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Abstract 

Public Bicycle Sharing System (PBSS) is used as a way to reduce traffic and pollution in cities. Its 

performance is related to availability of bicycles for picking up and free docks to return them. Existence 

of different demand types leads to the emergence of imbalanced stations. Here, we try to balance 

inventory of stations via defining maximal response rates for each type of rental request. If the maximal 

response rate for a destination is lower than 100 percent, a part of the proposed destination requests is 

rejected in the hope of balancing the inventory. The goal is to minimize the mean extra inventory and 

the mean rejected requests by providing proper amounts of the maximal response rates. An 

approximation method named as Mean Value Analysis (MVA) is used to develop a genetic algorithm 

for solving the problem. Different examples are worked through to examine the applicability of the 

proposed method. The results show that the proposed policy leads to a significant improvement and 

reduces the users’ dissatisfaction.   
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1. Introduction 

In recent years, the interest in Public Bicycle Sharing Systems (PBSS) has increased 

extensively due to environmental concerns such as pollution and traffic problems. These 

systems can help us to develop new transit modes for urban areas. Yang et al. (2018) used the 

data corresponding to the public bicycle-sharing systems of Hangzhou and Ningbo in China to 

study how the public bicycle-sharing systems affect the original urban public transport 

networks and showed they could help to reduce the passengers’ trip times. Many researchers 

discussed PBSS problems from different viewpoints. 
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Some of them studied the location of stations and the system fleet size. Lin and Yang (2011) 

studied a model to compute the number of bike stations and their locations. They analyzed 

different parameters of the model to arrive at a more appropriate design of the system. George 

and Xia (2011) computed the fleet size with the goal of maximizing the profit of the system. 

They studied their program as a queuing network model and proposed an approximation 

method for large problems.  Martinez et al. (2012) surveyed the bicycle sharing system of 

Lisbon as an optimization problem to locate the stations and determine the fleet size through a 

Mixed Integer Linear Program (MILP). Correia and Antunes (2012) developed a mixed-integer 

programming model to maximize the profit of the one way car-sharing system. Using their 

model, the authors anticipated 75 possible depot locations for the Lisbon case study. Nair and 

Miller (2014) developed a bi-level mixed-integer program to compute the locations of the 

stations and their capacities considering a budget constraint with the goal of maximizing the 

revenue of the sharing system. Fricker and Gast (2016) studied users’ random choice when 

there is no bike for renting or there is no available spot for returning bikes by defining a 

stochastic model. They computed the fleet size reducing the number of problematic stations.  

Yan et al. (2017) studied four NP-hard models under deterministic and stochastic demands. 

They defined locations of the stations and the fleet size and used a heuristic algorithm for 

solving the stochastic models. Moreover, these models can be considered as a Vehicle Routing 

Problem (VRP) and some papers that have studied VRP models can be introduced as Goli et 

al. (2018), Goli & Davoodi (2018), Tirkolaee et al. (2019), Sangaiah et al. (2019). 

Some researchers studied the fleet size in more details considering the inventory of stations. 

Raviv and Kolka (2013) developed a model for calculating the initial inventory level of the 

bicycles with the aim to minimize the customer dissatisfaction. Users are dissatisfied when 

they face shortage of bicycles or shortage of vacant lockers. Jian et al. (2016) studied the New 

York Citi Bike system in determining the bike and dock allocations of the stations aiming to 

minimize the number of bike shortages for renting and dock shortages for returning bikes. They 

used heuristic methods based on simulation to solve the model. 

In public bicycle sharing systems, because of various demand rates for different destinations, 

after a while the system may face imbalanced stations. In other words, users may face bike 

shortages for renting or dock shortages for returning the bicycles. There are concerned with 

rebalancing the stations by repositioning the bicycles. Static rebalancing bicycle problems 

(SRBP) were developed to rebalance stations during idle times. On the other hand, dynamic 

rebalancing problems (DRBP) were developed to reposition bicycles when the system is active. 

