclidean space. The
main aim of this section is to use this technique to produce an alternative representation of
the mutual relationship and interaction between the nodes of the network considered so far,
in order to gain more qualitative insight and validation on the previous findings.

Different graph embedding models based on deep learning have been discussed in the
literature before Grover and Leskovec (2016); Khosla et al. (2019a, b); Mikolov et al. (2013);
Perozzi et al. (2014). The model we use here is a direct implementation of the well known
Skip-Gram model Mikolov et al. (2013), originally developed in the field of Natural Lan-
guage Processing (NLP), in the context of complex multilayer networks. Given a corpus
text, intended as a collection of sentences, the Skip-Gram model is able to predict which
words of the corpus will most likely be associated with a given input word. More precisely,
define the “context” of a word as the set of n words preceding it and n words following it
(the context is usually parameterized by the “window size” parameter w = 2n + 1). Given
an input word taken from the corpus dictionary (the set of all words present in the corpus),
the model learns a probability distribution over the whole corpus dictionary that models the
probability that a word will be observed in the context of the input word in a sentence. The
probability distribution is typically learned by some neural network architecture using the
observed probability distributions on the text corpus as training data. In the training process
of the model, latent vectors representation (of arbitrary dimension) of each word are learned
through the hidden layers of the neural network architecture. An Euclidean space embedding
can then be obtained quite simply by extracting the input’s latent representations stored in
the model’s hidden layers.

The implementation of such model in the context of complex networks is made possible
by the following correspondences:

• words ⇐⇒ nodes of the graph,
• sentences ⇐⇒ random walks on the graph,
• corpus ⇐⇒ collection of random walks.

The equivalent of a corpus text is represented by a collection of sequences of adjacent nodes
collected by performing random walks on the graph. The basic idea is that, just like the
co-occurrence of words in sentences can be used to try to quantify the semantic similarity
between words in a language, the co-occurrence of nodes in random walks is used to try to
quantify structural similarities between the nodes of the network. We stress that, because the
only input of the model is a collection of sequences of random walks on the network, the
embedding produced by themodel is only dependent on the topology of the graph, encoded in
its adjacency matrix. Note that the ordered sequences of nodes that we interpret as sentences
need not be necessarily coming from a random walk on the graph. In principle, any number
of paths on the graph, collected in any given manner, could very well be used as a corpus
to train the skip-gram model. One has to keep in mind however that, at an intuitive level,
the more uniformly spread the paths are over the whole network, the more the embedded
nodes’ representations will be meaningful. Using random walks to collect such paths is the
standard procedure in the literature simply because it is the most computationally efficient
way of collecting a large number of paths while exploring the graph in a reasonably uniform
manner.
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4.1 Randomwalks

To produce an embedding of the graphs of interest we need to perform randomwalks on each
one of the multilayered supply-chain networks G(t) = {Xm(t),m ∈ {260300, 74, 7404,
841989}} observed at the five different times t = 2017, . . . , 2021. There are some subtleties
in defining random walks on multilayered networks and the problem has been treated in the
literature with different approaches Bonaccorsi et al. (2019); Halu et al. (2013); Iacovacci
and Bianconi (2016); Iacovacci et al. (2016); Rahmede et al. (2018). Starting from the con-
sideration that the four layers of the graph share the same set of nodes, a simple randomwalk
on the multilayered network can be implemented as follows:

1. If M is the number of layers, fix a parameter α such that 1
M ≤ α ≤ 1.

2. Fix the length of the random walk L .
3. Choose one starting node i ∈ V (G) and pick randomly one starting layer m.
4. Randomly choose one out-neighbor node j of the current node i in the graph Xm at the

current layer. If i has no out-neighbours remain in i .
5. With probability α stay on the current layer, otherwise randomly choose a different layer

and move to it (staying on the same node).
6. Go to step 4. and repeat until the length of the walk is equal to L .

The intuition behind this randomwalker is that all layers are connected only through identical
couples of nodes, and the strength of the connections is parameterized by the inertia parameter
α, which is the probability that the walker will stay on the current layer at any given step.
Notice that when α = 1, the layers are actually disconnected and the walker will never
change its current layer.

