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Abstract

This dissertation aims to put dynamic stochastic general equilibrium (DSGE) fore-
casts in competition with factor models (FM) forecasts considering both static and
dynamic factor models as well as regular and hybrid DSGE models. The empir-
ical study shows three main conclusions. First, DSGE models are significantly
outperformed by the generalized dynamic factor model (GDFM) in forecasting
output growth in both short and long run, while the diffusion index (DI) model
outperforms significantly DSGE models only in the short run. Second, the most
surprising result of the dissertation, we discovered that only the hybrid DSGE
model outperforms significantly all other competitive models in forecasting infla-
tion in the long run. This evidence falls out with recent papers that found just
regular DSGE models able to generate significant better forecasts for inflation in
the long run as well as papers where hybrid DSGE models are found to forecast
poorly. Third, in most cases, the unrestricted vector autoregressive (VAR) model
represents the worse forecasting model. Although our results are consistent with
the prevalent literature who gives to factor models the role to forecast output vari-
ables and to DSGE models the role to forecast monetary and financial variables,
this research documents that exploiting more information on many macroeconomic
time series, through hybrid DSGE models, is important not only to obtain more
accurate estimates, but also to get significantly better forecasts.

Keywords: Diffusion Index (DI) model, Generalized Dynamic Factor Model (GDFM),
Dynamic General Equilibrium (DSGE) model, Data-Rich DSGE (drDSGE) model, Equal
Predictive Ability Tests.
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Chapter 1

Introduction

Recent years have seen rapid growth in the availability of economic data. Statisticians,

economists and econometricians now have easy access to data on many hundreds of variables

that provide the information about the state of the economy. Coinciding with this growth

in available data, two main new econometric models that exploit this wider information have

been proposed: the factor models (FM) and the Dynamic Stochastic General Equilibrium

(DSGE) models. Factor models have been successfully applied when we have to deal with:

construction of economic indicators (Altissimo et al. (2010)), business cycle analysis (Gregory

et al. (1997) and Inklaar et al. (2003)), forecasting (Stock and Watson (2002a,b) and Forni et

al. (2000)), monetary policy (Bernanke and Boivin (2003) and Bernanke et al. (2005)), stock

market returns (Ludvigson and Ng (2007)) and interest rates (Lippi and Thornton (2004)).

DSGE models have been successfully applied when we have to deal with: forecasting (Smets

and Wouters (2002) and Smets and Wouters (2007)), estimation accurancy (Boivin and Gian-

noni (2006) and Kryshko (2009)), credit and banking (Gerali et al. (2008)), interest term of

structure analysis (Amisano and Tristani (2010)) and monetary policy (Boivin and Giannoni

(2008)).

Among all these applications, the recent economic global crisis has pointed out how fore-

casting well is central. For this reason, the main objective of this dissertation is to provide

a detailed forecasting evaluation between these two econometric models taking into account

of the recent developments in both factor and DSGE modelling. The novel of this research is

the expanded range of forecasting models treated. Infact, our forecasting competition consid-

ers not only static factor models and regular DSGE models but also dynamic factor models,

such as, the so-called Generalized Dynamic Factor Model (GDFM) of Forni et al. (2000) and

hybrid DSGE models, such as, the so-called Data-Rich DSGE (drDSGE) following Boivin

and Giannoni (2006) and Kryshko (2009). The dissertation is motivated by the fact that
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although there are some forecasting discussions on both dynamic factor model and regular

DSGE individually, there is no attempt in the literature, to carry out a strong forecasting

evaluation between dynamic factor models and hybrid DSGE models. In particular, what is

missing is a forecasting comparison between the GDFM and the drDSGE.

The empirical study shows three main conclusions. First, DSGE models are significantly

outperformed by the GDFM in forecasting output growth in both short and long run, while

the static factor model outperforms significantly DSGE models only in the short run. Second,

the most surprising result of the dissertation, we discovered that only the drDSGE outper-

forms significantly all other competitive models in forecasting inflation in the long run. This

evidence falls out with both Wang (2009) who found that a regular DSGE was able to generate

significant better forecasts for inflation in the long run, and Paccagnini (2011) where hybrid

models are found to forecast poorly. Therefore, the drDSGE outperforms significantly the reg-

ular DSGE in forecasting both output growth and inflation, confirming that exploiting more

information on many macroeconomic time series, through the drDSGE, is important not only

to obtain more accurate estimates, but also to get significant better forecasts. Third, in most

cases, the unrestricted VAR is outperformed by the unconditional mean of the time series of

interest, confirming that this model should not be used as benchmark model in forecasting

comparisons.