Erdogan et al. (2014) developed a model for the static case considering lower and upper bounds 

for inventory of the stations. They defined a single vehicle for delivering the bicycles between 

stations for rebalancing. A branch and cut algorithm was used to solve the integer programming 

model. Kadri et al. (2016) studied a static rebalancing problem in which each station was visited 

only once by the vehicle. Their model aimed to find the schedule of the vehicle so that the total 

waiting time in the disequilibrium situation was minimized. Bulhões et al. (2018) presented a 

model for the static case considering multiple vehicles with identical capacities and service 

time limits. Other works concerned with static rebalancing problems include Nair and Miller 

(2011), Raviv et al. (2013), Dell'Amico et al. (2014) and Valdes et al. (2016).  

Pfrommer et al. (2014) defined a dynamic system, encouraging users to park rented bikes at 

nearby under-used stations to minimize the cost of repositioning bikes by the staff. They used 

the model for London’s Barclays Cycle Hire scheme. 
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Regue and Recker (2014) presented an approach for repositioning with the goal of preventing 

unbalanced stations. They presented their model based on four core models including demand 

forecasting, station inventory, redistribution needs and a vehicle-routing model. Zhang et al. 

(2017) discussed their dynamic model by forecasting inventory levels and user arrivals for 

repositioning bicycles. They evaluated their mixed-integer model using a heuristic algorithm. 

Other researchers like Contardo et al. (2012), Chemla et al. (2013) and Ghosh and Varakantham 

(2017) also considered the dynamic case in their models. 

There are various types of Public Bicycle Sharing Systems in the world and this paper discuses 

a model in which the customers predefine their destinations before renting the bikes using an 

application in the station. The goal of this manuscript is rejecting a part of requests to minimize 

the objective function which includes the total number of rejected demands. So, the proposed 

model tries to balance the inventory of the system by controlling the demands without using 

any extra vehicles to move the surplus bicycles.  

Here, we are to use a proactive scenario to balance the stations. By preventing and rejecting 

demands for some destinations, the system may get the opportunity to reduce problematic 

stations such as stations having low inventories and fulfilled stations. The proposed policy will 

be enforced through defining response rates. Of course, having a more balanced inventory 

system helps to reduce the cost of repositioning. The objective function contains two parts in 

which the first one is the mean of the rejected demands due to the lack of available bikes for 

renting based on predefined response rates. The second part is defined as the mean users 

waiting for a vacant dock to return bikes. In the next section, the mathematical model is 

described and formulated. A genetic algorithm (GA) considering the mean value analysis 

(MVA) method will be proposed to solve the model in Section 3. Finally, numerical examples 

are worked through to illustrate the applicability of the proposed method. 

2. Model description 

Consider a bicycle sharing system in which users are allowed to rent bicycles from any 

available station and return them back to a destination station after a short travel. A customer 

arrives at station i following a Poisson process with the rate 𝛾𝑖 and requests a bike to destination 

j with probability 𝑟𝑖𝑗. The customer’s trip lasts according to an exponential distribution with 

rate 𝛽𝑙in which l is the node defined for the route from station i to station j. If the maximum 

response rate of the proposed destination is 𝑟′𝑖𝑗, then the request is rejected with probability 

(1 − 𝑟′𝑖𝑗) . In this case, the user leaves station i without receiving a service. In other 

words, 𝑟′𝑖𝑗𝑟𝑖𝑗𝛾𝑖 is considered as the new request rate for the proposed destination. Obviously, 

response rates are meaningful when station i is not empty and there is at least one bicycle for 

renting. Otherwise, customer leaves station i with probability 1. Stations have specified 

capacities and when a customer arrives at her destination, she should park the bicycle at a 

vacant dock and if there is no empty dock, she must wait until a dock becomes available. 

Response rates are used to control the inventory levels of different stations with the goal of 

balancing the system during the day as much as possible without using trucks for picking up 

and transferring bikes from overloaded stations to the ones with low inventories. The objective 

is to find the proper response rates to minimize the mean number of rejected renting requests 

and the mean number of customers waiting for vacant docks. The mathematical model will be 

described using the notation given in the following subsection. 
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2.1. Parameters 

Parameters, indices and decision variables are defined as follows. 

