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Abstract. In this paper, the optimal lot size for batches with exchangeable imperfect
items is derived where the delay time for the exchange process depends on the quantity of
imperfect items. This delay in exchange may or may not lead into shortage. The initial
received lot is 100% screened. After the screening process, an order to exchange defective
products takes place. The imperfect items are held in buyer's warehouse until the arrival
of the exchange lot from the supplier for which, after another 100% screening process,
imperfect items are sold at a lower price in a single batch. Two possible situations in
which 1) there will not be any shortage, and 2) there will be a shortage that is ful�lled
before the end of the replenishment cycle, are investigated. Proper mathematical models
are developed and closed-form formulae are derived. Numerical examples are provided not
only to demonstrate application of the proposed model, but also to analyze and compare
the results obtained employing the proposed model and the ones gained using the classical
economic order quantity model.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Determining the optimal order quantity of a product is
a well-known problem investigated by many researchers
in production planning and inventory control, where
di�erent assumptions are made to adapt lot sizing
formulae in di�erent real-world conditions. Imper-
fect, nonconforming, or defective items are inevitable
to exist in most of the received batches because of
unreliable supply processes. Rosenblat and Lee [1],
and Salameh and Jaber [2] were among the �rst
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who used the assumption of existing imperfect quality
items in an Economic Production Quantity (EPQ)
model. Then, Cardenas-Barron [3] corrected their
model. Moreover, Goyal and Cardenas-Barron [4]
used a practical approach for determining the optimal
EPQ with imperfect items. Yoo et al. [5] proposed
a pro�t-maximizing EPQ model that incorporated
both imperfect production and a two-way imperfect
inspection.

Wee et al. [6] considered the existence of imperfect
items in the arrived batches of a lot-sizing problem.
In their model, items were screened at a constant
rate and imperfect items were sold at a lower price.
Another assumption of Wee et al.'s model was the
occurrence of shortages. Chang and Ho [7] showed that
the quantities of optimal order and optimal shortage in
Wee et al.'s model could be obtained simultaneously.
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Hsu and Hsu [8] corrected a aw in Wee et al.'s model
in which unscreened lots, that may contain imperfect
items, ful�lled the shortage. Tai [9] extended Hsu and
Hsu's [8] model considering two warehouses and multi-
screening processes. Moreover, Taleizadeh et al. [10]
proposed a non-deterministic EPQ model for a limited
capacity production system in which the defective-
rate followed either a uniform or a normal probability
distribution.

Kevin Hsu and Yu [11] presented an Economic
Order Quantity (EOQ) model with imperfect items in
which the supplier o�ered a one-time only discount
o�er. Maddah and Jaber [12] recti�ed a mistake
in Salameh and Jaber's research [2] and presented
an EOQ model for imperfect quality items without
shortage. Further, Jaber et al. [13] extended Salameh
and Jaber's [2] model by assuming reduction in the
fraction of imperfect items based on a learning curve.
Khan et al. [14] extended Jaber et al.'s [13] model in
two conditions of lost sales and backorders. A further
extension is due to Wahab and Jaber [15], in which
Salameh and Jaber [2], Maddah and Jaber [12], and
Jaber et al.'s [13] models were extended to include
two di�erent holding costs being charged for defective
and perfect items. Konstantras et al. [16] studied
the e�ect of shortage in an EOQ model with learning
in inspection. Khan et al. [17] investigated another
EOQ model for imperfect quality items in which there
were errors in inspections. In their work, in order
not to confront shortage, sale-returns that were added
to actual demands were equal to perfect screened out
items at maximum. Hsu and Hsu [18] presented a
modi�ed model of Khan et al. [17] where inshortage
was allowed and backordered.

In all the research performed so far on the topic
of imperfect quality items, there are four scenarios
for imperfect quality items after being screened out of
receiving lots. They are:

1. Imperfect items are sold at a lower price;
2. Imperfect items are returned to the supplier;
3. They can be reworked; and
4. They can be purged from the inventory system.

Here, in this research, it is assumed that imperfect
items are exchanged with a new lot from the supplier at
no charge with the quantity equal to imperfect quality
items found just for one time in each cycle. Besides,
since ordering the exchange requires knowledge of the
exact number of imperfect quality items, the time
the supplier needs to provide them depend on the
exchanged quantity.

This research is another extension to Maddah and
Jabber's model [12], in which not only shortage is
allowed, but also imperfect items are not sold exactly
after the screening process. Instead, they are sent back

to the supplier due to his/her commitment for one-
time exchange of imperfect items. Then, when all the
arriving exchanged items are screened, the batch of
imperfect items (that are screened out in the second
inspection process) is sold at a lower price exactly
after the screening process terminates. The exchange
process takes some time depending on the quantity
of the imperfect items found. Besides, based on the
number of defective items found and their required
production time, the supplier may or may not be able
to replenish the buyer on time, i.e. shortage may or
may not happen. This results in investigating the
problem in two cases of with shortage and without
shortage. The aim is to determine the optimal order
quantity in two cases of with shortage and without
shortage.