This work is closely related with Wang (2009), but while we share some of the features

of his study, our analysis is greatly expanded. First, we do not use the simple DSGE model

of Del Negro and Schorfheide (2004) but the most elaborated DSGE model of Smets and

Wouters (2007). Second, among factor models, we considered also the GDFM of Forni et

al. (2000) whose forecasting performance is documented to be superior than the static factor

model of Stock and Watson (2002a,b). Third, among DSGE models, we put side by side the

regular DSGE model of Smets and Wouters (2007) with its representation in terms of drDSGE

following Boivin and Giannoni (2006) and Kryshko (2009). Therefore, our work is also re-

lated with the fast growing literature in both factor models and DSGE models. About factor

models, Forni et al. (2000) have presented and estimated their GDFM using a two-sised filter

of the observations, Stock and Watson (2002a) have introduced their diffusion index model

demostrating its ability to outperform autoregressions and small vector autoregressions fore-

casts, Stock and Watson (2002b) have shown the asymptotically efficiency of static principal

components, Bai and Ng (2002) have focused on the efficient estimation of the number of
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static factors under a diffusion index model, Forni et. al. (2005) have proposed a refinement

of their two-sided filter into a one-sided filter to allow forecasting feasible, Forni et al. (2009)

have emphasized how identification schemes in strustural VAR analysis can be adapted in

their GDFM, while Stock and Watson (2010) have described in great detail dynamic factor

models. About DSGE models, Smets and Wouters (2007) have extended their previous DSGE

model allowing more structural shocks and more financial frictions confirming that the DSGE

model has a fit comparable to that of bayesian vector autoregression (BVAR) models, Del

Negro et al. (2004) and Del Negro et al. (2007) have shown that a relatively simply DSGE

model employed as a prior in a VAR is able to improve the forecasting performance of the VAR

relative to an unrestricted VAR or a Bayesian VAR, Rubaszek and Skrzypczynski (2008) have

emphasized how DSGE model forecasts are poor in forecasting inflation and interest rates in

short term, Christoffel et al. (2010) have pointed out that large bayesian VAR can outperfom

DSGE forecasts, while Edge et al. (2011) have shown how their DSGE model can forecast

poorly inflation and output growth.

The dissertation is organized following Figure (1.1). Given a large data-set, indeed a data-set

Figure 1.1: The dissertation path.

with many economic time series variables, we evaluate the forecasting performance of factor

models relatively to the DSGE models passing through: identification, estimation, fore-

casting and forecasting inference. We open discussing the identification and estimation

schemes of both factor models (Chapter (2)) and DSGE models (Chapter (3)). In particular,

Chapter (2) describes the identification and the estimation of both static and dynamic factor

models with a special focus to the recent identification and estimation scheme proposed by

Forni and Lippi (2001) of their so-called Generalized Dynamic Factor Model (GDFM), while

Chapter (3) describes the estimation of the DSGE model of Smets and Wouters (2007) mo-
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tivating the advantages of using its Data-Rich Environment version. Estimated the models,

we move on forecasting and forecasting inference (Chapter (4)). The forecasting step eval-

uates the models forecasting performance through the relative mean squared forecast error

(rMSFE) metric, defined as:

rMSFE(m,n)|h = 1−
MSFEm|h

MSFEn|h

where MSFEm|h and MSFEn|h denote respectively the mean squared forecast error gener-

ated from model m at the forecasting horizion h and the mean squared forecast error gener-

ated from model n at the forecasting horizion h. The rMSFE(m,n)|h can be interpreted as

a forecasting gain of model m relative to the model n at the forecasting horizion h when it is

positive, or it can be interpreted as a forecasting loss of the model m relative to the model

n at the forecasting horizion h when it is negative. In other words, the rMSFE(m,n)|h

answers to the question: ...between model m and n, which model should be used to forecast

a given time series h steps ahead? This metric represents an appropriate tool to measure the

forecasting perfomance of DSGE models as documented by Smets and Wouters (2003), Smets

and Wouters (2007), Edge et al. (2010) and Edge et al. (2011).

As pointed out by Diebold and Mariano (1995) and West (1996) and Giacomini and White

(2006), the main drawback of this MSFE analysis is the lack of significance, indeed it is not

possible to make rigorous statistical statements by simply interpreting the observed differences

betweenMSFEs because any metric has not a significance power. We need to look into model

forecasting inference. We use two test of forecasting accurancy: the test of equal unconditional

predictive ability of Diebold and Mariano (1995) and West (1996) (hereafter DMW test), and

the test of equal conditional predictive ability of Giacomini and White (2006) (heafter GW

test). Since, as shown by Clark and McCracken (2001), the unconditional test has low power

in the finite sample, particularly when nested models are involved, the final results of the

dissertation come from only the interpretation of the conditional test.