2.1.1. Indices and parameters 

𝑆: Set of station nodes (nodes of the Jackson Network with finite servers) 

𝐾: Number of stations 

𝐼: Set of route nodes (nodes of the Jackson Network with infinite servers) in which each route 

is shown as combination of two stations ((
𝐾
2
) nodes) 

𝑅: Set of nodes (𝑅 = 𝐼 ∪ 𝑆) 

𝑁: Total number of nodes (N=K+(
𝐾
2
)) 

𝑖, 𝑗, 𝑙: Indices of set R with i=1,2,3,…,K showing the bicycle stations, i=K+1,K+2,…,K+(K−1) 

showing routes from station 1 to stations 2,3,...,K, respectively, continuing up to 

i=K+(K−1)2+1, K+(K−1)2+2, …, K+(K−1)2+(K−1) showing routes from station K to 

stations 1,2,..,K−1, respectively 

𝑛𝑖: Number of available bicycles at node i (𝑖 ∈ 𝑅) 

�̅�: Components vector for describing each state shown as (𝑛1, 𝑛2, … , 𝑛𝑁) 

𝜋(𝑛𝑖): Probability of presence of ni bicycles at station i in the steady state (the state of the 

system after it has been in operation a long time) 

𝜋𝑖(𝑛𝑖, 𝑡): The probability of presence of ni bicycles at station i in the steady state when the fleet 

size equals t 

𝑟𝑖𝑗: Probability of requesting a bike from station i to station j (𝑖, 𝑗 ∈ 𝑆) 

𝑝𝑖𝑙: Elements of the route matrix P 

𝑝′𝑖𝑙: Elements of the second route matrix P' 

𝐹: Maximum capacity of the system, that is, 𝐹 = ∑ 𝑠′𝑖∀𝑖∈𝑆  

𝛾𝑖: Mean of requests for renting bike in station i (𝑖 ∈ 𝑆) 

𝛽𝑖: Rate in an exponential distribution in which  
1

𝛽𝑖
 is the mean time for each bike to finish route 

i (𝑖 ∈ 𝐼) 

𝑐𝑖: Number of servers at node i; 𝑐𝑖 = 1, ∀𝑖 ∈ 𝑆 and 𝑐𝑖 = 𝐹, ∀ 𝑖 ∈ 𝐼 

𝜇𝑖: Service rate at node i; 𝜇𝑖 = {
𝐹𝛽𝑖,          for 𝑖𝜖𝐼 
𝛾𝑖,         for 𝑖 ∈ 𝑆

   

𝜆𝑖: Total mean flow rate into node i (𝑖 ∈ 𝑅) 

𝜆𝑖(𝑡): Total mean flow rate into node i when the fleet size equals t (𝑖 ∈ 𝑅) 

𝐿𝑖: Expected number of bikes at node i (𝑖 ∈ 𝑅)
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𝐿𝑖(𝑡): Expected number of bikes at node i when the fleet size equals t (𝑖 ∈ 𝑅) 

𝑊𝑖: The mean waiting time at node i (𝑖 ∈ 𝑅) 

𝑊𝑖(𝑡): Mean waiting time at node i when the fleet size equals t (𝑖 ∈ 𝑅) 

𝑠𝑖: Number of stocks at station i (the capacity of station i); (𝑖 ∈ 𝑆). 

2.1.2. Decision variables 

𝑟′𝑖𝑗: Response rate for renting a bike from station i to station j.  (1 − 𝑟′
𝑖𝑗) is the probability of 

rejecting a request in station i for going to station j (𝑖, 𝑗 ∈ 𝑆). 

2.2. Network analysis 

As there is a finite number of bicycles traveling between the stations, viewing the system from 

a bicycle perspective, a closed network system can be defined for the model. In this case, the 

network includes two groups of nodes. The first group contains rental stations and customer 

arrivals are considered as a virtual service. The second group consists of routes between the 

rental stations and the traveling time is interpreted as a virtual service. The number of servers 

at rental stations and routes are considered to be 1 and F, respectively. As the maximum number 

of bikes in the system equals F, the number of servers for the infinite server nodes is defined 

to be F. Figure 1 indicates the inputs and outputs of node 1 and their probabilities to show the 

relations between nodes of a network. Considering the response rates, the network relationships 

are accordingly depicted in Figure 2. 

