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Abstract
This paper deals with a nonlinear filtering problem in which a multi-dimensional
signal process is additively affected by a process ν whose components have paths
of bounded variation. The presence of the process ν prevents from directly applying
classical results and novel estimates need to be derived. By making use of the so-
called reference probability measure approach, we derive the Zakai equation satisfied
by the unnormalized filtering process, and thenwe deduce the correspondingKushner–
Stratonovich equation. Under the condition that the jump times of the process ν do not
accumulate over the considered time horizon, we show that the unnormalized filtering
process is the unique solution to the Zakai equation, in the class of measure-valued
processes having a square-integrable density. Our analysis paves the way to the study
of stochastic control problems where a decision maker can exert singular controls in
order to adjust the dynamics of an unobservable Itô-process.
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1 Introduction

This paper studies a stochastic filtering problem on a finite time horizon [0, T ], T > 0,
in which the dynamics of a multi-dimensional process X = (Xt )t∈[0,T ], called signal
or unobserved process, are additively affected by a process having components of
bounded variation. The aim is to estimate the hidden state Xt , at each time t ∈ [0, T ],
using the information provided by a further stochastic process Y = (Yt )t∈[0,T ], called
observed process; said otherwise, we look for the conditional distribution of Xt given
the available observation up to time t . This leads to derive an evolution equation for
the filtering process, which is a probability measure-valued process satisfying, for any
given bounded and measurable function ϕ : Rm → R,

πt (ϕ):=
∫
Rm

ϕ(x) πt (dx) = E
[
ϕ(Xt )

∣∣ Yt
]
, t ∈ [0, T ],

where (Yt )t∈[0,T ] is the natural filtration generated by Y and augmented by P-null sets.
The process π provides the best estimate (in the usual L2 sense) of the signal process
X , given the available information obtained through the process Y .

Stochastic filtering is nowadays a well-established research topic. The literature on
the subject is vast and many different applications have been studied: the reader may
find a fairly detailed historical account in the book by Bain and Crisan [2]. Classic
references are the books by Bensoussan [5], Kallianpur [29], Liptser and Shiryaev [35]
(cf. alsoBrémaud [6,Chapter 4] for stochastic filteringwith point process observation);
more recent monographs are, e.g., the aforementioned book by Bain and Crisan [2],
Crisan andRozovskiĭ [16], andXiong [42] (see alsoCohen andElliott [14]Chapter 22).
Recently, different cases where the signal and/or the observation processes can have
discontinuous trajectories (as in the present work) have been studied and explicit
filtering equations have been derived: see, for instance, Bandini et al. [4], Calvia [9],
Ceci and Gerardi [12,13], Ceci and Colaneri [10,11],Confortola and Fuhrman [15],
Grigelionis and Mikulevicius [26].

The main motivation of our analysis stems from the study of singular stochastic
control problems under partial observation. Consider a continuous-time stochastic
system whose position or level Xt at time t ∈ [0, T ] is subject to random disturbances
and can be adjusted instantaneously through (cumulative) actions that, as functions
of time, do not have to be absolutely continuous with respect to Lebesgue measure.
In particular, they may present a Cantor-like component and/or a jump component.
The use of such singular control policies is nowadays common in applications in Eco-
nomics, Finance, Operations Research, as well as in Mathematical Biology. Typical
examples are, amongst others, (ir)reversible investment choices (e.g., Riedel and Su
[41]), dividends’ payout (e.g., Reppen et al. [40]), inventory management problems
(e.g., Harrison and Taksar [27], De Angelis et al. [18]), as well as harvesting issues
(e.g., [1]). Suppose also that the decision maker acting on the system is not able to
observe the dynamics of the controlled process X , but she/he can only follow the
evolution of a noisy process Y , whose drift is a function of the signal process. Mathe-
matically, we assume that the pair (X ,Y ) is defined on a filtered complete probability
space (�,F ,F:=(Ft )t∈[0,T ],P) and that its dynamics are given, for any t ∈ [0, T ],
by the following system of SDEs:
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{
dXt = b(t, Xt ) dt + σ(t, Xt ) dWt + dνt , X0− ∼ ξ ∈ P(Rm),

dYt = h(t, Xt ) dt + γ (t) dBt , Y0 = y ∈ R
n .

(1.1)

Here: ξ is a given probability distribution on R
m ; W and B are two independent F-

standard Brownian motions; coefficients b, σ, h, γ are suitable measurable functions;
ν is a càdlàg, Rm-valued process with (components of) bounded variation, that is
adapted to the previously introduced observation filtration (Yt )t∈[0,T ].

Clearly, the decision maker might want to adjust the dynamics of X in order to opti-
mize a given performance criterion. Since X is unobservable, this leads to a stochastic
optimal control problem under partial observation, which can be tackled by deriving
and studying the so-called separated problem, an equivalent problem under full infor-
mation (see, e.g., Bensoussan[5], Calvia [8,9]), where the signal X is formally replaced
by its estimate provided by the filtering process π . However, to effectively solve the
original optimization problem by means of the separated one, a first necessary step
concerns the detailed study of the associated filtering problem.

As already discussed, models like (1.1) are apt to describe problems in various
applied fields. A particular management problem of pollution control motivated our
study. Consider a firm producing a single good on a given time horizon [0, T ],
T > 0. The production capacity can be adjusted through an investment strategy
ν = (νt )t∈[0,T ], which is partially reversible; that is, an increase and a decrease of the
production capacity is allowed. Production of this good generates pollution, propor-
tionally with respect to the employed investment/disinvestment plan (see Ferrari and
Koch [25] and Pommeret and Prieur [38], among others). The actual level of pollution,
modeled by stochastic process X = (Xt )t∈[0,T ], is not directly observable and follows
the SDE

dXt = −δXtdt + σdWt + βdνt , X0− = x0 ∈ R, t ∈ [0, T ],

where δ is an exogenous pollution decay factor, σ > 0,W is a standard real Brownian
motion, and β > 0 is a pollution-to-investment ratio. A noisy measurement of X is
provided by the observed process Y , satisfying

Yt =
∫ t

0
h(Xs) ds + Bt , t ∈ [0, T ],

where h : R → R is the so-called sensor function and B is a standard real Brownian
motion independent of W .

The firm aims at choosing an optimal partially reversible investment strategy ν to
minimize the cost functional:

E

[∫ T

0
e−r t (Xt − x̄)2dt +

∫ T

0
e−r t K+dν+

t +
∫ T

0
e−r t K−dν−

t

]
,

where r > 0 is a given discount factor, and ν+
t (resp. ν−

t ) is the cumulative invest-
ment (resp. disinvestment) into production performed up to time t ∈ [0, T ]. The cost
functional is composed of two parts: the first one, corresponding to the first integral,
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models the fact that the firm must track an emission level x̄ , chosen by some central
authority (e.g., a national government); the second one, corresponding to the second
and third integrals, models the cost bore by the firm to implement investment and
disinvestment policies ν+, ν−, at the marginal costs K+, K− > 0.

Clearly, the firm needs to base any production plan on observable quantities, so ν

must be adapted to the observation filtration (Yt )t∈[0,T ]. Moreover, the unobservable
feature of the pollution level X , makes this a singular control problem under partial
observation, for the study of which a necessary first step is the derivation of the explicit
filtering equation satisfied by the filtering process π .

To the best of our knowledge, the derivation of explicit filtering equations in the
setting described above has not yet received attention in the literature, except for the
linear-Gaussian case, studied inMenaldi andRobin [37]. In this paperwe provide a first
contribution in this direction. Indeed, the recent literature treating singular stochastic
control problems under partial observation assumes that the observed process, rather
than the signal one, is additively controlled (cf. Callegaro et al. [7], De Angelis [17],
Décamps and Villeneuve [19], and Federico et al. [24]). Clearly, such a modeling
feature leads to a filtering analysis that is completely different from ours.

By making use of the so-called reference probability measure approach, we derive
the Zakai stochastic partial differential equation (SPDE) satisfied by the so-called
unnormalized filtering process, which is a measure-valued process, associated with
the filtering process via a suitable change of probability measure. Then, we deduce the
corresponding evolution equation for π , namely, the so-called Kushner–Stratonovich
equation or Fujisaki–Kallianpur–Kunita equation. Furthermore, we show that the
unnormalized filtering process is the unique solution to the Zakai equation, in the class
of measure-valued processes having a square-integrable density. The latter result is
proved under the technical requirement that the jump times of the process ν affecting X
in (1.1) do not accumulate over the considered time-horizon.Although such a condition
clearly poses a restriction on the generality of the model, we also acknowledge that
it is typically satisfied by optimal control processes arising in singular stochastic
control problems. It is important to notice that establishing conditions under which
the unnormalized filtering process possesses a density paves the way to recast the
separated problem as a stochastic control problem in a Hilbert space, as we will
briefly explain in the next section.

The rest of the introduction is now devoted to a discussion of our approach and
results at a more technical level.

1.1 Methodology andMain Results

In this paper we are going to study the filtering problem described above through the
so-called reference probability approach, that we briefly summarize here. To start,
let us notice that the model introduced in (1.1) is somewhat ill-posed. In fact, the
dynamics of the signal process X depend on the (Yt )t∈[0,T ]-adapted process ν while,
simultaneously, the dynamics of the observed process Y depend on X . Otherwise said,
it is not clear how to define ν, which has to be given a priori, and circularity arises if
one attempts to introduce the partially observed system (X ,Y ) as in (1.1).
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A possible way out of this impasse is to define Y as a given Gaussian process
independent of X (see (2.2)). In this way, it makes sense to fix a (Yt )t∈[0,T ]-adapted
process ν and to define the dynamics of the signal process X as in the first SDE of (1.1)
(see also (2.8)). Finally, under suitable assumptions, there exists a probability measure
change (cf. (2.12)) that allows us to recover the dynamics of Y as in the second SDE of
(1.1) (see also (2.13)). It is important to notice that the resulting probability depends
on the initial law ξ of X0− and on ν.

To derive the associated Kushner–Stratonovich equation there are two main
approaches in the literature: The Innovations approach and the aforementioned ref-
erence probability approach. Although it might be possible to derive the filtering
dynamics in our context by using the former approach, we follow the latter method.

Our first main results is Theorem 3.4, where we deduce the Zakai equation verified
by the unnormalized filtering process (see (3.3) for its definition). From this result, as
a byproduct, we deduce in Theorem 3.6 the Kushner–Stratonovich equation satisfied
by the filtering process. It is worth noticing that, given the presence of the bounded-
variation process ν in the dynamics of X , Theorem 3.4 cannot be obtained by invoking
classical results, but novel estimates need to be derived (cf. Lemma A.1 and Proposi-
tionA.2). In particular, we employ a change of variable formula for Lebesgue–Stieltjes
integrals.

It is clear that in applications, for instance to optimal control problems, establishing
uniqueness of the solution to the Zakai equation or to the Kushner–Stratonovich equa-
tion is essential. In the literature there are several approaches to tackle this problem,
most notably the following four: The filtered martingale problem approach, originally
proposed byKurtz andOcone [34], and later extended to singular martingale problems
in [32] (see also [31]); the PDE approach, as in the book by [5] (see also [2, Sect. 4.1]);
the functional analytic approach, introduced by Lucic and Heunis [36] (see also [2,
Sect. 4.2]); the density approach, studied in Kurtz and Xiong [33] (see also [2, Sect. 7]
and [42]).

The first three methods allow to prove uniqueness of the solution to the Zakai equa-
tion in a suitable class of measure-valued processes. However, they do not guarantee
that the unique measure-valued process solution to the Zakai equation admits a den-
sity process, a fact that has an impact on the study of the separated problem. Indeed,
without requiring or establishing conditions guaranteeing existence of such a density
process, the separated problem must be formulated in an appropriate Banach space
of measures and, as a consequence, the Hamilton–Jacobi–Bellman (HJB) equation
associated to the separated problem must be formulated in such a general setting as
well. As a matter of fact, only recently some techniques have been developed to treat
this case, predominantly in the theory of mean-field games (an application to optimal
control problems with partial observation is given in [3]).

Amore common approach in the literature considers, instead, the density process as
the state variable for the separated problem. If it is possible to show that such a density
process is the unique solution of a suitable SPDE in L2(Rm), the so-called Duncan–
Mortensen–Zakai equation, then this L2(Rm)-valued process can be equivalently used
as state variable in the separated problem. This is particularly convenient, since for
optimal control problems in Hilbert spaces a well-developed theory is available, at
least in the regular case (see, e.g., the monograph by Fabbri et al. [23]). Therefore,
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in view of possible future applications to singular optimal control problems under
partial observation, we adopted the density approach to prove that, under suitable
assumptions, the unnormalized filtering process is the unique solution to the Zakai
equation in the class of measure-valued processes admitting a density with respect to
Lebesgue measure.

We show this result, first, in the case where ν is a continuous process (cf. Theo-
rem 4.6) and, then, in the case where the jump times of ν do not accumulate in the
time interval [0, T ] (see Theorem 4.7). As we already observed, although this assump-
tion prevents to achieve full generality, it has a clear interpretation and it is usually
satisfied by the examples considered in the literature. From a technical side, it seems
that a direct approach using the method proposed by [33] is not feasible to treat the
case of accumulating jumps, due to difficulties in estimating crucial quantities in the
arguments used, that are related to the jump component of filtering process. A possible
workaround might consists in approximating the process ν by cutting away jumps of
size smaller than some δ > 0 and then, provided that a suitable tightness property
holds, pass to the limit, as δ → 0, in the relevant equations. However, this is a delicate
and lengthy reasoning, which is left for future research.

The rest of this paper is organized as follows. Section 1.2 provides notation used
throughout this work. Section 2 introduces the filtering problem. The Zakai and
Kushner–Stratonovich equations are then derived in Section 3, while the uniqueness of
the solution to the Zakai equation is proved in Section 4. Finally, Appendix 1 collects
the proof of technical results.