In Section 2, the problem is de�ned and the
parameters are introduced. In Section 3, two models
are developed for the two possible cases of with and
without shortage. Numerical examples are provided in
Section 4 to demonstrate applicability of the deriva-
tions and to compare the solutions with the ones of the
traditional EOQ model.

2. Problem de�nition

Consider a buyer who orders a quantity of Q items
to a supplier. The batch, delivered by the supplier,
contains a portion p of imperfect quality items, a
random variable that follows a certain probability
distribution. Based on an exchange agreement between
the buyer and the supplier, the supplier assures an
exchange of imperfect items once in each cycle. As
a result, the delivered batches are 100% inspected by
the buyer and the imperfect items are screened out.
Consequently, an order to exchange imperfect items
is placed by the buyer. The supplier begins to make
new products right after �nding out the quantity of
imperfect items and replenishes the buyer with an
inevitable delay to produce required items. This delay
in exchange may cause a shortage in buyer's inventory.
When producing all required exchangeable items is
�nished, the exchanging lot will be delivered to the
buyer. The supplier exchanges the imperfect items
with the newly produced ones at the exchange time
(right after �nishing production of the new items).
In this way, the supplier's transportation vehicle is
sent to the buyer just one time in each cycle; it
delivers new items and takes the imperfect items
back to supplier's facility to reduce transportation
cost. This means the buyer should maintain the
imperfect items in his/her warehouse until the ex-
change time. The exchanged batch contains the same
portion of imperfect quality items where it is 100%
inspected by the buyer, once again. However, this
time, the imperfect items that are screened out are
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not returned to the supplier and are sold at a lower
price.

In the next subsections, the parameters and the
decision variable required to model the problem are
de�ned.

2.1. Decision variable
The only decision variable of the mathematical formu-
lation is:
Q Order size of the product.

2.2. Parameters
D The demand rate;
x The screening rate, x � D;
c The purchasing cost per unit;
K The ordering cost per order;
p The defective percentage in Q (it

follows a uniform distribution in [0; �],
where 0 � � < 1);

f(p) The probability distribution function
of p;

s The selling price per unit;
V Salvage value per defective item,

V < c;
y The supplier's production rate;
d The screening cost per unit;
b The backordering cost per unit per

unit of time;
h The holding cost per unit per unit of

time;
T The cycle time.

3. Mathematical model

Since the supplier begins producing the required ex-
changed items when the quantity of imperfect quality
items is determined, the behavior of buyer's inventory
depends on the rates of demand, screening, and ex-
change. During the exchange process, if the quantity
of perfect items that are screened out in the �rst
inspection reaches zero, then a shortage occurs in the
buyer's inventory, otherwise not. Thus, the problem
is investigated in two possibilities of either having a
shortage or not. Note that to avoid shortage during
the screening process, similar to Salameh and Jaber [2],
it is assumed that the demand rate is less than the
production rate of the perfect items.

3.1. Model without shortage (Model 1)
For the �rst possible situation, if the average rate
of demand until the end of the exchange process is
less than the average rate of received perfect items,
then shortage will not occur. In other words, the time
required for both the inspection and the exchange

Figure 1. The behavior of the buyer's inventory without
shortage.

processes together, t1, will be less than the time at
which the inventory of perfect items reaches zero. This
implies that:

D <
(1� p)Q

Q=x+ pQ=y
:

For this case, the inventory behavior is shown in
Figure 1, where:

ts1 The time in the cycle at which the
�rst screening process is �nished and
the exchange order takes place by the
buyer;

te The time in the cycle at which the
imperfect items are exchanged with
the new ones;

tf The time in the cycle at which the
initial perfect items are sold out;

t1 The time in the cycle at which the
second screening process is �nished
and the remaining imperfect items
(which are screened out in the second
screening process) are sold in a single
batch;

T The cycle time.

Note that in this case, the following explicit assump-
tions are made.

3.1.1. Assumptions
The assumptions involved in the model without short-
age are:

1. The demand rate is known and constant;
2. The replenishment is instantaneous;
3. The defective items are sold after �nishing the

second screening process;
4. The screening process takes place with the demand,

simultaneously. However, it is assumed that the
screening rate is greater than the demand rate, x >
D;
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5. To avoid shortage within screening time, t, p � 1�
D=x;

6. Shortage does not occur during the exchange pe-
riod, i.e. D < (1�p)xy

y+px .