 

Figure 1. Inputs and outputs of node 1 without response rates to show the relations between nodes of the network 

To obtain the matrix P, the following procedure is used note that "[ ]" is the symbol used for 

integral part and 𝑖, 𝑗 ∈ 𝑆 and  𝑙 ∈ 𝐼. This procedure calculates the probabilities of moving a bike 

between various nodes of the network including route nodes and station nodes. As an instance, 

the probability of moving a bicycle from one route node to another route node equals zero. 
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The probability of transferring a bicycle from station node i to the route node which is related 

to traveling from station i to station j equals rij. Finally, the probability of moving a bike from 

the proposed route station to station node j equals 1. 

For i=1:K   do 

For l=K+1:K+K(K−1)   do 

For j=1:K    do 

If    𝑙 = 𝐾 + (𝑖 − 1)(𝐾 − 1) + 𝑗 − 1  Or 𝑙 = 𝐾 + (𝑖 − 1)(𝐾 − 1) + 𝑗 Then     

     𝑝𝑖𝑙 = 𝑟𝑖𝑗      

End if 

 If  𝑖 = 𝑙 − 𝐾 − (𝐾 − 1) [
𝑙−𝐾−1

𝐾−1
]  &  𝑖 < [

𝑙−𝐾−1

𝐾−1
] + 1 Then     

     𝑝𝑙𝑖 = 1 

 Else If   𝑖 = 𝑙 − 𝐾 − (𝐾 − 1) [
𝑙−𝐾−1

𝐾−1
]  &  𝑖 ≥ [

𝑙−𝐾−1

𝐾−1
] + 1  Then     

        𝑝𝑙,𝑖+1 = 1              

Else       𝑝𝑖𝑙 = 0 

End if 

End do 

End do 

End do 

 

Figure 2. Inputs and outputs of node 1 considering response rates to show the relations between nodes of the network 

 

Next, to obtain the matrix P', the following procedure is used:
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For i=1:K   do 

For l=K+1:K+K(K−1)   do 

For j=1:K   do 

If    𝑙 = 𝐾 + (𝑖 − 1)(𝐾 − 1) + 𝑗 − 1 Or 𝑙 = 𝐾 + (𝑖 − 1)(𝐾 − 1) + 𝑗  Then 

       𝑝′𝑖𝑙 = 𝑟′
𝑖𝑗         

End if 

If   𝑖 = 𝑙 − 𝐾 − (𝐾 − 1) [
𝑙−𝐾−1

𝐾−1
]  &  𝑖 < [

𝑙−𝐾−1

𝐾−1
] + 1  Then     

      𝑝′𝑙𝑖 = 1 

Else If   𝑖 = 𝑙 − 𝐾 − (𝐾 − 1) [
𝑙−𝐾−1

𝐾−1
]    𝑖 ≥ [

𝑙−𝐾−1

𝐾−1
] + 1  Then     

             𝑝′𝑙,𝑖+1 = 1              

Else If   i=l & 𝑖 ∈ 𝑆    Then     

             𝑝′𝑖𝑙 = 1 − ∑ 𝑝′𝑖𝑗∀𝑗,𝑗≠𝑖  

Else      𝑝′𝑖𝑙 = 0 

End if 

End do 

End do 

End do 

                  . 

Table 1 defines different possible states and Figure 3 shows the rate transition diagram to 

depict the relations between the states. 

Table 1. State descriptions 

State Simplified Notation 

(𝒏𝟏, 𝒏𝟐, … , 𝒏𝒊, 𝒏𝒋, … , 𝒏𝒘+𝑲) �̅� 

(𝒏𝟏, 𝒏𝟐, … , 𝒏𝒊 + 𝟏, 𝒏𝒋 − 𝟏,… , 𝒏𝒘+𝑲) �̅�; 𝑖+, 𝑗− 

 

 

Figure 3. Rate transition diagram which shows the relations between the states 

The rate of requests in station i for going to station j is𝑟′𝑖𝑗𝑟𝑖𝑗𝛾𝑖 (𝑖, 𝑗 ∈ 𝑆). As long as the 

inventory of station i equals zero, all of its requests are rejected. Otherwise, requests in station 

i for destination j are responded with probability𝑟′𝑖𝑗. In other words, when there is at least one 

bike for renting at the original station i, then requests from station i to station j are rejected with 

probability(1 − 𝑟′𝑖𝑗). This policy is defined to manage the inventory of the system with the 

goal of minimizing dissatisfaction by reducing the number of stations having lack of inventory 

and fulfilled stations. Although some renting requests are rejected, lack of empty docks for 

returning bicycles gets reduced and the overall response to the requests is expected to increase. 