1.2 Notation

In this section we collect the main notation used in this work. Throughout the paper
the set N denotes the set of natural integers N = {1, 2, . . . }, N0 = {0, 1, . . . }, and R

is the set of real numbers.
For any m × n matrix A = (ai j ), the symbol A∗ denotes its transpose and ‖A‖ is

its Frobenius norm; i.e., ‖A‖ = (
∑m

i=1
∑n

j=1 a
2
i j )

1/2. For any x, y ∈ R
d , ‖x‖ denotes

the Euclidean norm of x and x · y = x∗y indicates the inner product of x and y. For
a fixed Hilbert space H , we denote its inner product by 〈·, ·〉 and by ‖·‖H its norm.

The symbol 1C denotes the indicator function of a set C , while 1 is the constant
function equal to 1. The symbol

∫ b
a denotes

∫
[a,b] for any −∞ < a ≤ b < +∞.

For any d ∈ N and T > 0, we denote by C1,2
b ([0, T ] × R

d) the set of real-valued
boundedmeasurable functions on [0, T ]×R

d , that are continuously differentiable once
with respect to the first variable and twice with respect to the second, with bounded
derivatives. For any such function, the symbol ∂t denotes the derivative with respect to
the first variable, while Dx = (∂1, . . . , ∂d) and D2

x = (∂2i j )
d
i, j=1 denote, respectively,

the gradient and the Hessian matrix with respect to the second variable. Furthermore,
we simply write C2

b(R
d), when we are considering a real-valued bounded function on

R
d that is twice continuously differentiable with bounded derivatives.
For any d ∈ Nwe indicate by L2(Rd) the set of all square-integrable functions with

respect to Lebesgue measure and for all k ∈ N we denote by W 2
k (Rd) the Sobolev
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space of all functions f ∈ L2(Rd) such that the partial derivatives ∂α exist in the
weak sense and are in L2(Rd), whenever the multi-index α = (α1, . . . , αd) is such
that α1 + · · · + αd ≤ k.

For a fixed metric space E , endowed with the Borel σ -algebra, we denote byP(E),
M+(E), andM(E) the sets of probability, finite positive, and finite signed measures
on E , respectively. If μ ∈ M(E), then |μ| ∈ M+(E) is the total variation of μ.

For any given càdlàg stochastic process Z = (Zt )t≥0 defined on a probability
space (�,F ,P), we denote by (Zt−)t≥0 the left-continuous version of Z (i.e., Zt− =
lims→t− Zs, P-a.s., for any t ≥ 0), and by 
Zt :=Zt − Zt− the jump of Z at time
t ≥ 0. If Z has finite variation over [0, t], for all t ≥ 0, |Z | (resp. Z+, Z−) is the
variation process (resp. the positive part process, the negative part process) of Z , i.e.,
the process such that, for each t ∈ [0, T ] and ω ∈ �, |Z |t (ω) (resp. Z+

t (ω), Z−
t (ω)) is

the total variation (resp. the positive part, the negative part) of the function s �→ Zs(ω)

on [0, t]. It is useful to remember that Z = Z+ − Z−, |Z | = Z+ + Z−, and that Z+,
Z− are non-decreasing processes.

Finally, with the word measurable we refer to Borel-measurable, unless otherwise
specified.

2 Model Formulation

Let T > 0 be a given fixed time horizon and (�,F ,F:=(Ft )t∈[0,T ],P) be a complete
filtered probability space, with F satisfying the usual assumptions.

Define on (�,F ,F,P) two independent F-adapted standard Brownian motionsW
and B, taking values inRd andRn , respectively, with d, n ∈ N. Let then γ : [0, T ] →
R
n×n be a measurable function such that, for each t ∈ [0, T ], γ (t) is symmetric, with

γi j (t) ∈ L2([0, T ]), for all i, j = 1, . . . , n, and uniformly positive definite; that is,
there exists δ > 0 such that for all t ∈ [0, T ] and all x ∈ R

m

γ (t)x · x ≥ δ‖x‖2. (2.1)

These requirements guarantee in particular that the observed process Y = (Yt )t∈[0,T ],
defined as

Yt = y +
∫ t

0
γ (t) dBt , t ∈ [0, T ], y ∈ R

n, (2.2)

is anRn-valued F-adapted martingale, of which we take a continuous version. Clearly,
it holds

dYt = γ (t) dBt , t ∈ [0, T ], Y0 = y ∈ R
n . (2.3)

Remark 2.1 It is not restrictive to require that γ is symmetric (and uniformly positive
definite). Indeed, suppose that B is anRk-valuedF-adapted standard Brownianmotion
and that γ : [0, T ] → R

n×k is such that γ γ ∗(t):=γ (t)γ ∗(t) is uniformly positive
definite. Then, we can obtain an equivalent model defining the Rn-valued F-adapted
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standard Brownian motion B̃ = (B̃t )t∈[0,T ] through:

d B̃t :=
(
γ γ ∗(t)

)−1/2
γ (t) dBt , t ∈ [0, T ].

In fact, in this case (2.3) becomes:

dYt = (
γ γ ∗(t)

)1/2 d B̃t , t ∈ [0, T ], Y0 = y ∈ R
n,

and clearly
(
γ γ ∗(t)

)1/2 is symmetric (and uniformly positive definite).

We indicate with the symbol Y the completed natural filtration generated by Y ,
i.e., Y:=(Yt )t∈[0,T ], with Yt :={Ys : 0 ≤ s ≤ t} ∨ N , where N is the collection of all
P-null sets.

Remark 2.2 Notice that since γ is invertible, Y coincides with the completed natural
filtration generated by B and is, therefore, right-continuous. These facts will be useful
in the sequel.

Next, we consider a probability distribution ξ on R
m ; measurable functions

b : [0, T ] × R
m → R

m and σ : [0, T ] × R
m → R

m×d , with m ∈ N; a Y-adapted,
càdlàg, Rm-valued process ν whose components have paths of finite variation. We
introduce the following requirements, that will be in force throughout the paper.

Assumption 2.1

(i) There exist constants Cb and Lb such that for all t ∈ [0, T ]

‖b(t, x) − b(t, x ′)‖ ≤ Lb‖x − x ′‖ and ‖b(t, 0)‖ ≤ Cb, ∀x, x ′ ∈ R
m .

(2.4)

(ii) There exist constants Cσ and Lσ such that for all t ∈ [0, T ]

‖σ(t, x) − σ(t, x ′)‖ ≤ Lσ ‖x − x ′‖ and ‖σ(t, 0)‖ ≤ Cσ , ∀x, x ′ ∈ R
m .

(2.5)

(iii) The probability law ξ ∈ P(Rm) satisfies

∫
Rm

‖x‖2 ξ(dx) < +∞. (2.6)

(iv) The Rm-valued process ν is Y-adapted, càdlàg, with ν0− = 0. Its components
have paths of finite variation, which in particular satisfy

|νi |T ≤ K , ∀i = 1, . . . ,m, (2.7)

for some constant K > 0.

123



Applied Mathematics & Optimization  _#####################_ Page 9 of 43 _####_

Under Assumption 2.1, for any such ν, the following SDE for the signal process
X = (Xt )t∈[0,T ] admits a unique strong solution:

dXt = b(t, Xt ) dt + σ(t, Xt ) dWt + dνt , t ∈ [0, T ], X0− ∼ ξ ∈ P(Rm). (2.8)

It is important to bear in mind, especially in applications to optimal control problems,
that the solution to (2.8) and all the quantities that are related to it depend on the the
probability distribution ξ and on ν. However, for the ease of exposition, we will not
stress this dependence in the sequel.

Remark 2.3 Conditions (2.4) and (2.5) ensure that SDE (2.8) admits a unique strong
solution for any ν. If we assume, in addition, that (2.6) and (2.7) hold, then we have
that, for some constant κ depending on T , b, σ , and ν,

E[ sup
t∈[0,T ]

‖Xt‖2] ≤ κ(1 + E[‖X0−‖2]) < +∞, (2.9)

since E[‖X0−‖2] = ∫
Rm‖x‖2 ξ(dx). Proofs of these statements are standard and can

be found, for instance, in [14,39].

We finally arrive to the model we intend to analyze via a change of measure. Let
h : [0, T ] × R

m → R
n be a measurable function satisfying the following condition,

that will stand from now on.

Assumption 2.2 There exists a constant Ch such that for all t ∈ [0, T ]

‖h(t, x)‖ ≤ Ch(1 + ‖x‖), ∀x ∈ R
m . (2.10)

For all t ∈ [0, T ] define then:

ηt := exp

{∫ t

0
γ −1(s)h(s, Xs) dBs − 1

2

∫ t

0
‖γ −1(s)h(s, Xs)‖2 ds

}
. (2.11)

ByPropositionA.2, η is a (P,F)-martingale, underAssumptions 2.1 and 2.2. There-
fore, we can introduce the probability measure P̃ on (�,FT ) satisfying

dP̃

dP

∣∣∣∣FT

= ηT . (2.12)

By Girsanov’s Theorem, the process B = (Bt )t∈[0,T ] given by Bt :=Bt −∫ t
0 γ −1(s)h(s, Xs) ds, t ∈ [0, T ], is a (̃P,F)-Brownian motion, and under P̃ the
dynamics of the observed process are provided by the SDE:

dYt = h(t, Xt ) dt + γ (t) dBt , t ∈ [0, T ], Y0 = y ∈ R
n . (2.13)

We see that Eqs. (2.8) and (2.13) are formally equivalent to model (1.1). Observe,
however, that theBrownianmotion driving (2.13) is not a source of noise given a priori,
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but it is obtained through a probability measure change; moreover, our construction
implies that it depends on the initial law ξ and on process ν. This formulation is typical
in optimal control problems under partial observation (see, e.g., [5], Chapter 8) and
has the advantage of avoiding the circularity problem discussed in the Introduction.

Remark 2.4 If the partially observed system defined by (2.8) and (2.13) describes the
state variables of a singular optimal control problem, where ν is the control process,
then condition (2.7) implies that the singular control is of finite fuel type (see El Karoui
and Karatzas[21], Karatzas et al. [30] for early contributions).

Remark 2.5 It is worth noticing that all the results in this paper remain valid if we
allow b to depend also on ω, as long as the map (ω, t) �→ b(ω, t, x) is Y-adapted
and càdlàg, for each x ∈ R

m , and condition (2.4) holds uniformly with respect to ω

(i.e., Lb and Cb do not depend on ω). To extend our subsequent results to this case, it
suffices to apply the so-called freezing lemma whenever necessary.

Thismodeling flexibility is importantwhen it comes to treating controlled dynamics
where b is a deterministic function, depending on an additional parameter representing
the action of a regular control α = (αt )t∈[0,T ]. Clearly, this control must be càdlàg and
Y-adapted, i.e., based on the available information. The measurability requirement
above ensures that the map (ω, t) �→ b(t, x, αt (ω)) is Y-adapted.

3 The Zakai and Kushner–Stratonovich Equations

In this sectionwewill deduce the Zakai equation satisfied by the unnormalized filtering
process, defined in (3.3). As a byproduct, we will deduce the Kushner–Stratonovich
equation satisfied by the filtering process (see (3.1) for its definition). As anticipated
in the Introduction, we will use the reference probability approach to achieve these
results. The reference probabilitywill be preciselyP, underwhich the observed process
is Gaussian and satisfies (2.2). However, the probability measure that matters from a
modelization point of view is P̃, which is defined in (2.12). Indeed, we will define the
filtering process under this measure. It is important to bear in mind that P̃ and P are
equivalent probability measures. Hence, any result holding P-a.s., holds also P̃-a.s.,
and we will write only the first of these two wordings.

The following technical lemma is needed. Its proof is a consequence of the facts
highlighted in Remark 2.2 and it is omitted (the reader may refer, for instance, to [2],
Prop. 3.15). In what follows we will denote Y :=YT .

Lemma 3.1 Let Z be an Ft -measurable, P-integrable random variable, t ∈ [0, T ].
Then

E[Z | Yt ] = E[Z | Y].

As previously anticipated, the filtering process π = (πt )t∈[0,T ] is a P(Rm)-valued
process providing the conditional law of the signal X at each time t ∈ [0, T ], given
the available observation up to time t . It is defined for any bounded and measurable

123



Applied Mathematics & Optimization  _#####################_ Page 11 of 43 _####_

ϕ : [0, T ] × R
m → R as:

πt (ϕt ):=Ẽ
[
ϕ(t, Xt )

∣∣ Yt
]
, t ∈ [0, T ], (3.1)

where ϕt (x):=ϕ(t, x), for any (t, x) ∈ [0, T ] × R
m . Since R

m is a complete and
separable metric space, π is a well-defined, P(Rm)-valued and Y-adapted process.1

Moreover, π admits a càdlàg modification, since X is càdlàg (see, e.g. [2], Cor. 2.26).
Hence, in the sequel we shall consider π as a Y-progressively measurable process.

We recall the useful Kallianpur-Striebel formula, which holds thanks to Proposi-
tion A.2 for any bounded and measurable ϕ : [0, T ] × R

m → R and for any fixed
t ∈ [0, T ] (for a proof see, e.g., [2], Prop. 3.16)

πt (ϕt ) = E
[
ηtϕ(t, Xt )

∣∣ Y]
E
[
ηt

∣∣ Y] , P-a.s. (3.2)

This formula allows us to define the measure-valued process ρ = (ρt )t∈[0,T ], called
unnormalized conditional distribution of X , or unnormalized filtering process, defined,
for any bounded and measurable ϕ : [0, T ] × R

m → R, as:

ρt (ϕt ):=E
[
ηtϕ(t, Xt )

∣∣ Yt
]
, t ∈ [0, T ]. (3.3)

Given the properties of π and of η it is possible to show (see, e.g., [2], Lemma 3.18)
that ρ is càdlàg and Y-adapted, hence Y-progressively measurable. Moreover, the
Kallianpur-Striebel formula implies that for any bounded and measurable ϕ : [0, T ]×
R
m → R and for any fixed t ∈ [0, T ]:

πt (ϕt ) = ρt (ϕt )

ρt (1)
, P-a.s., (3.4)

where 1 : Rm → R is the constant function equal to 1.
To describe the local dynamics of the signal process X , let us introduce the operator

A, defined for any ϕ ∈ C1,2
b ([0, T ] × R

m) as:

Aϕ(t, x):=Dxϕ(t, x) · b(t, x) + 1

2
tr
(
D2
xϕ(t, x) σσ ∗(t, x)

)
, (t, x) ∈ [0, T ] × R

m .