At the beginning of each cycle, the inventory
begins with the order quantity, Q, and the delivered
lot is screened at the rate of x to be sold to the
customers at the rate of D. As x > D, there will not
be any shortage during the screening process and the
demand will be ful�lled. Right after termination of the
�rst screening process, an order to exchange imperfect
items with newly produced items takes place by the
buyer at time ts1. The supplier starts producing the
exchange items, sends them to the buyer, and receives
the imperfect items at time te. At this time, there are
still perfect items that have been screened out during
the �rst screening process. At the end of the second
screening process (t1), p2Q items are found imperfect
and are sold at a lower price in a single batch. The
remaining perfect items are sold until the end of the
cycle T .

Note that if the buyer does not confront shortage,
there should be still perfect items left in the inventory
at the time of exchange. Therefore, the time required
for screening process plus the time needed for exchange
process should be smaller than the time required for
consuming all the perfect items screened out of the �rst
screening process. Since (1 � p)Q is the quantity of
perfect items found in the initial screening process, the
required time for its consumption is (1�p)Q

D . Hence,
t1 < (1�p)Q

D and Q
x + pQ

y < (1�p)Q
D , which results in

D < (1�p)xy
px+y .

3.1.2. Costs
Three types of costs, procurement, screening, and
holding, are involved in the �rst model. These costs
are explained as follows:

Procurement cost, TPR. The procurement cost is
the summation of ordering and purchasing the ordered
lot.

TPR = K +Qc: (1)

Screening cost, TSC. Since the screening process
occurs twice in a cycle, its cost is obtained as:

TSC = dQ(1 + p): (2)

Holding cost, TH. The holding cost in the �rst model
consists of the holding costs of two types of inventories,
imperfect and perfect items. It is derived in Appendix
A as:

TH = h
��

(1� p2)Q
�2

2D
+ p2Q

�
Q
x

+
pQ
y

+
pQ
x

��

= h
��

(1� p2)Q
�2

2D
+
p2Q2

x
+
p3Q2

y
+
p3Q2

x

�
: (3)

As a result, the Total Cost (TC) in the model without
shortage becomes:

TC = K + cQ+ dQ(1 + p) + h
��

(1� p2)Q
�2

2D

+
p2Q2

x
+
p3Q2

y
+
P 3Q2

x

�
: (4)

3.1.3. Revenue (TR)
The revenue in each cycle is earned by selling perfect
and imperfect items as:

TR = s
�
1� p2�Q+ V

�
p2�Q: (5)

3.1.4. Pro�t (TP)
The pro�t in a cycle is obtained by subtracting the
total revenue per cycle and the total cost per cycle:

TP = s(1� p2)Q+ V (p2)Q�K � cQ� dQ(1 + p)

�h
��

(1� p2)Q
�2

2D
+
p2Q2

x
+
p3Q2

y
+
p3Q2

x

�
: (6)

Thus, the expected pro�t per cycle is:

E(TP ) = s
�
1� E(p2)

�
Q+ V

�
E(p2)

�
Q�K

�cQ� dQ (1 + E(p))� h
�
Q2E

�
(1� p2)

�2
2D

+
E(p2)Q2

x
+
E(p3)Q2

y
+
E(p3)Q2

x

�
: (7)

Besides, as p2Q is the quantity of imperfect items that
are screened out in the second screening process and
are sold in a single batch at a lower price right after
termination of the second screening process, the cycle
time that is the duration of consumption of all the
perfect items in the cycle is T = (1 � p2)Q=D with
the expected cycle length of:

E(T ) =
�
1� E(p2)

�
Q

D
: (8)

As a result, based on the renewal theorem, the expected
pro�t per unit time will be:

ETPU =
E(TP )
E(T )

= sD + V D
�

E(p2)
1� E(p2)

�
� KD

1� E(p2)
� cD

(1� E(p2))
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�dD (1 + E(p))
(1� E(p2))

� hQ
 
E
�
(1� p2)2�

2 (1� E(p2))

!
�
�
hQD
x

��
E(p2)

1� E(p2)

�
�
�
hQD
y

�
�

E(p3)
1� E(p2)

�
�
�
hQD
x

��
E(p3)

1� E(p2)

�
:
(9)

The �rst and the second derivatives of ETPU with
respect to Q are:

dETPU
dQ

=
KD

(1� E(p2))Q2 � (h)

 
E
�
(1� p2)2�

2 (1� E(p2))

!
�
�
hD
x

��
E(p2)

1� E(p2)

�
�
�
hD
y

�
�

E(p3)
1� E(p2)

�
�
�
hD
x

��
E(p3)

1� E(p2)

�
;

(10)

d2ETPU
dQ2 =

�2KD
(1� E(p2))Q3 < 0: (11)

Hence, ETPU is concave in Q wherein the optimal lot
size, Q�, is obtained by equating Eq. (9) to zero and
solving for Q as:

Q�=
vuut KD

h
n
E((1�p2)2)

2 +D
�

1
x (E(p2)+E(p3))+ E(p3)

y

�o :
(12)

Note also that the optimal lot size will be equal to the
one of the classical EOQ model by setting p = 0, i.e.
Q� =

p
2KD=h = Q�EOQ.