Response rates lead to sending bikes to stations with high levels of requests by rejecting and 

reducing requests of other destinations. 
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2.3. Objective function 

According to our indications in the previous section, the objective function can be written as 

follows: 

Min    ∑ ∑ (𝑛𝑖 − 𝑠𝑖) 𝜋(𝑛𝑖) + ∑ ∑ 𝛾𝑖𝑝′𝑖𝑗 𝜋(𝑛𝑖 = 0) + ∑ 𝛾𝑖𝑝′𝑖𝑖𝑖∈𝑆𝑗∈𝐼  𝜋(𝑛𝑖 ≥ 1)𝑖∈𝑆
𝐹
𝑛𝑖=𝑠𝑖𝑖∈𝑆 ,       

(1) 

Where it is to minimize the mean amount of inventory being more than the capacity of stations 

plus the mean number of requests that are denied in the steady state. The first term gives the 

mean number of bicycles having to wait for vacant docks, and the second term gives the mean 

number of requests not being satisfied because the inventory level of the station equals zero 

and the third term defines the mean number of requests not being satisfied when requests are 

rejected according to the response rates.   

3. Solution method 

PBSS models which are developed for determining the fleet size of the system based on a 

queueing network, are known as high complicacy models due to being categorized as an NP-

hard problem. So, in this paper a meta-heuristic algorithm is developed to solve the proposed 

model. The Mean Value Analysis (MVA) is an appropriate approximation method for solving 

closed queuing networks. A description of this method can be found in Bruell and Balbo 

(1980). Here, we develop a genetic algorithm in which MVA is used for fitness calculations. 

The chromosome is defined as follows to show the response rates for different destinations: 

𝑪𝒉𝒓𝒐𝒎𝒐𝒔𝒐𝒎𝒆:     [

𝒓′𝟏𝟐  𝒓′𝟏𝟑   …    𝒓′𝟏𝑲

𝒓′𝟐𝟏   𝒓′𝟐𝟑   …     𝒓′𝟐𝑲… …      …
𝒓′𝑲𝟏 𝒓′𝑲𝟐   … 𝒓′𝑲,𝑲−𝟏

] , 

Where each row contains the response rates of the corresponding route from an original 

station to all other possible destinations. More specifically, the first row shows the response 

rates for destinations starting from the first station (node 1) to 𝐾 − 1 other possible stations 

(nodes:𝐾 + 1,𝐾 + 2,… , 𝐾 + 𝐾 − 1) and the last row shows the response rates for 

destinations which start from the last station (node K) to 𝐾 − 1 possible destination (nodes: 

𝐾 + (𝐾 − 1)2 + 1,… , 𝐾 + (𝐾 − 1)2 + 2,… , 𝐾 + (𝐾 − 1)2 + 𝐾 − 1). 

The steps of our proposed genetic algorithm can now be described as follows: 

Produce the initial population randomly according to the chromosome structure specified 

above. 

Set iteration number to 1 (It=1). 

Calculate P and P' for each chromosome according to the procedures given in Section 2.2. 

{Calculate the amount of fitness for each chromosome using the MVA method} 

Solve weighted traffic equation 𝜐𝑗 = ∑ 𝜐𝑖𝑝
′
𝑖𝑗

𝑁
𝑖=1 (𝑖, 𝑗 ∈ 𝑅), where 𝜐𝑖 =

𝜆𝑖

𝜆𝑙
 (𝜐𝑙 is normalized 

and is equal to 1 and l is selected from the set R)
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 For i=1:N   do 

𝐿𝑖(0) = 0 

𝜋𝑖(0,0) = 1 

𝜋𝑖(𝑛𝑖, 0) = 0  ;  𝑛𝑖 ≠ 0 
End do 

 For t=1:F   do 

                  For i=1:K   do 

𝑊𝑖(𝑡) =
1

𝑐𝑖𝜇𝑖
(1 + 𝐿𝑖(𝑡 − 1) + ∑ (𝑐𝑖 − 1 − 𝑛𝑖)𝜋𝑖(𝑛𝑖, 𝑡 − 1)