(3.5)

We can also define the family of operators At , t ∈ [0, T ], given by:

Atϕ(x) = Dxϕ(x) · b(t, x) + 1

2
tr
(
D2
xϕ(x) σσ ∗(t, x)

)
, x ∈ R

m, ϕ ∈ C2
b(R

m).

To obtain the Zakai equation we need, first, to write the semimartingale decom-
position of the process

(
ϕ(t, Xt )

)
t∈[0,T ]. For any ϕ ∈ C1,2

b ([0, T ] × R
m) we have,

applying Itô’s formula:

1 Without any particular assumptions on Y, the filtering process is adapted with respect to the right-
continuous enlargement ofY. However, as previously observed, in our modelY is already right-continuous.
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ϕ(t, Xt ) = ϕ(0, X0−) +
∫ t

0

[
∂s + A]ϕ(s, Xs) ds +

∫ t

0
Dxϕ(s, Xs−) dνs

+
∑
0≤s≤t

[
ϕ(s, Xs) − ϕ(s, Xs−) − Dxϕ(s, Xs−) · 
νs

]
+ Mϕ

t , t ∈ [0, T ].

(3.6)

Here, Mϕ
t := ∫ t

0 Dxϕ(t, Xt ) σ (t, Xt ) dWt , t ∈ [0, T ], is a square-integrable (P,F)-
martingale, thanks to conditions (2.4) and (2.5) (see also Remark 2.3).

We need the following two technical Lemmata. Up to minor modifications, their
proofs follow that of [2], Lemma 3.21.

Lemma 3.2 Let � = (�t )t∈[0,T ] be a real-valued (P,F)-progressively measurable
process such that

E

[∫ T

0
�2

s ds

]
< +∞.

Then, for any j = 1, . . . , k we have

E

[∫ t

0
�s dB

j
s

∣∣∣∣ Y
]

=
∫ t

0
E[�s | Y] dB j

s , t ∈ [0, T ].

Lemma 3.3 Let � = (�t )t∈[0,T ] be a real-valued (P,F)-progressively measurable
process satisfying2

E

[∫ T

0
�2

s d〈Mϕ〉s
]

< +∞.

Then,

E

[∫ t

0
�s dM

ϕ
s

∣∣∣∣ Y
]

= 0, t ∈ [0, T ].

We are now ready to state the main result of this section, namely, to provide the
Zakai equation.

Theorem 3.4 Suppose that Assumptions 2.1 and 2.2 are satisfied and, moreover, that

∫
Rm

‖x‖3 ξ(dx) < +∞. (3.7)

Then, for any ϕ ∈ C1,2
b ([0, T ] × R

m), the unnormalized conditional distribution ρ

satisfies the Zakai equation:

2 If M is any (P,F)-square integrable martingale, 〈M〉 denotes its (P,F)-predictable quadratic variation.
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ρt (ϕt ) = ξ(ϕ0) +
∫ t

0
ρs
([

∂s + As
]
ϕs
)
ds +

∫ t

0
ρs−

(
Dxϕs

)
dνs

+
∫ t

0
γ −1(s)ρs(ϕshs) dBs

+
∑
0≤s≤t

[
ρs−

(
ϕs(· +
νs)−ϕs − Dxϕs · 
νs

)]
,P-a.s., t ∈[0, T ], (3.8)

where ξ(ϕ0):=
∫
Rm ϕ(0, x) ξ(dx) and, for all t ∈ [0, T ], ht (·):=h(t, ·),
∫ t

0
ρs−

(
Dxϕs

)
dνs :=

m∑
i=1

∫ t

0
ρs−

(
∂iϕs

)
dνis,

∫ t

0
γ −1(s)ρs(ϕshs) dBs :=

n∑
i=1

n∑
j=1

∫ t

0
γ −1
i j (s)ρs(ϕsh

j
s ) dB

i
s .

Proof Fix t ∈ [0, T ] and ϕ ∈ C1,2
b ([0, T ] × R

m). Let us introduce the constants

Cϕ := sup
t,x

|ϕ(t, x)|, C ′
ϕ := sup

t,x
‖Dxϕ(t, x)‖, C ′′

ϕ := sup
t,x

‖D2
xϕ(t, x)‖,

where the suprema are taken over [0, T ]×R
m . The proof is organized in several steps.

Step 1 (Approximation) For any fixed ε > 0, define the bounded process ηε =
(ηε

t )t∈[0,T ]:

ηε
t :=

ηt

1 + εηt
, t ∈ [0, T ], (3.9)

where η is defined in (2.11). Both η and ηε have continuous trajectories and this fact
will be used in what follows without further mention.

Applying Itô’s formula we obtain

ηε
t = 1

1 + ε
−
∫ t

0

εη2s

(1 + εηs)3
‖γ −1(s)h(s, Xs)‖2 ds

+
∫ t

0

ηs

(1 + εηs)2
γ −1(s)h(s, Xs) dBs .

Denoting by [·, ·] the optional quadratic covariation operator, thanks to the integra-
tion by parts rule and recalling (3.6) we get

ηε
t ϕ(t, Xt ) = ϕ(0, X0− )

1 + ε
+
∫ t

0
ηε
s− dϕ(s, Xs) +

∫ t

0
ϕ(s, Xs− ) dηε

s +
∫ t

0
d
[
ηε, ϕ(·, X)

]
s

= ϕ(0, X0− )

1 + ε
+
∫ t

0
ηε
s−
[
∂s + A]

ϕ(s, Xs) ds +
∫ t

0
ηε
s−Dxϕ(s, Xs− ) dνs

123



_####_ Page 14 of 43 Applied Mathematics & Optimization  _#####################_

+
∑
0≤s≤t

ηε
s−
[
ϕ(s, Xs) − ϕ(s, Xs− ) − Dxϕ(s, Xs− )
νs

]
+
∫ t

0
ηε
s− dMϕ

s

−
∫ t

0

εη2sϕ(s, Xs− )

(1 + εηs)3
‖γ −1(s)h(s, Xs)‖2 ds +

∫ t

0

ηsϕ(s, Xs− )

(1 + εηs)2
γ −1(s)h(s, Xs) dBs .

(3.10)

Step 2 (Projection onto Y) Notice that Xt = Xt− + 
νt , P-a.s., t ∈ [0, T ], and that,
since Y0− = Y0 = {∅,�}, we have

E[ϕ(0, X0−) | Y0−] =
∫
Rm

ϕ(0, x) ξ(dx) = ξ(ϕ0).

Therefore, taking conditional expectation with respect to Y , we have (rearranging
some terms)

E[ηε
t ϕ(t, Xt ) | Y] = ξ(ϕ0)

1 + ε
+ E

[∫ t

0
ηε
s−
[
∂s + A]

ϕ(s, Xs ) ds

∣∣∣∣ Y
]

+ E

[∫ t

0
ηε
s−Dxϕ(s, Xs− ) dνs

∣∣∣∣ Y
]

+ E

[∫ t

0

ηsϕ(s, Xs− )

(1 + εηs )2
γ −1(s)h(s, Xs ) dBs

∣∣∣∣ Y
]

+ E

[ ∑
0≤s≤t

ηε
s−
[
ϕ(s, Xs− + 
νs ) − ϕ(s, Xs− ) − Dxϕ(s, Xs− ) · 
νs

] ∣∣∣∣ Y
]

+ E

[∫ t

0
ηε
s− dMϕ

s

∣∣∣∣ Y
]

− E

[∫ t

0

εη2s ϕ(s, Xs− )

(1 + εηs )3
‖γ −1(s)h(s, Xs )‖2 ds

∣∣∣∣ Y
]
.

(3.11)

We analyze now each of the terms appearing in (3.11). For any boundedY-measurable
Z , thanks to conditions (2.4) and (2.5), there exists a constant C1, depending on Z , ε,
ϕ, b, and σ such that

|Zηε
t

[
∂t + A]ϕ(t, Xt )| ≤ C1(1 + ‖Xt‖2), t ∈ [0, T ],

which implies, using the estimate given in (2.9),

E

[∫ t

0
Zηε

s

[
∂s + A]ϕ(s, Xs) ds

]
≤ CE

[∫ t

0
(1 + ‖Xs‖2) ds

]

≤ C1T [1 + κ(1 + E[‖X0−‖2])] < +∞.

Therefore, applying the tower rule and Fubini–Tonelli’s theorem,

E

[
Z E

[∫ t

0
ηε
s

[
∂s + A]ϕ(s, Xs) ds

∣∣∣∣ Y
]]

= E

[
Z
∫ t

0
E[ηε

s

[
∂s + A]ϕ(s, Xs) | Y] ds

]
,

whence

E

[∫ t

0
ηε
s

[
∂s + A]ϕ(s, Xs) ds

∣∣∣∣ Y
]

=
∫ t

0
E[ηε

s

[
∂s + A]ϕ(s, Xs) | Y] ds. (3.12)

123



Applied Mathematics & Optimization  _#####################_ Page 15 of 43 _####_

Similarly, for any bounded Y-measurable Z we have that

‖Zηε
t Dxϕ(t, Xt−)‖ ≤ |Z |C ′

ϕ

ε
< +∞, dP ⊗ dt-a.e.

This factwill allow to useFubini-Tonelli’s theorem in formula (3.13) below.Weneed to
introduce the changes of time associated to the processes νi,+ and νi,−, i = 1, . . . ,m,
defined as

Ci,+
t := inf{s ≥ 0 : νi,+s ≥ t}, Ci,−

t := inf{s ≥ 0 : νi,−s ≥ t}, t ≥ 0, i = 1, . . . ,m,

where νi,+ (resp. νi,−) denotes the positive part (resp. negative part) process of the
i-th component of process ν (see the list of notation in Sect. 1.2 for a more detailed
definition).

For each t ≥ 0 and i = 1, . . . ,m, Ci,+
t and Ci,−

t are Y-stopping times (see, e.g.,
[20], Chapter VI, Def. 56 or [28], Proposition I.1.28). Hence, applying the change of
time formula (see, e.g., [20], Chapter VI, Equation (55.1) or [28], Equation (1), p. 29)
and Fubini-Tonelli’s theorem, we get

E

[
Z E

[∫ t

0
ηε
sDxϕ(s, Xs− ) dνs

∣∣∣∣ Y
]]

= E

[∫ +∞
0

1s≤t Zηε
sDxϕ(s, Xs− ) dνs

]

=
m∑
i=1

E

[∫ +∞
0

1s≤t Zηε
s ∂iϕ(s, Xs− ) dνi,+s

]
−

m∑
i=1

E

[∫ +∞
0

1s≤t Zηε
s ∂iϕ(s, Xs− ) dνi,−s

]

=
m∑
i=1

E

[∫ +∞
0

1
Ci,+
s ≤t

Zηε

Ci,+
s

∂iϕ(Ci,+
s , X

(Ci,+
s )−)1

Ci,+
s <+∞ ds

]

−
m∑
i=1

E

[∫ +∞
0

1
Ci,−
s ≤t

Zηε

Ci,−
s

∂iϕ(Ci,−
s , X

(Ci,−
s )−)1

Ci,−
s <+∞ ds

]

=
m∑
i=1

∫ +∞
0

E

[
1
Ci,+
s ≤t

ZE
[
ηε

Ci,+
s

∂iϕ(Ci,+
s , X

(Ci,+
s )−)

∣∣ Y]1
Ci,+
s <+∞

]
ds

]

−
m∑
i=1

∫ +∞
0

E

[
1
Ci,−
s ≤t

ZE
[
ηε

Ci,−
s

∂iϕ(Ci,−
s , X

(Ci,−
s )−)

∣∣ Y]1
Ci,−
s <+∞

]
ds

]

=
m∑
i=1

E

[∫ +∞
0

1s≤t ZE[ηε
s ∂iϕ(s, Xs− ) | Y] dνi,+s

]

−
m∑
i=1

E

[∫ +∞
0

1s≤t ZE[ηε
s ∂iϕ(s, Xs−) | Y] dνi,−s

]

= E

[∫ +∞
0

1s≤t ZE[ηε
s Dxϕ(s, Xs− ) | Y] dνs

]
= E

[
Z
∫ t

0
E[ηε

s Dxϕ(s, Xs− ) | Y] dνs
]
,

(3.13)
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whence

E

[∫ t

0
ηε
sDxϕ(s, Xs−) dνs

∣∣∣∣ Y
]

=
∫ t

0
E[ηε

s Dxϕ(s, Xs−) | Y] dνs . (3.14)

Next, using (A.4) we obtain

E

[∫ t

0

(
ηε
s

1 + εηs
ϕ(s, Xs−)‖γ −1(s)h(s, Xs)‖

)2

ds

]

≤ C2
ϕ

ε2
E

[∫ t

0
‖γ −1(s)h(s, Xs)‖2 ds

]
< +∞,

hence, by Lemma 3.2 we have:

E

[∫ t

0

ηsϕ(s, Xs−)

(1 + εηs)2
γ −1(s)h(s, Xs) dBs

∣∣∣∣ Y
]

=
∫ t

0
E

[
ηsϕ(s, Xs−)

(1 + εηs)2
γ −1(s)h(s, Xs)

∣∣∣∣ Y
]
dBs . (3.15)

Recalling that |ν|iT ≤ K , P-a.s., and hence |
νit | ≤ K , for all t ∈ [0, T ] and all
i = 1, . . . ,m, P-a.s., for any bounded Y-measurable Z we have that

∑
0≤s≤t

E

∣∣∣∣Zηε
s

[
ϕ(s, Xs− + 
νs) − ϕ(s, Xs−) − Dxϕ(s, Xs− )
νs

]∣∣∣∣

≤ |Z |
ε

C ′′
ϕ

2

∑
0≤s≤t

E
[‖
νs‖2

]

= |Z |
ε

C ′′
ϕ

2
E

[ ∑
0≤s≤t


ν∗
s 
νs

]
≤ |Z |

ε

C ′′
ϕ

2

m∑
i=1

E

[∫ t

0
|
νis |d|νi |s

]
≤ |Z |

ε

C ′′
ϕ

2
mK 2 < +∞.