4



Chapter 2

Factor models

“All models are wrong, but some are useful”

George Box

This chapter presents the identification and the estimation schemes of the factor models used

in the out-of-sample forecasting experiments. A factor model is an econometric model where

each observed time series variable xit is assumed to be linearly decomposed into two un-

observed orthogonal components, the common component χit driven by a small number of

common shocks uit, and the idiosyncratic component ξit who accounts for the residual of

that decomposition. The common component is responsable of the co-movement of the series,

while the idiosyncratic component is responsable to the specific time series variation. Both

the common and the idiosyncratic component are unobserved and need to be consistently

estimated.

The chapter is organized as follows. In Section (2.1) we start considering the identifica-

tion and the estimation of the Generalized Dynamic Factor Model (GDFM). In Section (2.2)

we present the identification and the estimation of the static factor model or diffusion index

(DI) model, as special case of the GDFM. In Section (2.3) we describe the one-sided esti-

mation and forecasting of the GDFM. In Section (2.4) we face the problem of determining

the number of factors, while Section (2.5) concludes discussing the link between static factor

model and the GDFM.

2.1 The generalized dynamic factor model

The Generalized Dynamic Factor model (GDFM) is a factor model that differs from the exact

factor model, in which the idiosyncratic components are mutually uncorrelated, because it

allows the idiosyncratic shocks to be weakly serial and cross-sectional correlated. It combines

5
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the so-called approximate static factor model of Chamberlain and Rothschild (1983), widely

applied in financial econometrics, and the dynamic factor model of Geweke (1977) and Sargent

and Sims (1977) for which respectively cross-sectional and serial correlation was allowed. The

model is called dynamic since the common shocks may not impact a series simultaneously,

as in the static factor model, but they can propagate with leads or lags. Then, the model

is called generalized since the common components are derived assuming a dataset with an

infinite number of series and an infinite number of observations.

To setting up the model, let’s introduce the notation. Let P = (Ω, I, P ) be a probability

model and let L2(P,C) be the linear space of all complex-valued, zero mean, square-integrable

random variables defined on Ω. Let x = {xit, i ∈ N, t ∈ Z} be the infinite double sequence

of random variables defined on xit ∈ L2(P,C) and let xNt = (x1t, x2t, . . . , xNt)′ be the finite

N -dimensional column vector for the observation made at time t. If P is a complex matrix we

denote P′ as the transpose of P and P∗ as the complex conjugate of P′. With θ we denote the

real interval [−π, π]. Then, given the subset G ⊆ L2(P,C), we denote the closed span of G as

span(G) which is the minimum closed subspace of L2(P,C) containing G. If S is a closed lin-

ear subspace of L2(P,C) and x ⊆ L2(P,C), we denote proj(x|S) as the orthogonal projection

of x on S. Therefore, we denote with Σx(θ) the spectral density matrix of the double sequence

x = {xit, i ∈ N, t ∈ Z} as function of the frequencies in θ ∈ [−π, π], while with Σx
N (θ) we

denotes the spectral density matrix of the N -dimensional vector xNt = (x1t, x2t, . . . , xNt)′ as

function of the frequencies in θ ∈ [−π, π]. The i-th largest eigenvalue of Σx
N (θ), is denoted by

λx
Ni, while the i-th largest eigenvalue of Σx(θ) is denoted by λx

i (θ). We denote the spectral

density matrices of the common and the idiosyncratic componenents and their eigenvalues in

a similar way.

We assume that for any N ∈ N the process xNt is covariance stationary, that is, it has

finite variance-covariance matrix: E[xNtx′N ;t−k] = Γx
Nk and spectral density Σx

N with entries

σij bounded in modulus:

Γx
Nk =

1
2π

∫ π

−π
eikθΣx

N (θ)dθ Σx
N =

1
2π

+∞∑
k=−∞

eikθΓx
Nk

6
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where the spectral density matrix can be estimated applying the discrete Fourier transform

to the sample covariance matrix.

Given these assumptions the model proposed by Forni and Lippi (2001) can be defined as

following.