3.2. Model with shortage (Model 2
The second model suits to the problem in which the
buyer faces shortage in his/her inventory. In this
problem, the delay for the exchange process leads into
the time at which there is not any perfect quality item
left in the warehouse. In this case, the demand rate
is more than the average rate of perfect items being
screened out until the end of the exchange process.
Moreover, the ongoing shortage is ful�lled before the
end of the cycle such that the demand rate becomes less
than the average rate of perfect items being screened
out until the end of the second screening process. In
other words, the demand until the end of the second
screening process is less than the quantity of perfect
items in each cycle to cover the shortage before the
end of the replenishment cycle. Therefore:

Dt4 � (1� p2)Q: (13)

Hence:

D � (1� p2)Q
Q
x + pQ

y + pQ
x

; (14)

where, t4 is the time in a cycle at which the second
screening process is ended and the imperfect items are
sold (shown later in Eq. (18)). Besides, the following
assumptions are made in this case.

3.2.1. Assumptions
The assumptions involved in the model with shortage
are:

1. To avoid shortage within the screening time, p �
1�D=x;

2. The demand rate is known and constant;
3. The replenishment is instantaneous;
4. Defective items are sold after �nishing the second

screening process;
5. The screening process and demand proceed simul-

taneously, but the screening rate is greater than
demand rate, x > D;

6. Shortage that occurs during the exchange delay
period, i.e. D � (1�p)xy=(y+px), is backordered;

7. Shortage is ful�lled before the cycle terminates, i.e.,
D � (1� p2)xy= ((1 + p)y + px).

The behavior of inventory system for the second
problem is shown in Figure 2.
where:
ts1 The time in the cycle at which the

�rst screening process is �nished and
the exchange order takes place by the
buyer;

t1 The time in the cycle at which the
primary perfect items are sold out;

t2 The time in the cycle at which the
imperfect items are exchanged with
new ones;

t3 The time in the cycle at which the
shortage is ful�lled and, as stated
previously;

Figure 2. The behavior of the buyer's inventory with
shortage.
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t4 The time in the cycle at which the
second screening process is ended and
the imperfect items are sold;

T The cycle time.

At the beginning of a cycle, the inventory begins
with the order quantity Q, the delivered lot is screened
by the rate of x to be sold to the customers at the
consumption rate of D. As x > D there will not be any
shortage during the screening process and the demand
is ful�lled. However, right after the termination of
screening process, an order to exchange the imperfect
items with new ones is taken place by the buyer at time
ts1. As the demand, during the exchange period, ex-
ceeds the number of available perfect items, the buyer
confronts shortage at time t1 before he/she receives
the new items that are produced by the supplier. The
supplier �nishes producing pQ items ordered and sends
the exchanging batch to the buyer while taking back
the imperfect items at time t2. Then, the buyer starts
the second screening process at the rate of x. The
perfect items that are screened out satisfy both the
shortage and the demand during the screening process
until t3. The screening process continues until all the
items are screened out at time t4. Since the second
batch contains the same p portion of imperfect items,
we will have p2Q imperfect items that are sold at a
lower price in a single batch at time t4. The remaining
perfect items are sold by the end of the cycle T .

Note that we have:

t1 =
(1� p)Q

D
; (15)

t2 =
Q
x

+
pQ
y
: (16)

Besides, as D(t3 � t1) = (1� p)x(t3 � t2), then:

D
�
t3 � (1� p)Q

D

�
= (1� p)x

�
t3 � Q

x
� pQ

y

�
;

and:

t3 =
(1� p)pQ

y
�
1� p� D

x

� ; (17)

t4 =
Q
x

+
pQ
y

+
pQ
x
; (18)

T =
(1� p2)Q

D
: (19)

3.2.2. Costs
Four types of costs, procurement, screening, holding,
and shortage, are considered for the second problem.
The procurement and screening costs are the same as
the ones in the �rst model. They are:
TPR = K + cQ; (20)

TSC = dQ(1 + p): (21)

Holding cost. Based on Figure 2, the holding cost
in the second model is derived in Appendix B as:

TH =h
�

(1� p)Q
2

t1 + pQt2 +
�

(1� p)pQ

� 1
2
D(t3 � t1)

�
(t3 � t2) +

1
2

�
p(1� p)Q

�D(t3 � t1)
�

(T � t3) + p2Q(t4 � t2)
�
: (22)

Substituting t1; t2; t3 and t4 by Eqs. (15), (16), (17),
and (18), respectively, results in:

TH =h
�

(1� p)2Q2

2D
+
p2Q2

y
+
pQ2

x
+
p3Q2

x

+
1
2

�
p2(1� p)DQ2

y2
�
1� p� D

x

� � 2p(1� p)Q2

x

+
p(1� p)DQ2

xy
�
1� p� D

x

� +
p2(1� p)2Q2

y
�
1� p� D

x

�
� 2p2(1� p)Q2

y
� (1� p)Q2

x

+
(1� p2)(1� p)Q2

D
� p(1� p)Q2

y

+
p(1� p2)(1� p)Q2

D

� p(1� p2)(1� p)Q2

y
�
1� p� D

x

� ��
= h

�
(2� 2p� p2 + p4)Q2

2D

+
(2p3 + p+ 2p2 � 1)Q2

2x
+

(2p3 � p+ p2)Q2

2y

+
p2(1� p)2Q2

2y
�
1� p� D

x

� +
p(1� p)DQ2

2xy
�
1� p� D

x

�
+

p2(1� p)DQ2

2y2
�
1� p� D

x

�
� p(1� p2)(1� p)Q2

2y
�
1� p� D

x

� �
: (23)

Shortage cost. The shortage cost can be obtained
by:

TS =
b
2

(D(t2 � t1)(t3 � t1)) =
b
2

�
(1� p)pQ2D
xy
�
1� p� D

x

�
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+
p2(1� p)DQ2

y2
�
1� p� D

x

� � (1� p)2pQ2

y
�
1� p� D

x

�
� Q2(1� p)

x
� pQ2(1� p)

y
+
Q2(1� p)2

D

�
: (24)

As a result, the total cost becomes:

TC =K + cQ+ dQ(1 + p) + h
�

(2� 2p� p2 + p4)Q2

2D

+
(2p3 + p+ 2p2 � 1)Q2

2x
+

(2p3 � p+ p2)Q2

2y

+
p2(1� p)2Q2

2y
�
1� p� D

x

� +
p(1� p)DQ2

2xy
�
1� p� D

x

�
+

p2(1� p)DQ2

2y2
�
1� p� D

x

� � p(1� p2)(1� p)Q2

2y
�
1� p� D

x

� �
+
b
2

�
(1� p)pQ2D
xy
�
1� p� D

x

� +
p2(1� p)DQ2

y2
�
1� p� D

x

�
� (1� p)2pQ2

y
�
1� p� D

x

� � Q2(1� p)
x

� pQ2(1� p)
y

+
Q2(1� p)2

D

�
: (25)

3.2.3. Total pro�t
The total revenue per cycle is the same as the one in
the �rst model and the total pro�t is obtained by sub-
tracting total revenue and the total cost per cycle, i.e.:

TP =TR� TC = s(1� p2)Q+ V (p2)Q�K

� cQ� dQ(1 + p)� h
�

(2� 2p� p2 + p4)Q2

2D

+
(2p3 + p+ 2p2)Q2

2x
+

(2p3 � p+ p2)Q2

2y

+
p2(1� p)2Q2

2y
�
1� p� D

x

� +
p(1� p)DQ2

2xy
�
1� p� D

x

�
+

p2(1� p)DQ2

2y2
�
1� p� D

x

� � p(1� p2)(1� p)Q2

2y
�
1� p� D

x

� �
� b

2

�
(1� p)pQ2D
xy
�
1� p� D

x

� +
p2(1� p)DQ2

y2
�
1� p� D

x

�
� (1� p)2pQ� Q2(1�p)2

x

y
�
1� p� D

x

� � pQ2(1� p)
y

+
Q2(1� p)2

D

�
: (26)

Then, using the renewal reward theorem, we have:

ETPU =
E(TP )
E(T )

= sD + V D
E(p2)

1� E(p2)

� KD
(1� E(p2))Q

� cD
(1� E(p2))

� dD (1 + E(p))
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� h
�
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2 (1� E(p2))

+
�
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�
QD

2y (1� E(p2))

+
�
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�
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2x (1� E(p2))
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2y2 (1� E(p2))
E

 
p2(1� p)
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!
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D2Q
2xy (1� E(p2))

E

 
p(1� p)

1� p� D
x

!
+

DQ
2y (1� E(p2))
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x

!
� DQ

2y (1� E(p2))
E

 
p(1� p2)(1� p)
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x

!�
� b

2

�
QD2

xy (1� E(p2))
E

 
p(1� p)

1� p� D
x

!
+

QD2

y2 (1� E(p2))
E

 
p2(1� p)
1� p� D

x

!
� QD
y (1� E(p2))

E

 
p(1� p)2

1� p� D
x

!
� QD

x
1� E(p)
1� E(p2)

� QD
y

E(p)� E(p2)
1� E(p2)

+Q
1� 2E(p) + E(p2)

1� E(p2)

�
:

(27)

De�ning:

A1 = E

 
p2(1� p)2

1� p� D
x

!
; (28)
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A2 = E

 
p(1� p)