Therefore, using once more Fubini-Tonelli’s theorem

E

[
Z E

[ ∑
0≤s≤t

ηε
s

[
ϕ(s, Xs− + 
νs) − ϕ(s, Xs−) − Dxϕ(s, Xs−) · 
νs

] ∣∣∣∣ Y
]]

= E

[
Z

∑
0≤s≤t

E

[
ηε
s

[
ϕ(s, Xs− + 
νs) − ϕ(s, Xs−) − Dxϕ(s, Xs−) · 
νs

] ∣∣∣ Y
] ]

,

and hence

E

[ ∑
0≤s≤t

ηε
s

[
ϕ(s, Xs− + 
νs) − ϕ(s, Xs−) − Dxϕ(s, Xs−) · 
νs

] ∣∣∣∣ Y
]
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=
∑
0≤s≤t

E

[
ηε
s

[
ϕ(s, Xs− + 
νs) − ϕ(s, Xs−) − Dxϕ(s, Xs−) · 
νs

] ∣∣∣ Y
]
. (3.16)

Finally, being ηε bounded, Lemma 3.3 entails E
[∫ t

0 ηε
s dM

ϕ
s
∣∣ Y] = 0, and, using

the same rationale of the previous evaluations,

E

[∫ t

0

εη2sϕ(s, Xs−)

(1 + εηs)3
‖γ −1(s)h(s, Xs)‖2 ds

∣∣∣∣ Y
]

=
∫ t

0
E

[
εη2sϕ(s, Xs−)

(1 + εηs)3
‖γ −1(s)h(s, Xs)‖2

∣∣∣∣ Y
]
ds. (3.17)

Taking into account (3.12), (3.14), (3.15), (3.16), and (3.17), Equation (3.11)
becomes

E[ηε
t ϕ(t, Xt ) | Y] = ξ(ϕ0)

1 + ε
+
∫ t

0
E[ηε

s
[
∂s + A]

ϕ(s, Xs) | Y] ds

−
∫ t

0
E

[
εη2s ϕ(s, Xs)

(1 + εηs)3
‖γ −1(s)h(s, Xs)‖2

∣∣∣∣ Y
]
ds

+
∫ t

0
E

[
ηsϕ(s, Xs)

(1 + εηs)2
γ −1(s)h(s, Xs)

∣∣∣∣ Y
]
dBs

+
∫ t

0
E[ηε

s Dxϕ(s, Xs− ) | Y] dνs

+
∑

0≤s≤t

E

[
ηε
s

[
ϕ(s, Xs− +
νs)−ϕ(s, Xs−)−Dxϕ(s, Xs− )·
νs

] ∣∣∣ Y
]
.

(3.18)

Step 3 (Taking limits) It remains to show that all the terms appearing in (3.18) converge
appropriately to give (3.8). As ε → 0, we have that ηε

t → ηt , E[ηε
t ϕ(t, Xt ) | Y] −→

ρt (ϕ), for all t ∈ [0, T ], and

E[ηε
t

[
∂t + A]ϕ(t, Xt ) | Y] −→ ρt

([
∂t + At

]
ϕt
)
, dP ⊗ dt-a.e.

Using boundedness of ϕ and (2.4), (2.5), we get that

|E[ηε
t

[
∂t + A]ϕ(t, Xt ) | Y]| ≤ C2E[ηt (1 + ‖Xt‖2) | Y], t ∈ [0, T ],

for some constantC2, depending on ϕ, b, and σ . The r.h.s. of this inequality is dP⊗dt
integrable on�×[0, t], since (apply again the tower rule andFubini-Tonelli’s theorem)

E

[∫ t

0
C2E[ηs(1 + ‖Xs‖2) | Y] ds

]
≤ C2T

{
1 + κ(1 + Ẽ[‖X0−‖2])} < +∞,

where we used (2.9) (which holds also under P̃ because the dynamics of X does not
change under this measure), and the fact that Ẽ[‖X0−‖2] = E[‖X0−‖2] < +∞.
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Using the conditional form of the dominated convergence theorem, we have that,
for all t ∈ [0, T ],

E

[∫ t

0
E[ηε

s
[
∂s + A]

ϕ(s, Xs) | Y] ds
∣∣∣∣ Y

]
−→ E

[∫ t

0
ρs
([

∂s + As
]
ϕs
)
ds

∣∣∣∣ Y
]
, P-a.s.,

as ε → 0, whence, noticing that the integrals are Y-measurable random variables,

∫ t

0
E[ηε

s

[
∂s + A]ϕ(s, Xs) | Y] ds −→

∫ t

0
ρs
([

∂s + As
]
ϕs
)
ds, P-a.s., ∀t ∈ [0, T ].

We consider, now, the term on the second line of (3.18). We have that, for all
t ∈ [0, T ],

E

[
εη2t ϕ(t, Xt )

(1 + εηt )3
‖γ −1(t)h(t, Xt )‖2

∣∣∣∣ Y
]

−→ 0,

as ε → 0, and that

E

[
εη2t ϕ(t, Xt )

(1 + εηt )3
‖γ −1(t)h(t, Xt )‖2

∣∣∣∣ Y
]

≤ CϕE[ηt‖γ −1(t)h(t, Xt )‖2 | Y].

The r.h.s. of the last inequality is dP ⊗ dt integrable on � × [0, t], since

E

[∫ t

0
CϕE[ηs‖γ −1(s)h(s, Xs)‖2 | Y] ds

]

≤ nCϕChCγ T [1 + κ(1 + Ẽ[‖X0−‖2])] < +∞,

where we used (A.4), that holds also under P̃ (again, because the dynamics of X does
not change under this measure), and the fact that Ẽ[‖X0−‖2] = E[‖X0−‖2] < +∞.

Hence, reasoning as above, after applying the conditional form of the dominated
convergence theorem we obtain that, for all t ∈ [0, T ], as ε → 0,

∫ t

0
E

[
εη2sϕ(s, Xs)

(1 + εηs)3
‖γ −1(s)h(s, Xs)‖2

∣∣∣∣ Y
]
ds −→ 0, P-a.s.

Looking at the third line of (3.18), the next step is to show that

∫ t

0
E

[
ηsϕ(s, Xs)

(1 + εηs)2
γ −1(s)h(s, Xs)

∣∣∣∣ Y
]
dBs −→

∫ t

0
γ −1(s)ρs(ϕshs) dBs, P-a.s.

The proof of this fact is standard (see, e.g., [2], Theorem 3.24 and Exercise 3.25.i or
[5], Theorem 4.1.1). It is important to notice that condition (3.7) intervenes here.

Next, we examine the other integral in the third line of (3.18). We have that

E[ηε
t Dxϕ(t, Xt−) | Y] −→ ρt−

(
Dxϕt

)
, P-a.s.,
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as ε → 0, for all t ∈ [0, T ]. Notice that, for any t ∈ [0, T ],

‖E[ηε
t Dxϕ(t, Xt−) | Y]‖ ≤ C ′

ϕE[ηt | Y].

Since η is non-negative, a Y-optional version of
{
E[1t≤T ηt | Yt ]

}
t≥0 is given by the

Y-optional projection of
{
1t≤T ηt

}
t≥0 (see, e.g., [14], Corollary 7.6.8). Therefore,

applying [20], Chapter VI, Theorem 57 and using Lemma 3.1 we get that for all
t ∈ [0, T ], and all i = 1, . . . ,m,

E

[∫ T

0
C ′

ϕE[ηt | Y] d|νi |t
]

= C ′
ϕE

[∫ +∞

0
E[1t≤T ηt | Yt ] d|νi |t

]

= C ′
ϕE

[∫ T

0
ηt d|νi |t

]
< +∞,

where finiteness of E[∫ T
0 ηt d|νi |t ] can be established with a reasoning analogous to

the proof of (A.10). Therefore, we can apply the conditional form of the dominated
convergence theorem, to obtain that, for all t ∈ [0, T ], as ε → 0,

E

[∫ t

0
E[ηε

s Dxϕ(s, Xs−) | Y] dνs
∣∣∣∣ Y

]
−→ E

[∫ t

0
ρs−

(
Dxϕs

)
dνs

∣∣∣∣ Y
]
, P-a.s.

Since the integrals are Y-measurable random variables, this implies that, for all t ∈
[0, T ], as ε → 0,

∫ t

0
E[ηε

s Dxϕ(s, Xs−) | Y] dνs −→
∫ t

0
ρs−

(
Dxϕs

)
dνs, P-a.s.

Finally, looking at the fourth line of (3.18), we have that, for all t ∈ [0, T ], as
ε → 0,

�ε
t :=E

[
ηε
t

[
ϕ(t, Xt− + 
νt ) − ϕ(t, Xt−) − Dxϕ(t, Xt−) · 
νt

] ∣∣∣ Y
]

−→ ρt−
(
ϕt (· + 
νt ) − ϕt − Dxϕt · 
νt

)
, P-a.s.

Observe that, for any t ∈ [0, T ], �ε
t is bounded by 1

2C
′′
ϕE[ηt‖
νt‖2 | Y], which is

positive and integrable with respect to the product of measure P and the jump measure
associated to ν, since:

E

[ ∑
0≤s≤t

1

2
C ′′

ϕE[ηs‖
νs‖2 | Y]
]

= 1

2
C ′′

ϕ

∑
0≤s≤t

E[ηs‖
νs‖2]

= 1

2
C ′′

ϕE

⎡
⎣ ∑
0≤s≤t

ηs
νs · 
νs

⎤
⎦
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≤ 1

2
C ′′

ϕ

m∑
i=1

E

[∫ t

0
ηs |
νis |d|νi |s

]

≤ 1

2
C ′′

ϕK
m∑
i=1

E

[∫ t

0
ηsd|νi |s

]
< +∞.

By the conditional form of the dominated convergence theorem, we have that, for all
t ∈ [0, T ], as ε → 0,

E

[ ∑
0≤s≤t

�ε
s

∣∣∣ Y
]

−→ E

[ ∑
0≤s≤t

ρs−
(
ϕs(· + 
νs) − ϕs − Dxϕs · 
νs

) ∣∣∣ Y
]
, P-a.s.

and since the sums are Y-measurable random variables, this implies that, for all t ∈
[0, T ], as ε → 0,

∑
0≤s≤t

�ε
s −→

∑
0≤s≤t

ρs−
(
ϕs(· + 
νs) − ϕs − Dxϕs · 
νs

)
, P-a.s. ��

Remark 3.1 If the jump times of the process ν do not accumulate over [0, T ], then the
Zakai equation can be split into successive linear SPDEs between the jumps of ν (i.e.,
of X ). Set T0 = 0, denote by (Tn)n∈N the sequence of jump times of ν and indicate
by νc the continuous part of ν. Then, for any ϕ ∈ C1,2

b ([0, T ] × R
m) and any n ∈ N0

we have P-a.s.

⎧⎪⎨
⎪⎩
dρt (ϕt )=ρt

([
∂t +At

]
ϕt
)
dt + ρt−

(
Dxϕt

)
dνct + γ −1(t)ρt (ϕt ht )dBt , t ∈[Tn∧T , Tn+1∧T ),

ρ0− (ϕ0) = ξ(ϕ0),

ρTn (ϕ) = ρTn−
(
ϕTn (· + 
νTn )

)
.

(3.19)

We are now ready to deduce, from the Zakai equation, the Kushner–Stratonovich
equation, i.e., the equation satisfied by the filtering process π , defined in (3.1). The
proof of the following two results follows essentially the same steps of [2], Lemma3.29
and Theorem 3.30, up to necessary modifications due to the present setting (see, also,
[5], Lemma 4.3.1 and Theorem 4.3.1).

Lemma 3.5 Under the same assumptions of Theorem 3.4, the process
(
ρt (1)

)
t∈[0,T ]

satisfies for all t ∈ [0, T ]

ρt (1) = exp

{∫ t

0
γ −1(s)πs(hs) dBs − 1

2

∫ t

0
‖γ −1(s)πs(hs)‖2 ds

}
, P-a.s.

Theorem 3.6 Under the same assumptions of Theorem 3.4, the process
(
πt (ϕ)

)
t∈[0,T ]

satisfies for all t ∈ [0, T ] and all ϕ ∈ C1,2
b ([0, T ] × R

m) the Kushner–Stratonovich
equation
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πt (ϕt ) =π0−(ϕ0) +
∫ t

0
πs
([

∂s + As
]
ϕs
)
ds +

∫ t

0
πs−

(
Dxϕs

)
dνs

+
∫ t

0
γ −1(s)

{
πs
(
ϕshs

) − πs(ϕs)πs(hs)
} [

dBs − γ −1(s)πs(hs) ds
]

+
∑
0≤s≤t

[
πs−

(
ϕs(· + 
νs) − ϕs − Dxϕs · 
νs

)]
, P-a.s. (3.20)

Remark 3.2 It is not difficult to show (see, e.g., [2], Proposition 2.30) or [5], Theo-
rem 4.3.4, that

It :=Bt − γ −1(t)πt (ht ), t ∈ [0, T ],

is a (̃P,Y)-Brownian motion, the so-called innovation process. This allows to rewrite
the Kushner–Stratonovich equation in the (perhaps more familiar) form

πt (ϕt ) =ξ(ϕ0) +
∫ t

0
πs
([

∂s + As
]
ϕs
)
ds +

∫ t

0
πs−

(
Dxϕs

)
dνs

+
∫ t

0
γ −1(s)

{
πs
(
ϕshs

) − πs(ϕs)πs(hs)
}
dIs

+
∑
0≤s≤t

[
πs−

(
ϕs(· + 
νs) − ϕs − Dxϕs · 
νs

)]
, P̃-a.s., t ∈ [0, T ].