Definition 2.1.1 The Generalized Dynamic Factor Model: Let q be a nonnegative

integer. The double infinite sequence x = {xit, i ∈ N, t ∈ Z} is a q-dynamic factor se-

quence if L2(P,C) contains an orthonormal q-dimensional white noise vector process u =

{(u1t, u2t, . . . , uqt)′; t ∈ Z} = {ut, t ∈ Z} and the double sequence ξ = {ξit, i ∈ N, t ∈ Z} such

that:

1. For any i ∈ N:

xt = χt + ξt (2.1)

χt = b1(L)uit + . . .+ bq(L)uqt =
q∑
j=1

bj(L)ujt = B(L)ut (2.2)

where B(L) = b1(L) + . . . + bq(L) represents the lag polynominal of order q with bi ∈

Lq2(θ; C) for any i ∈ N and j = 1, 2, . . . , q (or alternatively each entry bij ∈ L2(θ,C) for

any i ∈ N and j = 1; 2; . . . ; q).

2. For any i ∈ N, j = 1, 2, . . . , q and k ∈ Z, we have ξit ⊥ uj;t−k, then ξi;t ⊥ χs;t−k for any

i ∈ N, s ∈ N and k ∈ Z.

3. ξ is idiosyncratic.

4. Putting χ = {χit, i ∈ N, t ∈ Z}, λχq (θ) =∞ almost everywhere in θ.

where: χt and ξt are referred as the vector of common component and the vector of the

idiosyncratic component of xt, while ut is referred to as the vector of common shocks.

The corrisponding model in vector form is:

xN ;t = χNt + ξNt (2.3)

= BN (L)ut + ξNt

where BN (L) = (bN1(L); bN2(L); . . . ; bNq(L)) is an (N × q) matrix.

7
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Example 2.1 One dynamic factor GDFM

Let xit be the time series x at the i-th cross-sectional unit with i = 1, 2, . . . , N , and at time t

with t = 1, 2, . . . , T . Stating that xit admits a generalized dynamic factor model representation

with one dynamic factor, means decomposing the series as:

xit = χit + ξit (2.4)

χi;t = b1i(L)u1t + b2t(L)u2t + . . .+ bqi(L)uqt

where: χit is the common component, and ξit is the idiosyncratic component. The common

component is costructed with q unobserved common shocks or dynamic factors ujt for any

j = 1, 2, . . . , q that are loaded with the filters bji(L) with leads and/or lags.

2.1.1 The identification of the GDFM

The GDFM model defined in Equation (2.1) must be identified. Identification means to find

conditions on the variance-covariance of the data xt for which the common χt and idiosyncratic

component ξt are identified. Following Forni et al. (2000), we need to place conditions on

the spectral density matrix of the data xt, indeed on Σx(θ), under which the common and

idiosyncratic components are identified as N goes to infinity.

Assumption 2.1 Given the double sequence x = {xit, i ∈ N, t ∈ Z} where xit ∈ L2(P,C)

and given the form:

xt = χt + ξt

= B(L)ut + ξt (2.5)

we assume that:

i) the q-dimensional vector process u = {(u1t, u2t, . . . , uqt)′, t ∈ Z} is an orthonormal white

noise. That is, E[ujt] = 0 and VAR[ujt] = E[ujtu′jt] = 1 for any j and t; ujt ⊥ uj;t−k

for any j, t, and k 6= 0; ujt ⊥ us;t−k for any s 6= j, t and k.

ii) ξ = {ξit, i ∈ N, t ∈ Z} is the double sequence such that, ξn = {(ξ1t, ξ2t, . . . , ξNt)′, t ∈ Z} is

a zero-mean stationary vector process for any N , and ξit ⊥ uj;t−k for any i, j, t, k;

iii) the filters B(L) are one-sided in L and their coefficients are square summable for any

8
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i ∈ N and j = 1, 2, . . . , q.

This assumption has two implications. First, it implies that the vector x = {xit, i ∈ N, t ∈

Z} where xit ∈ L2(P,C) is stationary and zero-mean for any N . Second, it implies that

the spectral density of the N -dimensional vector xN , indeed Σx
N (θ), can be written as the

sum of the spectral density of the common component Σχ
N (θ) and the spectral density of

the idiosyncratic component Σξ
N (θ). These matrices are unobserved, then to obtain their

consistent estimation we need further assumptions.

Assumption 2.2 For any i ∈ N, there exist a real ci > 0 such that σii(θ) ≤ ci for any

θ ∈ [−π, π].

Assumption 2.3 The first idiosyncratic dynamic eigenvalues λξN1 is uniformly bounded.

That is, there exist a real Λ such that λξN1(θ) for any θ ∈ [−π;π] and N ∈ N.

Assumption 2.4 The first q common dynamic eigenvalues diverge almost everywhere in

[−π, π]. That is limn→∞ λ
χ
Nj(0) =∞ for j ≤ q, almost everywhere in [−π, π].