𝑐𝑖−2

𝑛𝑖=0

)   

; 𝑐𝑖 = 𝐹(∀𝑖 ∈ 𝐼)  𝑎𝑛𝑑  𝑐𝑖 = 1(∀𝑖 ∈ 𝑆)  

𝜆𝑙(𝑡) =
𝑡

∑ 𝜗𝑖𝑊𝑖(𝑡)
𝑁
𝑖=1

  

𝜆𝑖(𝑡) = 𝜆𝑙(𝑡)𝜗𝑖   ;  𝑖 ≠ 𝑙 
𝐿𝑖(𝑡) = 𝜆𝑖(𝑡)𝑊𝑖(𝑡) 

For  𝑛𝑖 = 1: 𝑡   do 

𝜋𝑖(𝑛𝑖, 𝑡) =
𝜆𝑖(𝑡)

𝜇𝑖𝑎𝑖(𝑛𝑖)
𝜋𝑖(𝑛𝑖 − 1, 𝑡 − 1) ; 𝑎𝑖(𝑛𝑖) = {

𝑛𝑖,   𝑛𝑖 ≤ 𝑐𝑖

𝑐𝑖 ,   𝑛𝑖 ≥ 𝑐𝑖
 

End do 

                           End do 

                         End do 

 

{Develop a new population} 

 Crossover operation: a random crossover mask is used to determine which components of 

the parents can be selected for generating the new chromosomes. The number of the new 

generated chromosomes is defined according to the crossover percentage. Figure 4 shows an 

example of the crossover operation. 

𝑷𝒂𝒓𝒆𝒏𝒕𝒔:         

[
 
 
 
𝒓′𝟏𝟐 𝒓′𝟏𝟑  𝒓′𝟏𝟒

𝒓′𝟐𝟏 𝒓′𝟐𝟑  𝒓′𝟐𝟒

𝒓′𝟑𝟏 𝒓′𝟑𝟐  𝒓′𝟑𝟒

𝒓′𝟒𝟏 𝒓′𝟒𝟐  𝒓′𝟒𝟑]
 
 
 

                    ,                     

[
 
 
 
𝒓′′𝟏𝟐 𝒓′′𝟏𝟑  𝒓′′𝟏𝟒

𝒓′′𝟐𝟏 𝒓′′𝟐𝟑  𝒓′′𝟐𝟒

𝒓′′𝟑𝟏 𝒓′′𝟑𝟐  𝒓′′𝟑𝟒

𝒓′′𝟒𝟏 𝒓′′𝟒𝟐  𝒓′′𝟒𝟑]
 
 
 

    

𝑹𝒂𝒏𝒅𝒐𝒎 𝒄𝒓𝒐𝒔𝒔𝒐𝒗𝒆𝒓 𝒎𝒂𝒔𝒌: [

𝟏 𝟎  𝟏
𝟏 𝟎  𝟎
𝟎 𝟏  𝟎
𝟏 𝟏  𝟏

] 

𝑶𝒇𝒇𝒔𝒑𝒓𝒊𝒏𝒈:     

[
 
 
 
𝒓′𝟏𝟐 𝒓′′𝟏𝟑  𝒓′𝟏𝟒

𝒓′𝟐𝟏 𝒓′′𝟐𝟑  𝒓′′𝟐𝟒

𝒓′′𝟑𝟏 𝒓′𝟑𝟐  𝒓′′𝟑𝟒

𝒓′𝟒𝟏 𝒓′𝟒𝟐  𝒓′𝟒𝟑 ]
 
 
 

                ,               

[
 
 
 
𝒓′′𝟏𝟐 𝒓′𝟏𝟑  𝒓′′𝟏𝟒

𝒓′′𝟐𝟏 𝒓′𝟐𝟑  𝒓′𝟐𝟒

𝒓′𝟑𝟏 𝒓′′𝟑𝟐  𝒓′𝟑𝟒

𝒓′′𝟒𝟏 𝒓′′𝟒𝟐  𝒓′′𝟒𝟑]
 
 
 

  

Figure 4. An example for crossover operation based on step 5.1 (K=4, number of nodes in network is equal to 16). 