Notice, however, that in this setting the innovation process is not a Brownian motion
given a priori, because it depends (through the density process η, and hence through
X ), on the initial law ξ of the signal process and on process ν.

Remark 3.3 Similarly to what stated in Remark 3.1, if the jump times of the process
ν do not accumulate over [0, T ], then the Kushner–Stratonovich equation can be split
into successive nonlinear SPDEs between the jumps of ν (i.e., of X ). Using the same
notation of the aforementionedRemark, for anyϕ ∈ C1,2

b ([0, T ]×R
m) and any n ∈ N0

we have P-a.s.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dπt (ϕt ) = πt
([

∂t + At
]
ϕt
)
dt + πt−

(
Dxϕt

)
dνct

+ γ −1(t)
{
πt
(
ϕt ht

)− πt (ϕt )πt (ht )
}[
dBt − γ −1(t)πt (ht )dt

]
, t ∈ [Tn∧T , Tn+1∧T ),

π0− (ϕ0) = ξ(ϕ0),

πTn (ϕ) = πTn−
(
ϕTn (· + 
νTn )

)
.

(3.21)

4 Uniqueness of the Solution to the Zakai Equation

In this section we will address the issue of uniqueness of the solution to the Zakai
equation (3.8), under the requirement that the jump times of the process ν do not

123



_####_ Page 22 of 43 Applied Mathematics & Optimization  _#####################_

accumulate over [0, T ]. Proving uniqueness is essential to characterize completely
the unnormalized filtering process ρ, defined in (3.3), and is crucial in applications,
e.g., in optimal control. Indeed, having ensured that (3.8) (or, equivalently, (3.20))
uniquely characterizes the conditional distribution of the signal given the observation,
the filtering process can be employed as a state variable to solve the related separated
optimal control problem (cf. [5]).

We follow the approach in [33] (see, also, [2], Chapter 7 and [42], Chapter 6). The
idea is to recast the measure-valued Zakai equation into an SPDE in the Hilbert space
H :=L2(Rm) and, therefore, to look for a density of ρ in this space. To accomplish
that, we will smooth solutions to (3.8) using the heat kernel, and we will then use
estimates in L2(Rm) in order to deduce the desired result. An important role in the
subsequent analysis is played by the following lemma, whose proof can be found, e.g.,
in [2], Solution to Exercise 7.2.

Lemma 4.1 Let {ϕk}k∈N be an orthonormal basis of H such that ϕk ∈ Cb(R
m) for

any k ∈ N, and let μ ∈ M(Rm) be a finite measure. If

∑
k∈N

[μ(ϕk)]2 < +∞,

then μ is absolutely continuous with respect to Lebesgue measure on R
m and its

density is square-integrable.

Let ψε be the heat kernel, i.e., the function defined for each ε > 0 as

ψε(x):= 1

(2πε)m/2 e
− ‖x‖2

2ε , x ∈ R
m,

and for any Borel-measurable and bounded f and ε > 0 define the operator

Tε f (x):=
∫
Rm

ψε(x − y) f (y) dy, x ∈ R
m .

We also define the operator Tε : M(Rm) → M(Rm) given by

Tεμ( f ):=μ(Tε f ) =
∫
Rm

f (y)
∫
Rm

ψε(x − y) μ(dx)
︸ ︷︷ ︸

:=Tεμ(y)

dy =
∫
Rm

f (y) Tεμ(y) dy.

Theequalities above imply that for anyμ ∈ M(Rm) themeasureTεμ always possesses
a density with respect to Lebesgue measure, that we will still denote by Tεμ.

Remark 4.1 It is important to notice that, by [2], Exercise 7.3, point ii., Tεμ ∈ W 2
k (Rm),

for any μ ∈ M(Rm), ε > 0, and k ∈ N.

Further properties of these operators that will be used in the sequel are listed in
the following Lemma (for its proof see, e.g., [2], Solution to Exercise 7.3 and [42],
Lemma 6.7, Lemma 6.8).
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Lemma 4.2 For any μ ∈ M(Rm), h ∈ H, and ε > 0 we have that:

i ‖T2ε |μ|‖H ≤ ‖Tε |μ|‖H , where |μ| denotes the total variation measure of μ;
ii ‖Tεh‖H ≤ ‖h‖H ;
iii 〈Tεμ, h〉 = μ(Tεh);
iv If, in addition, ∂i h ∈ H, i = 1, . . . ,m, then ∂i Tεh = Tε∂i h (with the partial

derivative understood in the weak sense).
v If ϕ ∈ C1

b(R
m), then ∂i Tεϕ = Tε(∂iϕ).

In this section wewill work under the following hypotheses, in addition to Assump-
tions 2.1 and2.2, concerning coefficientsb,σ and h appearing inSDEs (2.8) and (2.13).
In what follows we will use the shorter notation

a(t, x):=1

2
σσ ∗(t, x), t ∈ [0, T ], x ∈ R

m . (4.1)

Assumption 4.1 There exist constants Kb, Kσ , Kh , such that, for all i, j = 1, . . . ,m,
all � = 1, . . . , n, all t ∈ [0, T ], and all x ∈ R

m ,

|bi (t, x)| ≤ Kb, |ai j (t, x)| ≤ Kσ , |h�(t, x)| ≤ Kh .

In the next section, we obtain the uniqueness result for the solution to the Zakai
equation when the process ν has continuous paths. This will be then exploited in
Sect. 4.2 in order to obtain the uniqueness claim when ν has jump times that do not
accumulate over [0, T ].

4.1 The Case inWhich � has Continuous Paths

We start our analysis with the following Lemma, which will play a fundamental role
in the sequel. Its proof can be found in Appendix A.

Lemma 4.3 Suppose that Assumption 4.1 holds. Let ζ = (ζt )t∈[0,T ] be a Y-adapted,
càdlàg,M+(Rm)-valued solution of (3.8), with ζ0− = ξ ∈ P(Rm). If ν is continuous,
then for any ε > 0

E[ sup
t∈[0,T ]

‖Tεζt−‖2H ] < +∞.

The next result is a useful estimate.

Proposition 4.4 Suppose that Assumption 4.1 holds. Let ζ = (ζt )t∈[0,T ] be a Y-
adapted, càdlàg, M(Rm)-valued solution of (3.8), with ζ0− = ξ ∈ P(Rm). Define
the process

At :=t +
m∑
i=1

|νi |t , t ∈ [0, T ]. (4.2)
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If ν is continuous and if, for any ε > 0, E[supt∈[0,T ]‖Tε |ζ |t−‖2H ] < +∞, then
there exists a constant M > 0 such that, for each ε > 0 and all F-stopping times
τ ≤ t , t ∈ [0, T ],

E[‖Tεζτ−‖2H ] ≤ ‖Tεζ0−‖2H + M
∫ τ−

0
E[‖Tε |ζ |s−‖2H ] dAs . (4.3)

Proof To ease notations, for any ε > 0 denote by Z ε the process Z ε
t :=Tεζt , t ≥ 0. Fix

ε > 0 and consider an orthonormal basis {ϕk}k∈N of H such that ϕk ∈ C2
b(R

m), for any
k ∈ N. Writing the Zakai equation for the function Tεϕk (recall that ν is continuous
by assumption) we get:

ζt (Tεϕk) = ξ(Tεϕk) +
∫ t

0
ζs
(AsTεϕk

)
ds +

∫ t

0
ζs−

(
Dx Tεϕk

)
dνs

+
∫ t

0
γ −1(s)ζs(Tεϕkhs) dBs, (4.4)

for all t ∈ [0, T ]. Notice that, for any ϕ ∈ C2
b(R

m) and any t ∈ [0, T ], we can write:

Atϕ(x) =
m∑
i=1

bi (t, x)∂iϕ(x) +
m∑

i, j=1

ai j (t, x)∂i jϕ(x), x ∈ R
m,

where a is the function defined in (4.1). For any i, j = 1, . . . ,m, � = 1, . . . , n, and
t ∈ [0, T ], we define the random measures on R

m :

bit ζt (dx) :=bi (t, x)ζt (dx), ai jt ζt (dx):=ai j (t, x)ζt (dx),

γ h�
t ζt (dx) :=

n∑
p=1

γ −1
�p (t)h p(t, x)ζt (dx).

These measures are P-almost surely finite, for any t ∈ [0, T ], thanks to Assumption
4.1 and to (A.3) (see also (A.19) for the last measure).

Applying Lemma 4.2 and the integration by parts formula we get:

ζt
(At Tεϕk

) =
m∑
i=1

∫
Rm

bi (t, x)∂i Tεϕk(x) ζt (dx) +
m∑

i, j=1

∫
Rm

ai j (t, x)∂i j Tεϕk(x) ζt (dx)

=
m∑
i=1

∫
Rm

bi (t, x)Tε∂iϕk(x) ζt (dx) +
m∑

i, j=1

∫
Rm

ai j (t, x)Tε∂i jϕk(x) ζt (dx)

=
m∑
i=1

bit ζt (Tε∂iϕk) +
m∑

i, j=1

ai jt ζt (Tε∂i jϕk)

=
m∑
i=1

〈Tε(b
i
t ζt ), ∂iϕk〉 +

m∑
i, j=1

〈Tε(a
i j
t ζt ), ∂i jϕk〉
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=
m∑

i, j=1

〈ϕk , ∂i j Tε(a
i j
t ζt )〉 −

m∑
i=1

〈ϕk , ∂i Tε(b
i
t ζt )〉.

In a similar way, we obtain ζt
(
∂i Tεϕk

) = −〈ϕk, ∂i Tεζt 〉, and
n∑
j=1

γ −1
i j (t)ζt

(
Tεϕkh

j
t
) = 〈ϕk, Tε(γ h

i
tζt )〉, i = 1, . . . , n.

Putting together all these facts, we can rewrite (4.4) as

〈ϕk , Zε
t 〉 = 〈ϕk , Zε

0−〉 +
m∑

i, j=1

∫ t

0
〈ϕk , ∂i j Tε(a

i j
s ζs)〉 ds −

m∑
i=1

∫ t

0
〈ϕk , ∂i Tε(b

i
sζs)〉 ds

−
m∑
i=1

∫ t

0
〈ϕk , ∂i Tεζs−〉 dνis +

n∑
i=1

∫ t

0
〈ϕk , Tε(γ h

i
sζs)〉 dBi

s , P-a.s., t ∈ [0, T ].

Applying Itô’s formula we get that, for all t ∈ [0, T ], P-a.s.,

〈ϕk , Zε
t 〉2 = 〈ϕk , Zε

0−〉2 +
m∑

i, j=1

∫ t

0
2〈ϕk , Zε

s 〉 〈ϕk , ∂i j Tε(a
i j
s ζs)〉 ds

−
m∑
i=1

∫ t

0
2〈ϕk , Zε

s 〉〈ϕk , ∂i Tε(b
i
sζs)〉 ds +

n∑
i=1

∫ t

0
〈ϕk , Tε(γ h

i
sζs)〉2 ds

−
m∑
i=1

∫ t

0
2〈ϕk , Zε

s−〉〈ϕk , ∂i Tεζs−〉 dνis +
n∑

i=1

∫ t

0
2〈ϕk , Zε

s 〉〈ϕk , Tε(γ h
i
sζs)〉 dBi

s .

Using Assumption 4.1 and (A.3), it is possible to show that the stochastic integral
with respect to Brownian motion B is a P-martingale. By the optional sampling theo-
rem, this stochastic integral has zero expectation even when evaluated at any bounded
stopping time. Therefore, picking an F-stopping time τ ≤ t , for arbitrary t ∈ [0, T ],
summing over k up to N ∈ N, and taking the expectation, by Fatou’s lemma we have
that

E

[
‖Z ε

τ−‖2H
]

= E

[
lim

N→∞

N∑
k=1

〈ϕk, Z
ε
τ−〉2

]
≤ lim inf

N→∞ E

[ N∑
k=1

〈ϕk, Z
ε
τ−〉2

]
≤ ‖Z ε

0−‖2H

+ lim inf
N→∞

{ m∑
i, j=1

E

[∫ τ−

0

N∑
k=1

2〈ϕk, Z
ε
s 〉 〈ϕk, ∂i j Tε(a

i j
s ζs)〉 ds

]

−
m∑
i=1

E

[∫ τ−

0

N∑
k=1

2〈ϕk, Z
ε
s 〉〈ϕk, ∂i Tε(b

i
sζs)〉 ds

]
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+
n∑

i=1

E

[∫ τ−

0

N∑
k=1

〈ϕk, Tε(γ h
i
sζs)〉2 ds

]

−
m∑
i=1

E

[∫ τ−

0

N∑
k=1

2〈ϕk, Z
ε
s−〉〈ϕk, ∂i Tεζs−〉 dνis

]}
, (4.5)

where we used the fact that, since Z ε
0− ∈ H , lim

N→∞
N∑

k=1
〈ϕk, Z ε

0−〉2 = ‖Z ε
0−‖2H . More

generally, since Z ε
t ∈ H , for all t ∈ [0, T ], P-a.s. (cf. Remark 4.1), we have that

N∑
k=1

〈ϕk, Z
ε
t 〉2 ≤

∞∑
k=1

〈ϕk, Z
ε
t 〉2 = ‖Z ε

t ‖2H , t ∈ [0, T ]. (4.6)

We want now to estimate the quantities appearing inside the limit inferior, in order
to exchange the limit and the integrals in (4.5). First of all, let us notice that, thanks
to Assumption 4.1, the following estimates hold P-a.s., for all i, j = 1, . . . ,m, all
� = 1, . . . , n, and all t ∈ [0, T ]:

‖∂i j Tε(a
i j
t ζt )‖2H ≤ K1‖Tε |ζ |t‖2H , ‖∂i Tε(b

i
t ζt )‖2H ≤ K2‖Tε |ζ |t‖2H ,

‖Tε(γ h
�
t ζt )‖2H ≤ K3‖Tε |ζ |t‖2H , ‖∂i Tεζt‖2H ≤ K4‖Tε |ζ |t‖2H ,

where K1 = K1(ε,m, σ ), K2 = K2(ε,m, b), K3 = K3(n, h, γ ), K4 = K4(ε,m).
They can be proved following a reasoning analogous to that of [2], Lemma 7.5 (see
also [42], Chapter 6).