1� p� D
x

!
; (29)

A3 = E

 
p2(1� p)
1� p� D

x

!
; (30)

A4 = E

 
p(1� p)2

1� p� D
x

!
; (31)

A5 = E

 
p(1� p2)(1� p)

1� p� D
x

!
: (32)

The �rst and the second derivatives of the expected
pro�t per unit time, with respect to Q, are obtained as:

dETPU
dQ

=
KD

(1� E(p2))Q2

� h
�
2� 2E(p)� E(p2) + E(p4)

�
2 (1� E(p2))

� hD
�
2E(p3)� E(p) + E(p2)

�
2y (1� E(p2))

� hD
�
2E(p3) + E(p) + 2E(p2)� 1

�
2x (1� E(p2))

� D2hA3

2y2 (1� E(p2))

� D2hA2

2xy (1� E(p2))

� DhA1

2y (1� E(p2))
+

hDA5

2y (1� E(p2))

� bD2A2

2xy (1� E(p2))

� bD2A3

2y2 (1� E(p2))

+
bDA4

2y (1� E(p2))
+
bD
2x

1� E(p)
1� E(p2)

+
bD
2y

E(p)� E(p2)
1� E(p2)

� b
2

1� 2E(p) + E(p2)
1� E(p2)

; (33)

d2ETPU
dQ2 =

�2KD
(1� E(p2))Q3 : (34)

Since d2ETPU
dQ2 < 0, the optimal lot size becomes:

Q�=
vuuuuuuuuuuuuuuut

2KD

h
�
R1+D

�
1
y

�
R2+

DA3

y
+
DA2

x
+A1�A5

�
+
R3

x

��
+ b
�
D
y

�
DA2

x
+
DA3

y
�A4�R4

�
� D (1�E(p))

x
+R5

�
(35)

where:

R1 = 2� E(p2)� 2E(p) + E(p4); (36)

R2 = 2E(p3) + E(p2)� E(p); (37)

R3 = 2E(p3) + 2E(p2) + E(p)� 1; (38)

R4 = E(p)� E(p2); (39)

R5 = 1� 2E(p) + E(p2): (40)

For a uniform distribution of p as an example, the
terms in Eq. (35) are derived in Appendix C. Note
that by setting p = 0, the optimal lot size becomes:

Q� =

s
2KD

h
�
2� D

x

�
+ b

�
1� D

x

� : (41)

However, since:

(1� p)xy=(y + px) � D � (1� p2)xy

= ((1 + p)y + px) ;

D will be equal to x. Hence, Q� will be equal to the
one obtained using the classical EOQ.

In the next section, numerical examples are solved
in order to demonstrate application of the proposed
methodology.

4. Numerical examples and sensitivity analyses

The proposed models are employed in this section to
solve 36 generated numerical examples and to perform
sensitivity analyses of Q� on the parameters of each
model. The results of solving these examples are
shown in three groups of 12 examples, each having a
di�erent mean fraction of imperfect items. However,
the parameters used in the three groups are the
same in order for the comparison of the e�ect of the
imperfect quality fraction on the optimal lot size to be
justi�ed.
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4.1. Numerical examples
The �xed parameters of all examples are:

c =
$300
unit

; K =
$4000
unit

; b =
$7

unit
;

d =
$1

unit
; s =

$500
unit

; h = $4
unit
time

;

V = $200:

Other parameters of the models are determined such
that both the optimal batch size of the �rst model,
Q�1, and the one of the second model, Q�2, are obtained
for most of the examples. Using these parameters,
and based on di�erent mean percentages of defective
items, the solutions are obtained and are summarized
in Table 1.

The results in Table 1 indicate that there is a
small di�erence between Q�1 and the one of the classical

EOQ. However, the di�erence between Q�2 and the one
of the classical EOQ is more tangible.

As changes in y; x;D, and p may cause a shift
between the two models or even may lead to a situation
where the shortage cannot be ful�lled during the cycle
time (as shown in Table 1), a sensitivity analysis is
performed on the values of these parameters; the results
are summarized in Table 2.

The results in Table 2 show that changes in x lead
to a slight increment in both Q�1 and Q�2, where Q�2
shows more sensitivity than Q�1. Moreover, increments
in the screening rate result in increases in EOQ. This
is expected, since higher screening-rate causes lesser
depleting time of imperfect items inventory, and hence,
decreasing the holding cost. Nevertheless, Q�2 is the
least sensitive factor to x in comparison with the other
parameters. Further, while the e�ect of change of x on
EPTU is the same as the one of EOQ, the change in
y has a similar e�ect on EOQ as x does. Meanwhile,

Table 1. Solutions obtained based on various mean percentages of defective items.