Mutation operation: a random vector is generated and the elements of the selected 

chromosome whose corresponding elements in the random vector are less than the mutation 

percentage are regenerated. Figure 5 shows an example of the mutation operation. 

Elitism operation: the best chromosomes of current population is sent to the next population 

considering the elitism percentage.
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If the It is less than a pre-specified maximum number (MaxIt), let It=It+1 and go to step 3, 

else go to step 7. 

Select the best chromosome of the final population as the final solution. 

𝑺𝒆𝒍𝒆𝒄𝒕𝒆𝒅 𝒄𝒉𝒓𝒐𝒎𝒐𝒔𝒐𝒎𝒆: 

[
 
 
 
𝒓′𝟏𝟐 𝒓′𝟏𝟑  𝒓′𝟏𝟒

𝒓′𝟐𝟏 𝒓′𝟐𝟑  𝒓′𝟐𝟒

𝒓′𝟑𝟏 𝒓′𝟑𝟐  𝒓′𝟑𝟒

𝒓′𝟒𝟏 𝒓′𝟒𝟐  𝒓′𝟒𝟑]
 
 
 

       𝑹𝒂𝒏𝒅𝒐𝒎 𝒎𝒂𝒕𝒓𝒊𝒙: [

0.004 0.1  0.35
0.003 0.86  0.023
0.76 0.056  0.012
0.45 0.034  0.08

]   

𝑶𝒇𝒇𝒔𝒑𝒓𝒊𝒏𝒈: 

[
 
 
 
𝒓′′𝟏𝟐 𝒓′𝟏𝟑  𝒓′𝟏𝟒

𝒓′′𝟐𝟏 𝒓′𝟐𝟑  𝒓′′𝟐𝟒

𝒓′𝟑𝟏 𝒓′𝟑𝟐  𝒓′′𝟑𝟒

𝒓′𝟒𝟏 𝒓′′𝟒𝟐  𝒓′𝟒𝟑 ]
 
 
 

      

Figure 5. An example for mutation operation considering 0.05 for mutation percentage based on step 5.2 

(K=4, and the number of nodes in the network is equal to 16). 

All the parameters of the proposed genetic algorithm are tuned using the Taguchi method (see 

Byme and Taguchi, 1987) and the tuned amounts for crossover percentage, mutation 

percentage and population size are obtained to be 0.85, 0.005 and 131, respectively. Figure 6 

shows the proposed genetic algorithm. 

 

Figure 6. The proposed Genetic Algorithm 
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4. Numerical examples 

Consider a small bicycle sharing system with 3 stations having arrival rates 47, 24 and 32 units 

per hour, respectively. To explain it in the form of a Jackson network, 6 more nodes are required 

to be defined as route nodes. User who arrives at station 1 rents a bicycle to go to station 2 with 

probability 0.3 and to station 3 with probability 0.7. Other probabilities of renting bikes from 

station 2 to stations 1 and 3, station 3 to stations 1 and 2 are 0.4, 0.6, 0.2 and 0.8, respectively. 

The route matrix is as follows: 

 

Each station contains 18 docks. The time required for traveling each route follows on 

exponential distribution with rates 10, 12, 8, 14, 5 and 8 for nodes 4 through 9, respectively. 

As the fleet size is equal to 54, service rates can be defined as the following vector for nodes 1 

to 9: 

𝜇 = [47  24  32  540  648  432  756 270  432].  

The problem was solved by the MVA method and the objective function value was obtained 

66.5307, the mean number of rejected requests was 39.9303 and the mean number of users 

waiting for vacant docks was 26.6003. After tuning the parameters of the proposed GA by the 

Taguchi method, crossover percentage, mutation percentage and population size were obtained 

to be 0.85, 0.005 and 131, respectively. Using the proposed GA, the objective function value 

is 48.3033 which means that the sum of the mean number of rejected renting requests and the 

mean number of users waiting for parking bikes is reduced about 18.2274 units at the steady 

state. The mean number of users waiting and rejected renting demands were 13.6876 and 

34.6156, respectively. The following chromosome shows the final solution: 

𝐺𝐴 𝐹𝑖𝑛𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛:     [
0.012     0.521
1                      1
1             0.934

].  