Recalling that 2|ab| ≤ a2 + b2, for all a, b ∈ R, using the estimates provided
above, Lemma 4.2, and (4.6), we get that, for all N ∈ N, all i, j = 1, . . . ,m, and all
s ∈ [0, T ],

1s<τ

N∑
k=1

2〈ϕk, Z
ε
s 〉 〈ϕk, ∂i j Tε(a

i j
s ζs)〉 ≤

N∑
k=1

〈ϕk, Z
ε
s 〉2 +

N∑
k=1

〈ϕk, ∂i j Tε(a
i j
s ζs)〉2

≤ ‖Z ε
s ‖2H + ‖∂i j Tε(a

i j
s ζs)‖2H

≤ (1 + K1)‖Tε/2|ζ |s‖2H .

With analogous computations, we get, for all i = 1, . . . ,m, all N ∈ N, and all
s ∈ [0, T ],

1s<τ

N∑
k=1

2〈ϕk, Z
ε
s 〉〈ϕk, ∂i Tε(b

i
sζs)〉 ≤ (1 + K2)‖Tε/2|ζ |s‖2H ,

1s<τ

N∑
k=1

2〈ϕk, Z
ε
s−〉〈ϕk, ∂i Tεζs−〉 ≤ (1 + K4)‖Tε/2|ζ |s‖2H ,
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and, for all N ∈ N and all s ∈ [0, T ],
n∑

i=1

1s<τ

N∑
k=1

〈ϕk, Tε(γ h
i
sζs)〉2 ≤ nK3‖Tε |ζ |s‖2H .

The terms appearing on the r.h.s. of these estimates are dt ⊗ dP- and d|νi |t ⊗ dP-
integrable on [0, T ] × �, for all i = 1, . . . ,m, since, for any ε > 0,

E

[∫ T

0
‖Tε |ζ |s‖2H ds

]
≤ TE[ sup

s∈[0,T ]
‖Tε |ζ |s‖2H ] < +∞,

E

[∫ T

0
‖Tε |ζ |s‖2H d|νi |s

]
≤ KE[ sup

s∈[0,T ]
‖Tε |ζ |s‖2H ] < +∞.

Therefore, by the dominated convergence theorem, we can pass to the limit in (4.5),
as N → ∞,

E

[
‖Z ε

τ−‖2H
]

≤ ‖Z ε
0−‖2H +

m∑
i, j=1

E

[∫ τ−

0
2〈Z ε

s , ∂i j Tε(a
i j
s ζs)〉 ds

]

−
m∑
i=1

E

[∫ τ−

0
2〈Z ε

s , ∂i Tε(b
i
sζs)〉 ds

]

+
n∑

i=1

E

[∫ τ−

0
‖Tε(γ h

i
sζs)‖2H ds

]
−

m∑
i=1

E

[∫ τ−

0
〈Z ε

s− , ∂i Tεζs−〉 dνis
]
,

(4.7)

We finally get the claim, bounding the terms on the r.h.s. of (4.7) by using the
following results: for the second one, apply [42], Lemma 6.11; for the third and the
last one, apply [42], Lemma 6.10; for the fourth one, use the fact that the constant K3
above does not depend on ε. ��

Proposition 4.4 allows to deduce that any M+(Rm)-valued solution of the Zakai
equation (3.8) admits a density with respect to Lebesgue measure.

Proposition 4.5 Suppose that Assumption 4.1 holds. Let ζ = (ζt )t∈[0,T ] be a Y-
adapted, càdlàg, M+(Rm)-valued solution of (3.8), with ζ0− = ξ ∈ P(Rm). If ν

is continuous and if ξ admits a square-integrable density with respect to Lebesgue
measure on Rm, then there exists an H-valued process Z = (Zt )t∈[0,T ] such that, for
all t ∈ [0, T ],

ζt (dx) = Zt (x)dx, P-a.s.

Moreover, Z is Y-adapted, continuous, and satisfies E[‖Zt‖2H ] < +∞, for all t ∈
[0, T ].
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Proof As a consequence of Lemma 4.3, the assumptions of Proposition 4.4 hold and
we have that for each ε > 0 and all F-stopping times τ ≤ t , t ∈ [0, T ],

E[‖Tεζτ−‖2H ] ≤ ‖Tεζ0−‖2H + M
∫ τ−

0
E[‖Tεζs−‖2H ] dAs .

Therefore, we can apply Lemma A.1 and get that, for all t ∈ [0, T ],

E[‖Tεζt−‖2H ] = E[‖Tεζt‖2H ] ≤ ‖Tεζ0−‖2H eM(T+mK ), (4.8)

whereweused the fact that ζ is continuous, since ν is, and that At ≤ AT ≤ T+mK , for
all t ∈ [0, T ]. Notice that, denoting by Z0− the density of ξ with respect to Lebesgue
measure on R

m ,

Tεζ0−(y) =
∫
Rm

ψε(x − y) ξ(dx) =
∫
Rm

ψε(x − y) Z0−(x) dx = TεZ0−(y), y ∈ R
m .

By point ii. of Lemma 4.2 and since the constants appearing in (4.8) do not depend
on ε, we get

sup
ε>0

E[‖Tεζt‖2H ] ≤ ‖Z0−‖2H eM(T+mK ), t ∈ [0, T ].

Taking, as in the Proof of Proposition 4.4, an orthonormal basis {ϕk}k∈N of H such
that ϕk ∈ C2

b(R
m), for any k ∈ N, the dominated convergence theorem entails that,

for all k ∈ N,

lim
ε→0

〈Tεζt , ϕk〉 = lim
ε→0

∫
Rm

{∫
Rm

ψε(x − y)ϕk(y) dy

}
ζt (dx) =

∫
Rm

ϕk(x) ζt (dx) = ζt (ϕk).

Applying Fatou’s Lemma we get that, for all t ∈ [0, T ],

E

[ ∞∑
k=1

ζt (ϕk)
2

]
= E

[ ∞∑
k=1

lim
ε→0

〈Tεζt , ϕk〉2
]

≤ lim inf
ε→0

E

[ ∞∑
k=1

〈Tεζt , ϕk〉2
]

≤ sup
ε>0

E[‖Tεζt‖2H ] ≤ ‖Z0−‖2HeM(T+mK ) < +∞, (4.9)

and hence, from Lemma 4.1 we deduce that, P-a.s., ζt is absolutely continuous with
respect to Lebesgue measure on R

m , for all t ∈ [0, T ]. Moreover, its density pro-
cess Z = (Zt )t∈[0,T ] takes values in H and, by standard results, is Y-adapted and
continuous (because ν is).

Finally, since ζt (ϕk) = ∫
Rm ϕk(x)Zt (x) dx = 〈ϕk, Zt 〉, for all k ∈ N, and all

t ∈ [0, T ], we get

E[‖Zt‖2H ] = E

[ ∞∑
k=1

〈ϕk, Zt 〉2
]

= E

[ ∞∑
k=1

ζt (ϕk)
2

]
< +∞, t ∈ [0, T ].

��
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We are now ready to state our first uniqueness result for the solution to the Zakai
equation, in the case where ν is continuous.

Theorem 4.6 Suppose that Assumptions 2.1, 2.2, 4.1, and (3.7) hold. If ν is continuous
and if ξ ∈ P(Rm)admits a square-integrable densitywith respect to Lebesguemeasure
on R

m, then the unnormalized filtering process ρ, defined in (3.3), is the unique Y-
adapted, continuous, M+(Rm)-valued solution to the Zakai equation (3.8).

Moreover, there exists aY-adapted, continuous, H-valued process p = (pt )t∈[0,T ]
satisfying, for all t ∈ [0, T ], E[‖pt‖2H ] < +∞ and ρt (dx) = pt (x)dx, P-a.s.

Proof Clearly, the unnormalized filtering process ρ, defined in (3.3), is a Y-adapted,
continuous (since ν is),M+(Rm)-valued solution to (3.8). Therefore, the second part
of the statement follows directly from Proposition 4.5.

Uniqueness can be established as follows. Let ζ (1), ζ (2) be two Y-adapted, càdlàg,
M+(Rm)-valued solutions to (3.8). Define ζ :=ζ (1) − ζ (2) ∈ M(Rm) and let
Z :=Z (1) − Z (2) ∈ H be its density process, where Z (1) and Z (2) are the density
processes of ζ (1) and ζ (2), respectively, which exist thanks to Proposition 4.5.

Standard facts from measure theory show that, for all non-negative, bounded, mea-
surable functions ϕ : Rm → R and all t ∈ [0, T ], |ζ |t (ϕ) ≤ ζ

(1)
t (ϕ) + ζ

(2)
t (ϕ). From

this fact, we have that, for all y ∈ R
m and all t ∈ [0, T ],

Tε |ζ |t (y) = |ζ |t (ψε(· − y)) ≤ ζ
(1)
t (ψε(· − y))

+ζ
(2)
t (ψε(· − y)) = Tεζ

(1)
t (y) + Tεζ

(2)
t (y),

and hence, for all t ∈ [0, T ],

‖Tε |ζ |t‖2H =
∫
Rm

|Tε |ζ |t (y)|2 dy ≤ 2
∫
Rm

|Tεζ
(1)
t (y)|2 dy

+2
∫
Rm

|Tεζ
(2)
t (y)|2 dy = 2‖Tεζ

(1)
t ‖2H + 2‖Tεζ

(2)
t ‖2H .

Thus, applying Lemma 4.3 we deduce that

E[ sup
t∈[0,T ]

‖Tε |ζ |t−‖2H ] ≤ 2E[ sup
t∈[0,T ]

‖Tεζ
(1)
t− ‖2H ] + 2E[ sup

t∈[0,T ]
‖Tεζ

(2)
t− ‖2H ] < +∞.

Therefore, from Proposition 4.4 we get that for all ε > 0 and all F-stopping times
τ ≤ t , t ∈ [0, T ],

E[‖Tεζτ−‖2H ] ≤ M
∫ τ−

0
E[‖Tε |ζ |s−‖2H ] dAs, (4.10)

where A is defined in (4.2).
An application of the dominated convergence theorem shows that ‖Tε |ζ |t−‖2H −→

‖Zt−‖2H , as ε → 0, for all t ∈ [0, T ], and hence we get, by Fatou’s lemma and (4.10),

E[‖Zτ−‖2H ] = E[ lim
ε→0

‖Tεζτ−‖2H ] ≤ lim inf
ε→0

E[‖Tεζτ−‖2H ]
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≤ lim inf
ε→0

M
∫ τ−

0
E[‖Tε |ζ |s−‖2H ] dAs = M

∫ τ−

0
E[‖Zs−‖2H ] dAs .

Finally, Proposition 4.5 ensures that

E[‖Zt−‖2H ] ≤ 2E[‖Z (1)
t− ‖2H ] + 2E[‖Z (2)

t− ‖2H ] < +∞, for all t ∈ [0, T ],

This allows us to use Lemma A.1 to get that, for all t ∈ [0, T ], E[‖Zt−‖2H ] =
E[‖Zt‖2H ] = 0, whence we obtain ‖Zt‖2H = 0, P-a.s., and therefore uniqueness
of the solution to the Zakai equation. ��

4.2 The Case inWhich the JumpTimes of � do not Accumulate

Exploiting the recursive structure of (3.19), we can prove uniqueness of the solution to
the Zakai equation (3.8), also in the case where the jump times of ν do not accumulate.

Theorem 4.7 Suppose that Assumptions 2.1, 2.2, 4.1, and (3.7) hold. If the jump times
of ν do not accumulate over [0, T ] and if ξ ∈ P(Rm) admits a square-integrable
density with respect to Lebesgue measure on R

m, then the unnormalized filtering
process ρ, defined in (3.3), is the uniqueY-adapted, càdlàg,M+(Rm)-valued solution
to the Zakai equation (3.8).

Moreover, there exists a Y-adapted, càdlàg, H-valued process p = (pt )t∈[0,T ]
satisfying, for all t ∈ [0, T ], E[‖pt‖2H ] < +∞ and ρt (dx) = pt (x)dx, P-a.s.

Proof Let us denote by ρ the unnormalized filtering process associated with the initial
law ξ and process ν, and by p0− the density of ξ with respect to Lebesgue measure
on Rm . Let T0 = 0 and define the sequence of jump times of ν

Tn := inf{t > Tn−1 : 
νt �= 0}, n ∈ N,

with the usual convention inf ∅ = +∞. Recall that also T0 can be a jump time of
ν. Moreover, since the jump times of ν do not accumulate over [0, T ], we have that
Tn ≤ Tn+1, P-a.s., and Tn < +∞ �⇒ Tn < Tn+1, for all n ∈ N0.

We start noticing that the formula ρTn (ϕ) = ρTn−
(
ϕTn (·+
νTn )

)
, n ∈ N0, appear-

ing in (3.19) holds for all ϕ ∈ Cb(R
m). Indeed, continuity of the observation filtration

Y implies that

Ẽ[ϕ(XT−
n

) | YTn ] = Ẽ[ϕ(XT−
n

) | YT−
n

] = πT−
n

(ϕ).

Using continuity of process η, Kallianpur-Striebel formula (3.2), and the freezing
lemma, we get

ρTn (ϕ) = Ẽ[ϕ(XTn ) | YTn ]E
[
ηTn

∣∣ Y] = Ẽ[ϕ(XT−
n

+ 
νTn ) | YTn ]E
[
ηT−

n

∣∣ Y]
= πT−

n
(ϕ(· + 
νTn ))E

[
ηT−

n

∣∣ Y] = ρT−
n

(ϕ(· + 
νTn )),
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for all ϕ ∈ Cb(R
m) and all n ∈ N0. This, in turn, entails that if ρT−

n
admits a density

pT−
n
with respect to Lebesgue measure, then

∫
Rm

ϕ(x) ρTn (dx) = ρT−
n

(ϕ(· + 
νTn )) =
∫
Rm

ϕ(x + 
νTn )pT−
n

(x) dx

=
∫
Rm

ϕ(x)pT−
n

(x − 
νTn ) dx .