The Assumption 2.2 implies that all the entries σij(θ) of Σx
N (θ) are bounded in modulus,

Assumption 2.3 implies that the dynamic eigenvalues of the idiosyncratic components have

effects concentrated on a limited number of variables, while Assumption 2.4 implies that each

common shock uij is present in infinitely many cross-sectional units with nondecreasing im-

portance.

If the Assumptions 2.1 to 2.4 are satisfied, Forni and Lippi (2001) show that the double

sequence x = {xit, i ∈ N, t ∈ Z} is a generalized dynamic factor model, or better, is a

q-generalized dynamic factor model.

2.1.2 Recovering the Common Components in the GDFM

Defined and identified the model, we briefly review this estimation method proposed by Forni

et al. (2000) to recovering consistently the common component χt in Equation (2.1) starting

from the finite N -dimensional process xNt = (xit, x2t, . . . , xNt)′. The idea is to be aware that

for the the spectral density matrix of the finite process xNt, indeed Σx
N , there exist N vectors

of complex-valued functions:

pnj(θ) = (pNj,1(θ) pNj,2(θ) . . . pNj,N (θ))

9
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for j = 1, 2, . . . , N such that:

a) pNj(θ) is the row eigenvector of Σx
N (θ), that is:

pNj(θ)Σx
N = λx

Nj(θ)pNj(θ) for any θ ∈ [−π, π] (2.6)

b) |pNj(θ)|2 = 1 for any j and θ ∈ [−π, π];

c) pNj(θ)p∗Ns(θ) = 0 for any j 6= s and any θ ∈ [−π, π];

d) pNj(θ) is θ-measurable on [−π, π].

Point a) tell us simply that the pNj(θ) for any j = 1, 2, . . . , N are the eigenvectors associ-

ated to the eigenvalues λx
Nj(θ). These eigenvalues and eigenvectors are called dynamic, since

they come from spectral eigenvalue decomposition (Equation (2.6)) and not longer from the

contemporaneous variance-covariance matrix decomposition. Point b) affirms that dynamic

eigenvectors have unitary length, point c) states that dynamic eigenvectors are orthogonal,

while point d) affirms that the dynamic eigenvectors are functions misurable on the interval

[−π, π].

As consequence of properties a) to d) each dynamic eigenvector pNj(θ) can be expanded

as Fourier Series:

pNj(θ) =
1

2π

∞∑
k=−∞

[
∫ π

−π
pNj(θ)eikθdθ] e−ikθ (2.7)

then applying the inverse Fourier transforme to pNj we can construct a square-summable,

N -dimensional, bilateral filter in the time domain:

p
Nj

(L) =
1

2π

∞∑
k=−∞

[
∫ π

−π
pNj(θ)eikθ] Lk (2.8)

where we used the underlined notation to denotes that p
Nj

(L) is the inverse Fourier transfor-

mation of pNj(θ). The product of the dynamic eigenvectors times the data, indeed the scalar

process:

dpcjt = {p
Nj

(L) xNt , t ∈ Z}

is the so-called the j-th dynamic principal component of xNt. Notice that, dynamic principal

components require to pass from frequency domain to the time domain. Now, to recover the

10
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common component from xNt, consider the minimal closed subspace of L2(Ω, I,P) containing

the first q dynamic principal components:

UN = span (pNj(L) xNt = dpcjt , j = 1, 2, . . . , q , t ∈ Z) (2.9)

then by projecting the data on the minimal closed subspace containing the first q dynamic

principal components, we get the N -dimensional common component:

χit,N = proj(xit|UN )

= KNi(L) xNt (2.10)

where KNi(L) = p∗N1,i(L)p
N1

(L) + p∗N2,i(L)p
N2

(L) . . . + p∗Nq,i(L)p
Nq

(L) is the filter matrix

that extracts the finiteN or estimated common component χit,N from the finiteN -sample data

xNt. Under the Assumption 2.1 and Assumption 2.2 this projection, indeed the estimated

common component χit,N , converges to χit in mean square as N goes to infinity, indeed:

limN→∞ χit,N = χit in mean square. This result shows that the common component χit can

be recovered asymptotically from the sequence KNi(L) xNt.