Following these rules, a random walk corpus is collected on each of the five multilayered
networks. The random walks are collected by starting a single walk from each node of the
network taken in some arbitrary order, the nodes’ order is then randomly reshuffled andwalks
are started again from each node. This procedure is repeated γ times. The hyperparameter γ

fixes the number of walks per node and consequently the size of the corpus used for training
the model, which at the end of the collection procedure will be composed of n · γ walks,
where n is the number of nodes in the network.

4.2 Embedding

Once the corpus of randomwalks is appropriately collected, it is then fed as the input into the
Skip-Gram model so that a d-dimensional embedding of the graph’s nodes can be produced
as an output. Note that the data we feed into Skip-Gram contain information only about the
sequence of nodes in V (G) visited by the walker and not about on which layer the walker was
moving at each time. In this paper we use the implementation of the model made available
by the gensim Python library Řehůřek and Sojka (2010).

In order to discuss the relation between the learned embedding and the non-trivial struc-
tures found by the SBM, we embed the nodes in a 2-dimensional Euclidean space and we
color the nodes according to the cluster membership of the nodes. As one could expect, the
lower the dimensions of the embedding space are, the more information is lost in the embed-
ding procedure, similarity to how information is lost when dimensional reduction algorithms
such as principal component analysis are applied to datasets characterized by a high num-
ber of quantitative attributes Geiger and Kubin (2012). In the case of this work, the choice
d = 2 is made for practical reasons, so that the vector representations of the nodes can be
graphically represented as points in the plane. Also, as we will discuss later, the picture we
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Fig. 4 Nodes embedding on the plane form the network observed at different times. Points are colored
according to the clusters identified by the SBM analysis. The hyperparameters values used in the plots are:
γ = 300, L = 50, w = 13, α = 0.55

obtain via the 2-dimensional embedding is detailed enough for the purpose of this section.
The embedding model we used is characterized by four hyperparameters

• γ : number of random walks per node,
• L : random walks length,
• w : window size used by the Skip-Gram model,
• α : random walker inertia.

A reasonable choice of parameters is made a posteriori by studying how the parameters
affect the intra-clusters similarity score. In Fig. 4 we show the obtained nodes embedding for
the multilayered networks observed at the five considered time steps.

The most relevant observation is that while the information on the non trivial clustering
based on the “roles” of the nodes found by the SBM is lost, as one could have expected, the
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Fig. 5 Average Intra-cluster similarity scores as functions of the embedding model’s hyperparameters. All
statistics in the figure are computed on the Xm (2021) network

information about the centrality of the nodes in the network is well represented by the planar
embedding. This is particularly evident when looking at the embedding of the “core” cluster,
by noticing that the nodes of the core are all embedded tightly together in a high density region
of the plane, with all other nodes surrounding them. Another observation is that the nodes
from the “Per” cluster that are isolated nodes in one or more of the network’s layers are the
same nodes that in the embeddings of Fig. 4a–e are significantly further apart from all other
nodes, even from other “Per” nodes. The fact that the properties of the nodes of each cluster
observed in the embedding are consistent for all 5 multilayer networks is further confirmation
of the validity of the identification of clusters at subsequent times studied in Sect. 3.1.

To study how the hyperparameters affect the quality of the embedding, we measure the
expected value of some similarity measure of points that belong to the same cluster and
observe its behaviour when we change the hyperparameters. The similarity measure we use
is cosine similarity, which is considered to be the measure of choice when comparing dis-
tances in the embedded space to distances in semantic space in the context of NLP. In Fig. 5
we plot the mean intra-cluster similarity measure for each cluster as a function of one of the
hyperparameters.

Overall, the intra-cluster similarity is quite stable with respect to the hyperparameters
range taken into consideration. This is especially true when considering the “core” cluster.
This can be seen as indication that this kind of approach is very robust in identifying the
most central nodes of the graph. The only hyperparameter that really a sizeable effect on
the similarity scores is the window size parameter w. The behavior observed in Fig. 5c is
a direct consequence of the meaning of the hyperparameter w. If one keeps increasing the
window size, the probability of observing co-occurrences of any given set of connected
nodes increases, and the nodes will naturally be interpreted by the model as more similar to
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each other. Interesting conclusions can also be drawn regarding the importance of the inertia
hyperparameter α. Recalling the fact as α → 1 the randomwalkers tend to not jump between
the network’s layers, Fig. 5d shows that taking into account the multiple layers of the network
is particularly relevant only for the “Per” and “ExtOut” clusters.