Therefore, the matrix P' is:  



Balancing public bicycle sharing system by defining response rates for destinations 

 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.7, No.1  Page 30 

Figure 7 shows how the response rates have changed the elements of the route matrix for each 

station. As an instance, by rejecting 98.8 percent of the requests from station 1 to station 2, 

47.9 percent of the requests from station 1 to station 3 and 6.6 percent of the demands from 

station 3 to station 2, the system’s total mean number of rejected requests and its total mean 

number of lack of vacant docks for returning bikes are improved in the steady state. Table 2 

shows the objective function values of the problem before and after implementing the response 

rates. Although the system is rejecting some demands according to predefined response rates, 

it could reduce the total mean number of unsatisfied users in the steady state.   

 

Figure 7. Change of the probabilities for different routes after exerting new policy for routes ij 

(Station i to station j) 

For more description, as it is depicted in figure 7, for traveling from station 1 to station 2, the 

primary probability of sending a bike from station 1 to station 2 is 0.3 and 98.8 percent of the 

requests for this route will be rejected. So, the rejecting probability which here means the 

probability of sending a bike from station 1 to itself (rejecting the demand) can be calculated 

as 0.3×0.988 which equals 0.2964 and the revised probability is 0.0036 which is the new 

probability of sending a bike from station 1 to station 2. 

Table 2. Comparing the results obtained by GA with the ones obtained by the general condition (MVA) 

for the 3 stations example in the steady state 

 MVA 

(General 

Condition) 

GA 

(Considering 

response rates) 

Improvement 

compared to the 

general condition 

Mean number of rejected requests 39.9303 34.6156 5.3147 

Mean number of users waiting 26.6003 13.6876 12.9127 

Objective function value 66.5307 48.3033 18.2274 

Mean number of satisfied renting 

requests 
63.0697 68.3844 5.3147 
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It should be noted that by increasing the number of stations, complexity of the system increases 

and the proposed GA is more efficient in reducing the number of dissatisfied users.  Table 3 

gives a summary of different numerical examples considering various fleet sizes. We can 

clearly observe the effectiveness of GA in all the examples.  

To define a systematic rule for rejecting demands based on response rates, users can be 

categorized in different classes according to various indices such as Recency, Frequency and 

Neighborhood. Each customer has a membership code and can be recognized via a cell phone 

or a smart card. After grouping users in different classes, the percentage of applicants for each 

station can be obtained considering different classes of users. For instance, consider that users 

of station 1 are categorized into five groups with group 1 through 5 respectively having 5, 10, 

25, 32 and 28 percentage of the total users. Entrance of different classes is random and the 

response rate for renting a bike in station 1 for going to station 3 is 52.1 percent. Then, the 

requests of this route in station 1 are only satisfied for classes 1 to 3 and 12.1 percent of the 

fourth class. Other renting requests in station 1 for going to station 3 are rejected. 

Table 3. Random examples 

Example 

Number 

of 

stations 

Fitness of MVA 

(General 

Condition) 

Fitness of 

GA 

(Considering 

response 

rates) 

Improvement 

compared to 

the general 

condition 

1 3 130 119 11 

2 6 302 268 34 

3 8 511 376 135 

4 10 656 487 169 

5 12 886 613 273 

6 18 1189 886 303 

7 22 1768 1567 201 

8 25 1154 885 269 

9 28 1322 976 346 

10 30 1562 1223 339 

 

5. Conclusion 

We introduced response rates with the goal of balancing the inventory of a public bicycle 

sharing system. The policy was to reject some parts of different renting requests to avoid 

sending bicycles to destinations lacking vacant docks and saving bikes for destinations having 

low inventories. Although some parts of renting requests were rejected by the system, the 

inventories of stations were balanced so that the total sum of the mean number of rejected 

requests and the mean number of users waiting for empty docks were reduced in the steady 

state. Using the Mean Value Analysis method, a genetic algorithm was developed for solving 

the problem and obtaining proper response rates. After tuning parameters of the proposed 

algorithm by the Taguchi method, different numerical examples were solved. The results 

showed the proposed policy to be effective for improving the operation of the public bicycle 

sharing system and reducing the users’ dissatisfaction.  The model can be extended considering 

the fleet size and the capacities of the stations as decision variables. 
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