2.2 The static factor model

The problem with the previous estimator is that the filter KNi(L) used to recover the common

component from the data is a two-sided filter. A filter is two-sided when the observed variables

are related not only with the current and past values of the factors but also with their

future values. Although this leaves unaffected the estimate of the central part of the sample,

the performance of the estimator deteriorates as we approach the end of the sample. This

deterioration makes this method not suitable for forecasting. To outperform this forecasting

problem, the literature has proposed two approaches:

• Stock and Watson (2002b) have proposed a new estimation method based on the eigen-

value decomposition of the contemporaneous variance-covariance matrix of xNt rather

than its spectral eigenvalue decomposition;

• Forni et al. (2005) have proposed the one-sided version of their two-sided filter, which

respect to Stock and Watson (2002b) retains the advantages of their dynamic approach,

11
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described in Forni et al. (2000), allowing observed variables to be related only with

current and past value of the factors.

The approach of Stock and Watson (2002b) bring us to the so-called static factor model or

diffusion index model (DI model), while the approach of Forni et al. (2005) bring us to the

one-sided estimation and forecasting of their generalized dynamic factor model explained in

Section (2.3).

The model is called static when the vector of factors Ft are loaded in xNt without leads

and/or lags, but just contemporaneoulsy. Although the relation between xNt and Ft is static,

both Ft and ξt can have a proper law of motion. For example:

xNt︸︷︷︸
(N×1)

= ΛN︸︷︷︸
(N×r)

Ft︸︷︷︸
(r×1)

+ ξNt︸︷︷︸
(N×1)

(2.11)

A(L)Ft = εNt εNt ∼ iid NN (0; Qε) (2.12)

Ψ(L)ξNt = vNt vNt ∼ iid NN (0; Rv) (2.13)

is a static factor model, where: A(L) = I − A1L − . . . − ApL
p is the static factors lag

polynominal, Ψ(L) = I − Ψ1L − . . . − ΨsL
s is the idiosyncratic lag polynominal, while

εNt and vNt are exogenous shocks of the common and idiosyncratic components respectly.

We have the so-called exact factor model, if we assume that the matrix Rv is diagonal,

otherwise idiosyncratic shocks are correlated and we have the so-called approximate factor

model. Because any VAR(p) can be rewritten as VAR(1) using the so-called companion form,

throughout the dissertation, particular focus will be dedicated to the VAR(1) version of the

previous static factor model:

xt = ΛFt + ξt (2.14)

Ft = AFt−1 + εt εt ∼ iid NN (0; Qε) (2.15)

ξt = Ψξt−1 + vt vt ∼ iid NN (0; Rv) (2.16)

where we dropped the time series index N for semplicity.

Differently from the specification by Forni and Lippi (2001), the common factors in Equation

12
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(2.11) are not required to be uncorrelated in time, and they can also be correlated with the id-

iosyncratic components. The only condition required for identification is that: VAR[Ft] = I,

indeed the vector of static common factor has unit lenght. The dimension of Ft is always

equal to r = q(m+ 1) where q is the dimension of the vector of common shocks ut.

2.2.1 The estimation of the static factor model

Following Stock and Watson (2002b), let ΓχN0 and ΓξN0 be the variance-covariance matrices

of the common component χNt and the idiosyncratic component ξNt respectively. Let µχNj

and µχNj be the largest eigenvalues, in descending orders, of ΓχN0 and ΓξN0 respectively.

Assumption 2.5 We assume that:

a) limN→∞ µ
χ
Nj =∞ for 1 ≤ j ≤ r;

b) there exists a real M , such that µξNj ≤M for any N .

Assumption 2.5 point a) establishes that, as N increases, the variance of xNt explained by the

first r eigenvalues of the common component increases to infinity. This means that as N goes

to infinity the weight of the idiosyncratic component in explaining Γx
N0 becomes smaller and

smaller. Assumtpion 2.5 point b) allows that the idiosyncratic components can be correlated,

but the assumption sets a limit to the amount of this correlation. As N increases, the vari-

ance of the vector xNt captured by the largest eigenvalue of the idiosyncratic component µχNr,

remains bounded. Then, under both point a) and point b) of the Assumption 2.5, Stock and

Watson (2002b) shows that the static projection on the first r static principal components of

xNt converge in mean square to the common component in Equation (2.11) for N →∞.

To recover the common component ΛNFt in Equation (2.11), we need to estimate the vector

of static factors Ft. Assume we are working on an empirical application with the finite pro-

cess xNT = {xit, i = 1, 2, . . . , N, t = 1, 2, . . . , T}, Stock and Watson (2002b) have proposed to

estimate Ft as the r largest static principal components (SPC) starting from the estimated

contemporaneous variance-covariance matrix Γ̂x
0 = T−1

∑T
t=1 xNT,tx

′
NT,t. The first principal

component is the linear combination of the observed variables that has maximum variance.