5 Conclusion

In this paper, a composite model to analyze the grouping of elements of a multilayer complex
network across time has been proposed. The trade flows related to the copper supply chain -
import/export of four commodities related to the extraction, refining and processing of copper
- of 142 nations with populations above 2million based on the UNComtrade website (https://
comtrade.un.org/data/), in five years from 2017 to 2021, were considered. The observed trade
flow each year has been modeled as a directed multilayer network. The countries have been
grouped according to their structural equivalence in the international copper flow by using
a Multilayer Stochastic Block Model. To put further insight into the obtained community
structure of the countries, a deep learning model has been used to embed the countries
in a Euclidean plane. The Multilayer Stochastic Block Model allows the identification in
each considered year of the countries that play similar roles in the trade flow of the four
commodities. Still, even sampling independently a different multilayer SBM for each year,
without the imposition of any temporal structure, we observed 5 clusters with similar features
being found consistently in all 5 years. The consistent clusters throughout the 5 years were
labeled according to the role that they play in the supply chain. We observe that 97 countries
out of 142 consistently occupy the same position in the supply chain throughout the five
years, while the other 45 move through different roles in the supply chain. Some distances
between the parameters obtained in consecutive years were also introduced. A simple deep
learning model has been used to produce an embedding of the nodes of the supply- networks
into a Euclidean space. The most relevant observation is that while the information on the
non-trivial clustering based on the “roles” of the nodes found by the multilayer SBM is lost,
as one could have expected, the information about the centrality of the nodes in the network
is well represented by the planar embedding. This is particularly evident when looking at
the embedding of the “core” cluster, by noticing that the nodes of the core are all embedded
tightly together in a high-density region of the plane, with all other nodes surrounding.

Future work will consider a way to design a clustering algorithm that takes into account
both the multilayer structure of the network with the dynamic nature of the process and
can handle networks with heavy-tailed weights, which are common if we want to take into
consideration also the volume of trade flows. Also, of great interest would be further inves-
tigation of the relation between the embedding generated by the multilayer node2vec and
the centrality of nodes in the network. We expect the property of having central nodes being
clumped up together and peripheral nodes being at greater distances to be general properties
in most network models, even beyond the unweighted, directed, multilayer networks con-
sidered in the current paper. This is because in most networks the random walks starting
from very central nodes (for a reasonable definition of centrality) tend to mix very fast, that
is, in very few steps the distribution of the position of the walker ceases to depend strongly
from the starting point. Consequently, all random walks starting from very central nodes are
very similar after very first steps and the nodes are embedded very close to each other by the
Skip-Gram algorithm.
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AOther tables and figures

In this appendix, we show all the other tables and figures that we did not fit into the main body
of the paper not to make the reading too heavy, but that are of interest to those who want to
examine in more detail the data. The contingency tables between consecutive partitions (also
represented in the alluvial plots in Fig. 3) are presented in Table 6, the tensors of probabilities
�(t) for the years 2018-2021 are presented in Tables 7-10 and the adjacency matricesXm(t)
of the multilayer networks for years 2018-2021 are shown in Figs. 6, 7, 8, 9.

Table 7 The probability tensor �(2018)

260300 1 2 3 4 5 74 1 2 3 4 5

1 0.000 0.348 0.015 0.008 0.058 1 0.735 0.522 0.575 0.556 0.505

2 0.042 0.350 0.250 0.055 0.327 2 0.812 0.400 0.515 0.699 0.440

3 0.014 0.136 0.072 0.007 0.182 3 0.560 0.409 0.441 0.503 0.365

4 0.007 0.013 0.000 0.004 0.019 4 0.549 0.480 0.497 0.448 0.411

5 0.004 0.025 0.020 0.014 0.078 5 0.520 0.458 0.470 0.430 0.378

7404 1 2 3 4 5 841989 1 2 3 4 5

1 0.122 0.087 0.396 0.402 0.432 1 0.143 0.043 0.015 0.034 0.005

2 0.062 0.050 0.191 0.233 0.220 2 0.083 0.200 0.044 0.014 0.012

3 0.032 0.061 0.144 0.233 0.240 3 0.394 0.394 0.343 0.257 0.212

4 0.020 0.013 0.108 0.271 0.311 4 0.424 0.493 0.395 0.277 0.259

5 0.016 0.008 0.070 0.207 0.227 5 0.459 0.508 0.439 0.349 0.316
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Table 8 The probability tensor �(2019)