Therefore, since Cb(R
m) is a separating set (see, e.g., [22], Chapter 3, Sect. 4), we

have the equivalence of measures ρTn (dx) and pT−
n

(x − 
νTn ) dx , implying that ρTn
admits density with respect to Lebesgue measure on Rm , given by pT−

n
(· − 
νTn ).

We can now use the recursive structure of (3.19) to get the claim. Define the process

ν
(1)
t :=νt1t<T1 + νT−

1
1t≥T1 , t ∈ [0, T ],

and the random measure ξ (1)(dx):=p0−(x − 
ν0) dx , on R
m . Consider, for all ϕ ∈

C2
b(R

m), the Zakai equation

ρ
(1)
t (ϕ) = ξ (1)(ϕ) +

∫ t

0
ρ(1)
s

([
∂s + As

]
ϕ
)
ds

+
∫ t

0
ρ

(1)
s−
(
Dxϕ

)
dν(1)

s

+
∫ t

0
γ −1(s)ρ(1)

s (ϕhs) dBs, P-a.s., t ∈ [0, T ]. (4.11)

Since ν(1) satisfies point (iv) of Assumption 2.1, we have that (4.11) is the Zakai equa-
tion for the filtering problem of the partially observed system (2.8)–(2.13), with initial
law ξ (1) and process ν(1), which is continuous on [0, T ]. Therefore, by Theorem 4.6,
ρ(1) is its unique solution and admits a density p(1) with respect to Lebesgue measure
on R

m , with E[‖p(1)
t ‖2H ] < +∞, for each t ∈ [0, T ]. It is clear that, since νt = ν

(1)
t

on {t < T1}, we have that ρt = ρ
(1)
t on the same set, and hence ρt admits density p(1)

t
on {t < T1}.

Next, let us define the process

ν
(2)
t :=νt+T11t<T2−T1 + νT−

2
1t≥T2−T1 , t ∈ [0, T ],

and the random measure ξ (2)(dx) = pT−
1

(x − 
νT1) dx , on R
m . Consider, for all

ϕ ∈ C2
b(R

m), the Zakai equation

ρ
(2)
t (ϕ) = ξ (2)(ϕ) +

∫ t

0
ρ(2)
s

([
∂s + As+T1

]
ϕ
)
ds

+
∫ t

0
ρ

(2)
s−
(
Dxϕ

)
dν(2)

s +
∫ t

0
γ −1(s+T1)ρ

(2)
s (ϕhs+T1 ) dBs+T1 , P-a.s., t ∈[0, T ].

(4.12)
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Since ν(2) satisfies point (iv) of Assumption 2.1, we have that (4.12) is the Zakai equa-
tion for the filtering problem of the partially observed system (2.8)–(2.13), with initial
law ξ (2) and process ν(2), which is continuous on [0, T ]. Therefore, by Theorem 4.6,
ρ(2) is its unique solution and admits a density p(2) with respect to Lebesgue measure
on Rm , with E[‖p(2)

t ‖2H ] < +∞, for each t ∈ [0, T ]. It is clear that, since νt = ν
(2)
t−T1

on {T1 ≤ t < T2}, we have that ρt = ρ
(2)
t−T1

on the same set, and hence ρt admits

density p(2)
t−T1

on {T1 ≤ t < T2}.
Continuing in this manner, we construct a sequence of solutions (ρ(n))n∈N and

corresponding density processes (p(n))n∈N. We deduce that the unnormalized filtering
process is represented by

ρt =
∞∑
n=1

ρ
(n)
t−Tn−1

1Tn−1≤t<Tn , t ∈ [0, T ],

and hence is the unique Y-adapted, càdlàg, M+(Rm)-valued solution to the Zakai
equation (3.8), admitting a Y-adapted, càdlàg, H -valued density process p, given by

pt =
∞∑
n=1

p(n)
t−Tn−1

1Tn−1≤t<Tn , t ∈ [0, T ].

The fact thatE[‖pt‖2H ] < +∞, for all t ∈ [0, T ], follows from the analogous property
for each of the processes p(n), n ∈ N. ��
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Appendix A: Technical Results

We collect here some technical results that are used in our paper, namely, Lemma A.1,
Proposition A.2, and the proof of Lemma 4.3. In particular, Lemma A.1 is of central
importance in our work, since it is key to prove our main results.

Let us recall that if A (defined on a given filtered complete probability space) is a
càdlàg, adapted, non-negative process, with A0− = 0, and H is an optional process,
satisfying

∫ t
0 |Hs | dAs < +∞, for all t ≥ 0, P-a.s., then for any stopping time τ we

have that

∫ τ−

0
Hs dAs :=

∫ +∞

0
Hs1s<τ dAs .
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Lemma A.1 Let (�,F ,F,P) be a given filtered complete probability space, fix T > 0,
and let A and H be two càdlàg, F-adapted real-valued processes. Suppose that A is
non-decreasing, with A0− = 0 and AT ≤ K, P-a.s., for some constant K > 0, and
that H satisfies one of the following:

a. E[supt∈[0,T ] |Ht−|] < +∞;
b. H is non-negative and such that E[Ht−] < +∞, for all t ∈ [0, T ].
Assume, moreover, that for any F-stopping time τ ≤ T we have

E[Hτ−] ≤ M + E

[∫ τ−

0
Hs− dAs

]
, (A.1)

for some constant M. Then E[HT−] ≤ MeK .

Proof The following reasoning is inspired by the proof of [28], Lemma IX.6.3. Let us
define

Ãt :=At1t<T + K1t≥T , t ≥ 0.

Ã is still a càdlàg,F-adapted and non-decreasing process, with Ã0− = 0.Moreover, for
any stopping time τ ≤ T , random measures 1s<τ dAs and 1s<τ d Ãs agree, therefore
(A.1) implies

E[Hτ−] ≤ M + E

[∫ τ−

0
Hs− d Ãs

]
. (A.2)

Next, define Ct := inf{s ≥ 0 : Ãs ≥ t}, t ≥ 0, which (see, e.g., [20], Chapter VI, Def.
56 or [28], Proposition I.1.28) is an F-stopping time for all t ≥ 0, satisfying Ct ≤ T ,
thanks to the definition of Ã.

We now fix t ∈ [0, K ]. Using (A.2), we get

E[H(Ct )−] ≤ M + E

[∫ +∞

0
Hs−1s<Ct d Ãs

]
= M + E

[∫ +∞

0
H(Cu)−1Cu<Ct du

]
.

Since C is a non-decreasing process, we have that {Cu < Ct } ⊂ {u < t}, and hence
1Cu<Ct ≤ 1u<t . Therefore

E[H(Ct )−] ≤ M + E

[∫ t

0
H(Cu)− du

]
.

If H satisfies condition b. we can directly apply Fubini-Tonelli’s theorem as below.
If, instead, condition a. holds, since Cu ≤ T and, for each fixed ω ∈ �, the image
of the map u �→ Cu(ω) is a subset of [0, T ], we have that supu∈[0,K ] |H(Cu)−| ≤
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sups∈[0,T ] |Hs−|, so

E

[∫ t

0
|H(Cu)−| du

]
≤ K E[ sup

s∈[0,T ]
|Hs−|] < +∞.

Therefore, we can apply Fubini-Tonelli’s theorem and get

E[H(Ct )−] ≤ M +
∫ t

0
E[H(Cu)−] du,

whence we obtain, from the usual Gronwall’s lemma, E[H(Ct )−] ≤ Met . Thanks to
the definition of Ã, we have that CK = T and the claim follows letting t = K in the
last inequality. ��
Proposition A.2 Under Assumptions 2.1 and 2.2, the process η, defined in (2.11), is a
(P,F)-martingale.

Proof Let us notice, first, a fact that will be useful in this proof. It can be easily shown
that condition (2.1) implies, for some constant Cγ ,

‖γ −1(t)‖ ≤ Cγ , ∀t ∈ [0, T ]. (A.3)

Let us define, for all t ∈ [0, T ],

Zt :=
∫ t

0
γ −1(s)h(s, Xs) dBs .

Thanks to condition (2.10) and using (A.3) and (2.9), we easily get

E

[∫ T

0
‖γ −1(s)h(s, Xs)‖2 ds

]
≤ nE

[∫ T

0
‖γ −1(s)‖2‖h(s, Xs)‖2 ds

]

≤ nChCγE

[∫ T

0
(1 + ‖Xs‖2) ds

]

≤ nChCγ T [1 + κ(1 + E[‖X0−‖2])] < +∞. (A.4)

Therefore, Z is an (F,P)-martingale, and hence η, which is the Doléans-Dade expo-
nential of Z , is a non-negative local (F,P)-martingale (see, e.g., [14], Lemma 15.3.2).
Thus, to prove the claim it is enough to show that E[ηt ] = 1 for all t ∈ [0, T ].

We start proving, first, that E[ηt‖Xt−‖2] ≤ C , for all t ∈ [0, T ], where C is
an appropriately chosen constant. For the sake of brevity, let us write bs :=b(s, Xs),
σs :=σ(s, Xs), and hs :=h(s, Xs). Applying Itô’s formula we get

‖Xt‖2 =‖X0−‖2 +
∫ t

0

[
2X∗

s−bs + ‖σs‖2
]
ds + 2

∫ t

0
X∗
s−σs dWs

+ 2
∫ t

0
Xs− dνs +

∑
0≤s≤t

{‖Xs‖2 − ‖Xs−‖2 − 2Xs− · 
νs},
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and using the integration by parts rule we have

ηt‖Xt‖2 =‖X0−‖2 +
∫ t

0

[
2ηs− X

∗
s−bs + ηs−‖σs‖2

]
ds + 2

∫ t

0
ηs− X

∗
s−σs dWs

+
∫ t

0
‖Xs−‖2ηsγ −1(s)hs dBs + 2

∫ t

0
ηs− Xs− dνs

+
∑
0≤s≤t

ηs−{‖Xs‖2 − ‖Xs−‖2 − 2Xs− · 
νs}.

Therefore, for any fixed ε > 0, we obtain

ηt‖Xt‖2
1 + εηt‖Xt‖2 = ‖X0−‖2

1 + ε‖X0−‖2 +
∫ t

0

ηs−
[1 + εηs−‖Xs−‖2]2

[
2X∗

s−bs + ‖σs‖2
]
ds

−
∫ t

0

εη2s−
[1 + εηs−‖Xs−‖2]3

[
4‖X∗

s−σs‖2 + ‖Xs−‖4‖γ −1(s)hs‖2
]
ds

+
∫ t

0

2ηs−
[1 + εηs−‖Xs−‖2]2 Xs− dνcs +

∫ t

0

2ηs−
[1 + εηs−‖Xs−‖2]2 X

∗
s−σs dWs

+
∫ t

0

ηs−‖Xs−‖2
[1 + εηs−‖Xs−‖2]2 γ −1(s)hs dBs

+
∑

0≤s≤t

{
ηs‖Xs‖2

1 + εηs‖Xs‖2 − ηs−‖Xs−‖2
1 + εηs−‖Xs−‖2

}
, (A.5)

where νc denotes the continuous part of the process ν.
With standard estimates (see, e.g., [2], Solution to Exercise 3.11) it is possible

to show that the stochastic integrals with respect to Brownian motions W and B
are (F,P)-martingales. This implies, thanks to the optional sampling theorem, that
these stochastic integrals have zero expectation even when evaluated at any bounded
stopping time. Fixing a F-stopping time τ ≤ t , for arbitrary t ∈ [0, T ], taking the
expectation and noticing that the third term in (A.5) is non-negative, we get

E

[
ητ−‖Xτ−‖2

1 + εητ−‖Xτ−‖2
]

≤E

[ ‖X0−‖2
1 + ε‖X0−‖2

]

+ E

[∫ τ−

0

ηs−
[
2X∗

s−bs + ‖σs‖2
]

[1 + εηs−‖Xs−‖2]2 ds

]

+ E

[∫ τ−

0

2ηs− Xs−

[1 + εηs−‖Xs−‖2]2 dν
c
s

]

+ E

[ ∑
0≤s<τ

{
ηs‖Xs‖2

1 + εηs‖Xs‖2 − ηs−‖Xs−‖2
1 + εηs−‖Xs−‖2

}]
.

(A.6)

We proceed, now, to find suitable estimates for the terms appearing in (A.6).
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Notice that, thanks to conditions (2.4) and (2.5), we have that for some constant
C1

∣∣∣2X∗
s−bs + ‖σs‖2

∣∣∣ ≤ C1(1 + ‖Xs−‖2), P-a.s., s ∈ [0, T ],

Recalling that η is non-negative and that E[ηt ] ≤ 1, for any t ∈ [0, T ], we get

E

[∫ τ−

0

ηs−
[
2X∗

s−bs + ‖σs‖2
]

[1 + εηs−‖Xs−‖2]2 ds

]

≤ C1E

[∫ τ−

0

ηs−(1 + ‖Xs−‖2)
[1 + εηs−‖Xs−‖2]2 ds

]

≤ C1E

[∫ τ−

0
ηs− ds

]
+ C1E

[∫ τ−

0

ηs−‖Xs−‖2
1 + εηs−‖Xs−‖2 ds

]

≤ C1T + C1E

[∫ τ−

0

ηs−‖Xs−‖2
1 + εηs−‖Xs−‖2 ds

]
. (A.7)

Next, we see that

E

[∫ τ−

0

2ηs− Xs−
[1 + εηs−‖Xs−‖2]2 dνcs

]
=

m∑
i=1

E

[∫ τ−

0

2ηs− Xi
s−

[1 + εηs−‖Xs−‖2]2 dνi,cs

]

≤
m∑
i=1

E

[∫ τ−

0

2ηs−|Xi
s−|

[1 + εηs−‖Xs−‖2]2 d|νi,c|s
]

≤
m∑
i=1

E

[∫ τ−

0

ηs− (1 + |Xi
s−|2)

[1 + εηs−‖Xs−‖2]2 d|νi,c|s
]

≤
m∑
i=1

E

[∫ τ−

0
ηs− d|νi,c|s

]

+
m∑
i=1

E

[∫ τ−

0

ηs−‖Xs−‖2
1 + εηs−‖Xs−‖2 d|νi,c|s

]
. (A.8)

Similarly to what we did in the proof of Lemma A.1, let us define

ν̃it :=|νi |t1t<T + K1t≥T , t ≥ 0, i = 1, . . . ,m.