E(p) x D EOQ y = 900 y = 1400 y = 2950 y = 6800

0.01

25000 19400 6228.96
Q� Q�2 = 144:87 Q�1 = 6228:97 Q�1 = 6229:06 Q�1 = 6229:11

EPTU(Q�) 2789501.92 3835225.52 3835225.88 3835226.07
EPTU(EOQ) -19152173.7 3835225.52 3835225.88 3835226.07

30000 22300 6678.32
Q� Q�2 = 139:80 Q�1 = 6678:33 Q�1 = 6678:44 Q�1 = 6678:50

EPTU(Q�) 3161691.08 4410459.79 4410460.24 4410460.47
EPTU(EOQ) -26022556.9 4410459.79 4410460.24 4410460.47

40000 21000 6480.74
Q� Q�1 = 6480:84 Q�1 = 6480:95 Q�1 = 6481:05 Q�1 = 6481:10

EPTU(Q�) 4152581.12 4152581.55 4152581.96 4152582.17
EPTU(EOQ) 4152581.12 4152581.55 4152581.96 4152582.17

0.03

25000 19400 6228.96
Q� { { Q�2 = 446:39 Q�1 = 6229:41

EPTU(Q�) { { 3511886.73 3832719.19
EPTU(EOQ) { { 1448874.84 3832719.19

30000 22300 6678.32
Q� { { Q�2 = 434:77 Q�1 = 6678:92

EPTU(Q�) { { 4025790.87 4407581.20
EPTU(EOQ) { { 1300895.10 4407581.20

40000 21000 6480.74
Q� { Q�2 = 280:45 Q�1 = 6481:75 Q�1 = 6483:16

EPTU(Q�) { 3577668.26 4149870.93 4149876.58
EPTU(EOQ) { -2729786.43 4149870.92 4149876.57

0.06

25000 19400 6228.96
Q� { { { Q�2 = 900:08

EPTU(Q�) { { { 3680948.40
EPTU(EOQ) { { { 3267208.58

30000 22300 6678.32
Q� { { { Q�2 = 896:98

EPTU(Q�) { { { 4229968.90
EPTU(EOQ) { { { 3700303.81

40000 21000 6480.74
Q� { { Q�2 = 562:37 Q�1 = 6485:27

EPTU(Q�) { { 3870313.44 4141474.22
EPTU(EOQ) { { 2459276.26 4141474.22
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Table 2. E�ects of parameter changes on the economic order quantity and the expected pro�t per unit time.

Parameters
% Changes in % Changes in

parameters Q�2 EPTU(Q�2) Q�1 EPTU(Q�1)

p

+5 -0.0231 -0.00125 +0.00017 -0.00028

+3 -0.01384 -0.00074 +0.0001 -0.00016

-3 +0.013767 +0.000713 -0.00011 +0.00016

-5 { { -0.00018 +0.00026

x

+5 +0.001408 +0.0000133 +0.000028 +0.00000039

+3 +0.000861 +0.00000815 +0.000018 +0.00000024

-3 -0.00091 -0.0000086 -0.000022 -0.00000027

-5 -0.00155 -0.000015 -0.000035 -0.00000045

y

+5 +0.025704 +0.000142 +0.000072 +0.00000094

+3 +0.015681 +0.000088 +0.000044 +0.00000058

-3 -0.01649 -0.000098 -0.00005 -0.00000062

-5 -0.02794 -0.00017 -0.000082 -0.0000011

D

+5 -0.00405 +0.049959 +0.02458 +0.050326

+3 -0.00225 +0.029978 +0.014821 +0.030195

-3 +0.001658 -0.02998 -0.01505 -0.03019

-5 +0.002403 -0.04998 -0.02521 -0.05032

Q�2 shows more sensitivity on y than x, because not
only the supplier's production rate a�ects the depletion
time of imperfect items, but also it a�ects the time a
shortage occurs.

Besides, Q�1 has the most sensitivity to the
changes in D among all parameters. Changes in
D, however, have an inverse e�ect on Q�2 where an
increment in demand causes more shortage to happen
during the exchange period. Thus, a reduction in an
order quantity results in a decrease of imperfect item
quantity and hence a decrease in the delay due to
exchanging imperfect items. Note also that not only
a demand change has a direct impact on EPTU of
both models, but also a change in the mean of the
fraction of imperfect items has a direct e�ect on the
�rst model's EOQ. In this case, the holding cost reduces
due to a decrease in inventory, causing more quantities
to be ordered. Finally, Q�2 has the most sensitivity to
the changes of p, where a change in p has an inverse
e�ect on Q�2. This is because the higher p, the longer
the exchange period and hence the higher the shortage
cost is. Moreover, changes in p have a similar e�ect
on ETPU of both models. In general, while ETPU
of both models have a similar reaction towards the
changes in the parameters, the degrees of the e�ects
di�er from each other.