260300 1 2 3 4 5 74 1 2 3 4 5

1 0.000 0.314 0.025 0.012 0.072 1 0.724 0.371 0.506 0.532 0.485

2 0.000 0.417 0.321 0.075 0.315 2 0.875 0.333 0.491 0.654 0.450

3 0.013 0.200 0.086 0.019 0.208 3 0.521 0.436 0.457 0.471 0.351

4 0.003 0.045 0.025 0.002 0.054 4 0.552 0.446 0.481 0.443 0.386

5 0.000 0.013 0.029 0.011 0.090 5 0.556 0.481 0.463 0.454 0.352

7404 1 2 3 4 5 841989 1 2 3 4 5

1 0.104 0.200 0.411 0.445 0.437 1 0.172 0.114 0.057 0.010 0.005

2 0.000 0.083 0.170 0.263 0.234 2 0.125 0.167 0.019 0.008 0.000

3 0.037 0.055 0.161 0.267 0.251 3 0.429 0.309 0.296 0.243 0.190

4 0.021 0.009 0.093 0.240 0.282 4 0.423 0.500 0.400 0.316 0.279

5 0.015 0.013 0.074 0.190 0.274 5 0.429 0.494 0.434 0.345 0.284

Table 9 The probability tensor �(2020)

260300 1 2 3 4 5 74 1 2 3 4 5

1 0.000 0.310 0.030 0.004 0.075 1 0.801 0.448 0.489 0.527 0.488

2 0.000 0.550 0.275 0.058 0.341 2 0.917 0.350 0.451 0.645 0.437

3 0.014 0.167 0.094 0.012 0.239 3 0.530 0.405 0.432 0.456 0.337

4 0.002 0.029 0.012 0.001 0.050 4 0.576 0.429 0.463 0.459 0.402

5 0.000 0.075 0.022 0.004 0.069 5 0.554 0.441 0.473 0.450 0.367

7404 1 2 3 4 5 841989 1 2 3 4 5

1 0.118 0.172 0.437 0.445 0.432 1 0.081 0.069 0.044 0.024 0.005

2 0.028 0.050 0.176 0.290 0.222 2 0.056 0.050 0.098 0.007 0.000

3 0.041 0.095 0.151 0.273 0.261 3 0.416 0.333 0.324 0.258 0.163

4 0.015 0.010 0.092 0.236 0.284 4 0.408 0.533 0.433 0.304 0.264

5 0.014 0.000 0.089 0.191 0.259 5 0.432 0.484 0.415 0.355 0.306

Table 10 The probability tensor �(2021)

260300 1 2 3 4 5 74 1 2 3 4 5

1 0.000 0.156 0.013 0.000 0.041 1 0.745 0.489 0.490 0.538 0.508

2 0.029 0.387 0.189 0.082 0.286 2 0.857 0.452 0.473 0.689 0.464

3 0.014 0.133 0.064 0.009 0.185 3 0.579 0.387 0.454 0.488 0.350

4 0.008 0.000 0.015 0.000 0.022 4 0.566 0.387 0.462 0.497 0.421

5 0.001 0.022 0.020 0.005 0.070 5 0.547 0.478 0.458 0.468 0.370

7404 1 2 3 4 5 841989 1 2 3 4 5

1 0.095 0.311 0.445 0.416 0.447 1 0.161 0.044 0.052 0.046 0.005

2 0.057 0.032 0.257 0.230 0.250 2 0.057 0.129 0.081 0.000 0.000

3 0.019 0.067 0.163 0.223 0.251 3 0.388 0.413 0.319 0.279 0.213

4 0.032 0.027 0.137 0.199 0.308 4 0.394 0.587 0.385 0.304 0.249

5 0.008 0.000 0.092 0.159 0.254 5 0.443 0.500 0.430 0.368 0.307
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Table 11 The number of edges between communities in each layer in the year 2017