For each i = 1, . . . ,m, ν̃i is aY-adapted, càdlàg, non-decreasing process, with ν̃i0− =
0. Moreover, random measures 1s<τ d|νi |s and 1s<τ dν̃is agree, therefore

E

[∫ τ−

0
ηs− d|νi |s

]
= E

[∫ τ−

0
ηs− dν̃is

]
, i = 1, . . . ,m,
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and, in particular,

E

[∫ τ−

0
ηs− d|νi,c|s

]
= E

[∫ τ−

0
ηs− dν̃i,cs

]
, i = 1, . . . ,m.

Let us define the changes of time Ci
t := inf{s ≥ 0 : ν̃is ≥ t}, for all t ≥ 0 and all

i = 1, . . . ,m. Then, noticing that {Ci
s ≤ t} = {ν̃it ≥ s} and recalling that η is

non-negative and ν̃iT = K , we get

E

[∫ τ−

0
ηs− dν̃i,cs

]
≤ E

[∫ T

0
ηs− dν̃i,cs

]
≤ E

[∫ T

0
ηs− dν̃is

]
= E

[∫ +∞
0

η(Ci
s )

−1Ci
s≤T ds

]

= E

[∫ +∞
0

η(Ci
s )

−1s≤ν̃iT
ds

]
= E

[∫ K

0
η(Ci

s )
− ds

]
=
∫ K

0
E[η(Ci

s )
−] ds.

Since E[ηt ] ≤ 1, for any t ∈ [0, T ], and Ci
s ≤ T , for all s ∈ [0, K ], we get that

E

[∫ τ−

0
ηs− d|νi,c|s

]
= E

[∫ τ−

0
ηs− dν̃i,cs

]
≤ K , i = 1, . . . ,m. (A.9)

Similarly, we obtain also

E

[∫ τ−

0
ηs− d|νi |s

]
= E

[∫ τ−

0
ηs− dν̃is

]
≤ K , i = 1, . . . ,m. (A.10)

Therefore, putting together (A.8) and (A.9) we obtain

E

[∫ τ−

0

2ηs−
[1 + εηs−‖Xs−‖2]2 Xs− dνcs

]
≤ mK +

m∑
i=1

E

[∫ τ−

0

ηs−‖Xs−‖2
1 + εηs−‖Xs−‖2 d|νi,c|s

]

(A.11)

We are left with estimating the last term of (A.6). We have:

E

[ ∑
0≤s<τ

{
ηs‖Xs‖2

1 + εηs‖Xs‖2 − ηs−‖Xs−‖2
1 + εηs−‖Xs−‖2

}]
≤ E

[ ∑
0≤s<τ

{
ηs− (‖Xs‖2 − ‖Xs−‖2)

1 + εηs−‖Xs−‖2
}]

= E

[ ∑
0≤s<τ

{
ηs− (‖
νs‖2 + 2Xs− · 
νs)

1 + εηs−‖Xs−‖2
}]

≤ E

[ ∑
0≤s<τ

m∑
i=1

{
ηs− (|
νis | + 1 + |Xi

s− |2)
1 + εηs−‖Xs−‖2 |
νis |

}]
,

where we used the fact that η is continuous. Since all quantities in the last term are
non negative and |
νis | ≤ K , for all s ∈ [0, T ] and all i = 1, . . . ,m, P-a.s., we get
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that

E

[ ∑
0≤s<τ

m∑
i=1

{
ηs−(|
νis | + 1 + |Xi

s−|2)
1 + εηs−‖Xs−‖2 |
νis |

}]

≤ (1 + K )

m∑
i=1

E

[ ∑
0≤s<τ

ηs−|
νis |
]

+
m∑
i=1

E

[ ∑
0≤s<τ

{
ηs−‖Xs−‖2

1 + εηs−‖Xs−‖2 |
νis |
}]

≤ (1 + K )

m∑
i=1

E

[∫ τ−

0
ηs−d|νi |s

]
+

m∑
i=1

E

[ ∑
0≤s<τ

{
ηs−‖Xs−‖2

1 + εηs−‖Xs−‖2
|νi |s
}]

≤ mK (1 + K ) +
m∑
i=1

E

[ ∑
0≤s<τ

{
ηs−‖Xs−‖2

1 + εηs−‖Xs−‖2
|νi |s
}]

, (A.12)

where we used (A.10) and the fact that |
νi | = 
|νi |.
Therefore, feeding (A.7), (A.11), and (A.12) back into (A.6), we obtain

E

[
ητ−‖Xτ−‖2

1 + εητ−‖Xτ−‖2
]

≤ M

{
1 + E

[∫ τ−

0

ηs−‖Xs−‖2
1 + εηs−‖Xs−‖2 dAs

]}
, (A.13)

where M is a suitable constant, not depending on ε, and A is the process

At :=t +
m∑
i=1

|νi |t , t ∈ [0, T ].

Clearly, A is a càdlàg,Y- (and hence F-) adapted, non-negative process, with A0− = 0

and AT ≤ T +mK . Moreover,
ηt−‖Xt−‖2

1+εηt−‖Xt−‖2 ≤ 1
ε
, for all t ∈ [0, T ], P-a.s. Therefore,

we can apply Lemma A.1 and obtain

E

[
ηt−‖Xt−‖2

1 + εηt−‖Xt−‖2
]

≤ MeM(T+mK ).

Recalling that η is continuous we get, applying Fatou’s lemma,

E[ηt‖Xt−‖2] = E

[
lim
ε→0

ηt‖Xt−‖2
1 + εηt‖Xt−‖2

]
≤ lim inf

ε→0
E

[
ηt‖Xt−‖2

1 + εηt‖Xt−‖2
]

≤ MeM(T+mK ). (A.14)

It is important to stress that (A.14) holds for any t ∈ [0, T ], since t was arbitrarily
chosen.
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Now we can finally obtain that E[ηt ] = 1, for all t ∈ [0, T ]. By Itô’s formula, for
an arbitrarily fixed ε > 0 and all t ∈ [0, T ],

ηt

1 + εηt
= 1

1 + ε
−
∫ t

0

εη2s

(1 + εηs)3
‖γ −1(s)h(s, Xs)‖2 ds

+
∫ t

0

ηs

(1 + εηs)2
γ −1(s)h(s, Xs) dBs .

Thanks to conditions (2.10) and (2.1), standard computations show that the stochastic
integral is a (P,F)-martingale. Therefore, taking the expectation we get

E

[
ηt

1 + εηt

]
= 1

1 + ε
− E

[∫ t

0

εη2s

(1 + εηs)3
‖γ −1(s)h(s, Xs)‖2 ds

]
.

Notice that εη2s
(1+εηs )3

‖γ −1(s)h(s, Xs)‖2 −→ 0, as ε → 0, dP ⊗ dt-a.s. Moreover,

εη2s

(1 + εηs)3
‖γ −1(s)h(s, Xs)‖2 ≤ ηs‖γ −1(s)h(s, Xs)‖2, s ∈ [0, T ],

that, using conditions (2.10) and (2.1), satisfies (see also (A.4))

E

[∫ T

0
ηs‖γ −1(s)h(s, Xs)‖2 ds

]
≤ nChCγE

[∫ T

0
ηs(1 + ‖Xs‖2) ds

]

= nChCγ

{∫ T

0
E[ηs] ds +

∫ T

0
E[ηs‖Xs−‖2] ds

}
≤ nChCγ T [1 + MeM(T+mK )],

where we used the fact that E[ηt ] ≤ 1, for all t ∈ [0, T ], and (A.14). Similarly,
ηt

1+εηt
→ ηt , as ε → 0, dP ⊗ dt-a.s., and E[∫ T

0 ηs ds] ≤ T . Therefore, by the
dominated convergence theorem

E[ηt ] = lim
ε→0

E

[
ηt

1 + εηt

]

= lim
ε→0

{
1

1 + ε
− E

[∫ t

0

εη2s

(1 + εηs)3
‖γ −1(s)h(s, Xs)‖2 ds

]}
= 1,

and this concludes the proof. ��
Proof of Lemma 4.3 Fix ε > 0.To start, let us notice that continuity of process ν implies
that also ζ is continuous and, therefore, ζt = ζt− and Tεζt = Tεζt− , dt ⊗ dP-almost
everywhere.

Since ψ2ε is bounded by (4πε)−m
2 , we get that for all t ∈ [0, T ],

‖Tεζt‖2H =
∫
Rm

[∫
Rm

ψε(x − y) ζt (dx)

]2
dy (A.15)
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=
∫
Rm

∫
Rm

∫
Rm

ψε(x − y)ψε(z − y) ζt (dx) ζt (dz) dy (A.16)

=
∫
Rm

∫
Rm

ψ2ε(x − z) ζt (dx) ζt (dz) ≤ (4πε)−
m
2 ζt (1)2. (A.17)

Taking into account (3.8) and the fact that ν is continuous, the process ζ(1) satisfies

ζt (1) = 1 +
∫ t

0
γ −1(s)ζs(hs) dBs, t ∈ [0, T ],

where ht (·):=h(t, ·), t ∈ [0, T ]. Thanks to Assumption 4.1, ζt (ht ) < +∞, P-a.s., for
all t ∈ [0, T ]. Therefore, since ζt is P-a.s. a finite (non-negative) measure, for any
t ∈ [0, T ], we get that ζ(1) is a non-negative (P,Y)-local martingale, and hence a
(P,Y)-supermartingale.

The next step is to prove that ζ(1) is a square-integrable3 (P,Y)-martingale.We fol-
low, first, a reasoning analogous to that of [5], Lemma 4.3.1 (see also [2], Lemma 3.29)
to provide an explicit representation of ζ(1). By Itô’s formula we obtain, for any δ > 0
and all t ∈ [0, T ],

log
(√

δ + ζt (1)2
)

= log
(√

1 + δ
)

+
∫ t

0

ζs(1)
δ + ζs(1)2

γ −1(s)ζs(hs) dBs

+1

2

∫ t

0

δ − ζs(1)2

[δ + ζs(1)2]2
n∑

i=1

⎛
⎝ n∑

j=1

γ −1
i j (s)ζs(h

j
s )

⎞
⎠

2

ds. (A.18)

Since, thanks to Assumption 4.1 and (A.3),

n∑
i=1

( n∑
j=1

γ −1
i j (t)ζt (h

j
t )

)2

≤ (nCγ Khζt (1))2, P-a.s., ∀t ∈ [0, T ], (A.19)

and δ−ζt (1)2

[δ+ζt (1)2]2 ≤ 1
δ+ζt (1)2

, P-a.s., for all t ∈ [0, T ], we have

ζs(1)2

[δ + ζs(1)2]2
n∑

i=1

⎛
⎝ n∑

j=1

γ −1
i j (t)ζt (h

j
t )

⎞
⎠

2

≤
(
nCγ Kh

ζs(1)2

δ + ζs(1)2

)2

≤ (nCγ Kh)
2, ∀t ∈ [0, T ],

3 If M = (Mt )t∈[0,T ] is any martingale, we say that M is a p-integrable martingale, with p ≥ 1, if
E[supt∈[0,T ]|Mt |p]1/p < +∞.

123



Applied Mathematics & Optimization  _#####################_ Page 41 of 43 _####_

and

δ − ζs(1)2

[δ + ζs(1)2]2
n∑

i=1

⎛
⎝ n∑

j=1

γ −1
i j (s)ζs(h

j
s )

⎞
⎠

2

≤ ζs(1)2

δ + ζs(1)2
(nCγ Kh)

2 ≤ (nCγ Kh)
2, ∀t ∈ [0, T ].

Both the r.h.s. of the last two inequalities are integrable on [0, T ], therefore we can
pass to the limit, as δ → 0, in (A.18), getting that, for all t ∈ [0, T ],

log(ζt (1)) = 1 +
∫ t

0
γ −1(s)ζ 1

s (hs) dBs

−1

2

∫ t

0

n∑
i=1

( n∑
j=1

γ −1
i j (s)ζ 1

s (h j
s )

)2

ds, (A.20)

where ζ 1
t (dx):= ζt (dx)

ζt (1)
, t ∈ [0, T ], is the normalized process associated to ζ . From

(A.20) we get the explicit representation for ζ(1), i.e., for all t ∈ [0, T ],

ζt (1) = exp

{∫ t

0
γ −1(s)ζ 1

s (hs) dBs

−1

2

∫ t

0

n∑
i=1

( n∑
j=1

γ −1
i j (s)ζ 1

s (h j
s )

)2

ds

}
. (A.21)

This entails that ζ(1) coincides with the Doléans-Dade exponential of the continuous
(P,Y)-local martingale

∫ t
0 γ −1(s)ζ 1

s (hs) dBs , t ∈ [0, T ]. Using once more (A.19) we
have that, for any k > 1,

E

[
exp

{
k

2

∫ T

0

n∑
i=1

( n∑
j=1

γ −1
i j (t)ζ 1

t (h j
t )

)2

dt

}]
≤ exp

{
kT (nCγ Kh)

2

2

}
.

Applying [14], Theorem 15.4.6, we get that, for any p > 1, ζ(1) is a p-integrable (in
particular, square-integrable) (P,Y)-martingale. Therefore, from (A.15) we get

E[ sup
t∈[0,T ]

‖Tεζt‖2H ] ≤ (4πε)−
m
2 E[ sup

t∈[0,T ]
ζt (1)2] < +∞,

whence, recalling the remark at the beginning of the proof, the claim. ��
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