5. Summary and conclusion

In this paper, an EOQ model for items with imperfect
quality was investigated, in which the supplier agrees

to exchange imperfect items with new ones. This
exchange occurs with a delay that varies based on
the quantity of imperfect items found. The delay in
exchange leads to the following three possible scenarios:

I. The exchanged lot arrives before the time the
initial perfect items stored in the warehouse are
totally consumed so that there is no shortage;

II. The exchange occurs after depletion of perfect
items so that the system faces shortage, which can
be ful�lled before the end of the cycle; and

III. The shortage is larger than the di�erence between
the quantities of perfect items and demand so that
the system eventually ends with shortage.

In this paper, Scenarios I and II were �rst
formulated, mathematically, and closed-form formulae
were obtained for the optimal order quantity in both
cases. Then, the proposed models were analyzed by
solving 36 numerical examples, in which the e�ects
of changes in models' parameters on the quantities
of the order size were discussed. Results showed
that if the classical EOQ were used instead of the
model derived for scenario II, not only the ideal pro�t
would not be achieved, but also it might result in a
loss.

The proposed models in this research can be ex-
tended using some other assumptions such as di�erent
probability distributions of imperfect items, partial
backordering, and the like.
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Appendix A

The holding cost of maintaining the perfect items in
buyer's inventory during the cycle time in Model 1 is:

TH1 = h� (1� p2)Q
2

� T = h� (1� p2)Q
2

� (1� p2)Q
D

= h�
�
(1� p2)Q

�2
2D

: (A.1)

The holding cost of preserving imperfect items in
buyer's inventory until the end of the second screening
process in Model 1 is:

TH2 = h�p2Q� t1 =hp2Q
�
Q
x

+
pQ
y

+
pQ
x

�
: (A.2)

Hence, the total holding cost per cycle in Model 1 is:

TH = h

(�
(1� p2)Q

�2
2D

+ p2Q
�
Q
x

+
pQ
y

+
pQ
x

�)
=h

(�
(1�p2)Q

�2
2D

+
p2Q2

x
+
p3Q2

y
+
p3Q2

x

)
: (A.3)

Appendix B

In Model 2, the holding cost of perfect items, from the
time they are screened out in the �rst screening process
to the time they are fully consumed, is:

TH1 = h� (1� p)Q
2

t1: (B.1)

In Model 2, the holding cost of pQ perfect items, from
the time they are screened out in the �rst screening
process to their exchange time, is:

TH2 = h� pQ� t2: (B.2)

In Model 2, the holding cost of perfect items that are
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screened out in the second screening process is:

TH3 = h�
�

(1� p)pQ� 1
2
D(t3 � t1)

�
� (t3 � t2):

(B.3)

In Model 2, the holding cost of perfect items that are
screened out of the second screening process, from the
time the shortage has been ful�lled to the time they
are fully consumed, is:

TH4 = h� 1
2

(p(1� p)Q�D(t3 � t1))� (T � t3):
(B.4)

Finally in Model 2, the holding cost of p2Q imperfect
items that are screened out in the second screening
process is:

TH5 = h� p2Q� (t4 � t2): (B.5)

Thus, the total holding cost per cycle in Model 2 is
obtained as:

TH = TH1 + TH2 + TH3 + TH4 + TH5

= h
�

(1� p)Q
2

t1 + pQt2 +
�
(1� p)pQ

� 1
2
D(t3 � t1)

�
(t3 � t2) +

1
2
�
p(1� p)Q

�D(t3 � t1)
�
(T � t3) + p2Q(t4 � t2)

�
: (B.6)

Appendix C

Assuming p to follow a uniform distribution in (0; �),
we have:

E(p) =
Z �

0
pf(p)dp =

Z �

0

p
�
dp =

�
2
; (C.1)

E(p2) =
�2

3
; (C.2)

E(p3) =
�3

4
; (C.3)

E(p4) =
�4

5
: (C.4)

As a result:
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p2(1� p)2
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ln
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1
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� 2
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ln
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: (C.5)

Using the same method, A2, A3, A4, and A5 become:

A2 =E

 
p(1� p)
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2
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� 1
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�
; (C.6)

A3 =E
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A4 =E

 
p(1� p)2�
1� p� D

x

�! =
�
2
� 2

�
D
x

�2

+
�
2

�
D
x

�
+
�
D
x

�3

+
�
2

�
D
x

�2

+
�2

3

�
D
x

�
� �3

4
+

2
�

�
D
x

�2

ln
�

1�D=x
1�D=x� �

�
� 3
�

�
D
x

�3

ln
�

1�D=x
1�D=x� �

�
+
�
D
x

�4

ln
�

1�D=x
1�D=x� �

�
; (C.8)



M. Farhangi et al./Scientia Iranica, Transactions E: Industrial Engineering 22 (2015) 2621{2633 2633

A5 = E
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