260300 1 2 3 4 5 74 1 2 3 4 5

1 82 6 11 2 2 1 603 350 185 87 485

2 10 0 0 2 0 2 286 103 58 11 89

3 52 0 3 6 4 3 132 62 44 14 104

4 63 6 12 11 0 4 100 23 19 4 25

5 36 0 6 6 2 5 437 104 40 9 109

7404 1 2 3 4 5 841989 1 2 3 4 5

1 382 121 13 10 9 1 523 295 194 86 488

2 176 52 4 2 10 2 107 33 32 8 42

3 75 29 6 3 3 3 70 29 28 13 65

4 75 18 7 1 1 4 4 3 4 1 2

5 343 65 20 2 10 5 4 2 4 0 21

Table 12 The number of edges between communities in each layer in the year 2018

260300 1 2 3 4 5 74 1 2 3 4 5

1 0 8 2 2 37 1 108 12 77 148 324

2 2 7 17 4 55 2 39 8 35 51 74

3 4 9 17 2 79 3 155 27 104 151 158

4 3 1 0 2 12 4 223 36 175 251 255

5 3 3 9 9 49 5 348 55 207 272 238

7404 1 2 3 4 5 841989 1 2 3 4 5

1 18 2 53 107 277 1 21 1 2 9 3

2 3 1 13 17 37 2 4 4 3 1 2

3 9 4 34 70 104 3 109 26 81 77 92

4 8 1 38 152 193 4 172 37 139 155 161

5 11 1 31 131 143 5 307 61 193 221 199

Table 13 The number of edges between communities in each layer in the year 2019

260300 1 2 3 4 5 74 1 2 3 4 5

1 0 11 4 6 42 1 97 13 80 258 282

2 0 10 17 10 35 2 35 8 26 87 50

3 3 11 16 7 58 3 125 24 85 176 98

4 2 5 11 2 34 4 338 50 208 552 245

5 0 1 7 7 28 5 263 38 112 279 109

7404 1 2 3 4 5 841989 1 2 3 4 5

1 14 7 65 216 254 1 23 4 9 5 3

2 0 2 9 35 26 2 5 4 1 1 0

3 9 3 30 100 70 3 103 17 55 91 53

4 13 1 40 299 179 4 259 56 173 394 177

5 7 1 18 117 85 5 203 39 105 212 88
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Table 14 The number of edges between communities in each layer in the year 2020

260300 1 2 3 4 5 74 1 2 3 4 5

1 0 9 4 2 43 1 109 13 66 285 281

2 0 11 14 8 43 2 33 7 23 89 55

3 3 7 13 4 66 3 116 17 60 152 93

4 1 3 4 1 35 4 315 45 156 541 279

5 0 7 5 3 26 5 277 41 106 321 139

7404 1 2 3 4 5 841989 1 2 3 4 5

1 16 5 59 241 249 1 11 2 6 13 3

2 1 1 9 40 28 2 2 1 5 1 0

3 9 4 21 91 72 3 91 14 45 86 45

4 8 1 31 278 197 4 223 56 146 359 183

5 7 0 20 136 98 5 216 45 93 253 116

Table 15 The number of edges between communities in each layer in the year 2021

260300 1 2 3 4 5 74 1 2 3 4 5

1 0 7 2 0 32 1 102 22 76 106 400

2 1 12 14 5 63 2 30 14 35 42 102

3 3 10 9 2 73 3 121 29 64 105 138

4 2 0 4 0 16 4 142 29 121 273 311

5 1 4 7 4 63 5 394 87 164 347 334

7404 1 2 3 4 5 841989 1 2 3 4 5

1 13 14 69 82 352 1 22 2 8 9 4

2 2 1 19 14 55 2 2 4 6 0 0

3 4 5 23 48 99 3 81 31 45 60 84

4 8 2 36 109 227 4 99 44 101 167 184

5 6 0 33 118 229 5 319 91 154 273 277

Fig. 6 Visualization of Xm (2018),m ∈ {260300, 74, 7404, 841989}
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Fig. 7 Visualization of Xm (2019),m ∈ {260300, 74, 7404, 841989}

Fig. 8 Visualization of Xm (2020),m ∈ {260300, 74, 7404, 841989}

Fig. 9 Visualization of Xm (2021),m ∈ {260300, 74, 7404, 841989}
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