It is defined as the vector: spc1t = α̂N1xNt. The second principal component is the linear

combination of the observed variables that has maximum variance after the first one and it

13
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is uncorrelated with the first one. It is defined as the vector: spc2t = α̂N2xNt. To recover

the common component we need exactly r static principal components, then the r-th static

principal component will be the vector: spcrt = α̂NrxNt. To estimate the number of static

factors r, we have used the Alessi et al. (2007) criterion.

To derive these SPC, we need to maximize the variance explained by each principal compo-

nent. Because we assumed that the data-set has zero mean, the variance of the first principal

component is: VAR[α̂N1xNt] = E[α̂N1xNt(α̂N1xNt)′] = α̂N1Γ̂x
0 α̂
′
N1. This variance can be

incerased without limit unless we impose the unity lenght contraint α̂N1α̂
′
N1 = 1. The prob-

lem becomes to maximize α̂N1Γ̂x
0 α̂
′
N1 subject α̂N1α̂

′
N1 = 1. The Lagrangian of constrained

maximization problem is:

L = α̂N1Γ̂x
0 α̂
′
N1 − µ1(α̂N1α̂

′
N1 − 1) (2.17)

where µ1 is the Lagrange multiplier. Differentiation with respect to α̂N1 produces:

∂L
∂α̂N1

= 2α̂N1Γ̂x
0 − 2µ1α̂N1 = 0 ⇒ α̂N1Γ̂x

0 = µ1α̂N1 (2.18)

Indeed, µ̂1 is an eigenvalue of Γ̂x
0 and α̂N1 is the associated eigenvector. To decide which

eigenvector with maximum variance results from the product: α̂xNt, let’s multiply by α̂′N1,

we obtain:

VAR[α̂N1xNt]︷ ︸︸ ︷
α̂N1Γ̂x

0 α̂
′
N1 = µ̂1

1︷ ︸︸ ︷
α̂N1α̂

′
N1 ⇒ α̂N1Γ̂x

0 α̂
′
N1 = µ̂1α̂N1α̂

′
N1 = µ̂1 (2.19)

So, to maximize the variance µ̂1 must be as large as possible. Thus, α̂N1 is the eigenvector

corrisponding to the largest eigenvalue of Γ̂x
0 and VAR[α̂N1xNt] = µ̂1 is the largest eigenvalue

of Γ̂x
0 .

When we introduce the second principal component we require the variance of the sum of

the two to be maximum. The Lagrangian is:

L = α̂N ;1Γ̂x
0 α̂
′
N1 + α̂N2Γ̂x

0 α̂
′
N2 − µ1(α̂N1α̂

′
N1 − 1)− µ2(α̂N2α̂

′
N2 − 1) (2.20)
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where µ2 is the Lagrange multipliers corresponding to the second principal component. Dif-

ferenzation respect to α̂N1 and α̂N2 produces:

∂L
∂α̂N1

= 2α̂N1Γ̂x
0 − 2µ1α̂N1 = 0 ⇒ α̂N1Γ̂x

0 = µ1α̂N1 ⇒ α̂N1Γ̂x
0 α̂
′
N1 = µ̂1α̂N1α̂

′
N1 = µ̂1

∂L
∂α̂N2

= 2α̂N2Γ̂x
0 − 2µ2α̂N2 = 0 ⇒ α̂N2Γ̂x

0 = µ1α̂N2 ⇒ α̂N2Γ̂x
0 α̂
′
N2 = µ̂1α̂N2α̂

′
N2 = µ̂2

Thus, the first order conditions are maximized if we consider the first two largest eigenvalues of

Γ̂x
N0. In other words, the sum of first two eigenvalues µ̂1 + µ̂2 maximizes the sum of variances

given the unity lenght constraints. Therefore, since the second principal component must be

orthogonal to the first one, we have:

E[α̂N1xNt(α̂N2xNt)′] = α̂N1

Γ̂x
0︷ ︸︸ ︷

E[xNtx′Nt] α̂
′
N2 =

µ1α̂N1︷ ︸︸ ︷
α̂N1Γ̂x

0 α̂
′
N2 = µ1

α̂N1 ⊥ α̂N2︷ ︸︸ ︷
α̂N1α̂

′
N2 = 0

because eigenvectors are by definition orthogonal, indeed α̂N1α̂N2 = 0 or α̂N1 ⊥ α̂N2. It-

erating this procedure r times we get all the required principal components. Computing the

eigenvectors of the variance-covariance matrix of xNt is equivalent to solve the so-called static

principal component (SPC) problem, defined as:

α̂Nj = argmaxd∈RN dΓx
N0d

′ (2.21)

subject to dd′ = 1

and dα̂′Ni = 0 for 1 ≤ i < j

for j = 1; 2; . . . ; r. For r = 2, we have shown that the solutions of this maximization problem

are the eigenvectors corresponding to the r largest eigenvalues of Γx
N0. Then, ordering the

eigenvalues µ̂j in descending order and taking the eigenvectors corresponding from the largest

eigenvalue to smallest, we define:

ŜPCt = (α̂N1xNt α̂N2xNt . . . α̂NrxNt)′

as the vector of static principal component of xNt.
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2.3 One sided estimation and forecasting of Forni et al. (2005)

The filters KNi(L) in Equation (2.10) that extract the common components from the infinite

data-set xNt are unknown and must be estimated. In practice, we have to deal with finite sam-

ples, then we need to extract the common components from xNT = {xit, i = 1, 2, . . . , N, t =

1, 2, . . . , T}, rather than its infinite couterpart xNt. The idea is to estimate the filters KNi(L)

under the assumption that xNt admits a Wold representation. Infact, if xNt admits a

Wold representation, any periodogram smoothing or lag-window estimator Σ̂x(θ) is a con-

sistent estimator of Σx
N (θ) for T going to infinity. Therefore, also Σ̂x(θ) is unknown, but it

can be estimated applying the discrete Fourier transform to the sample variance-covariance

matrix of xNT . Let’s consider first, the estimation of Σ̂x(θ), then we consider the estimation

of the filter KNi(L) and its refinement as one sided filter.

Under the assumtpion that xNt admits a Wold representation:

xNt =
∞∑

k=−∞
Ckwt−k (2.22)

where: {wt, t ∈ Z} is a second-order white noise with nonsingular covariance matrix and finite

fourth-order moments, and the (ij)-th entries of the matrices Ck satisfies
∑∞

k=−∞ |Ci,j,k||k|1/2 ≤

∞ for all N, i, j ∈ N. Given the sample variance-covariance matrix of the finite process xNT :

Γ̂x
Nk = (T − k)−1

T∑
t=k+1

xNT,tx
′
NT,t (2.23)

with k = −M, . . . ,M is the lag order fixed using the so-called Bartlett lag-windowM = M(T ).

Infact, to allow estimation, the number of variance-covariance matrices has to be truncated

trought the Bartlett lag-window. Estimated the sample variance-covariance matrices Γ̂x
k , we

can estimate the spectral density matrix Σ̂x(θ) by applying the discrete Fourier transformation

to Γ̂x
k . To avoid biases caused by the truncation, we need to multiply the sample variance-

covariance matrices by the Bartlett weights wk = 1− |k|
M+1 :

Σ̂x(θh) =
1

2π

M∑
k=−M

wkΓ̂x
Nke

−ikθh (2.24)
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where: θh = 2πh/(2M + 1) are the number of frequencies in which the spectral densities are

estsimated, h = 0, 1, . . . , 2M are the total number of points in which the Fourier transfor-

mation is worked out, and wk are the weights corresponding to the Bartlett lag-window of

size M = M(T ). The estimation of the spectral density allows to decompose the variance-

covariance matrices into periodic components, fruitful to explain the dynamics of the data-set.

The choice of M represents the trade off between small bias (large M) and small variance

(small M). Forni et al. (2000) show that fixing M as the nearest integer to the square root of

the number of observations in the data-set performes well. Consistent estimates are ensured,

provided that M(T )→∞ and M(T )/T → 0 as T →∞.

Now, we can observe that the estimated filters K̂Ni(L) are infinite two-sided, that is:

K̂Ni(L) =
1

2π

∞∑
k=−∞

[
∫ π

−π
K̂Ni(θ)eikθdθ]Lk

where, as we did before, we used the underlined notation to denotes that K̂Ni(L) is the

inverse Fourier transformation of K̂Ni(θ). But, because xNt is not available neither for t ≤ 0

nor t > T , the projection K̂Ni(L)xNt onto the space spanned by the q dynamic principal

components cannot be calculated. Therefore, to allow estimation, a truncated version of the

filter may be used:

K̂Ni(L) =
M∑

k=−M
K̂Ni,kL

k

The method discussed above produces an estimator of the common component wich is two-

sided. As discussed before, this approach has the advantage of exploring the dynamic structure

of the data, but the performance of the estimated common component deteriorates as t ap-

proaches the end of the sample, indeed 1 or T . Indeed, to compute the estimator for the last

observation, one needs M future observations which are not available, this problem makes

forecasting not possible.

To allow forecasting, Forni et al. (2005) propose a refinement of their procedure which retains

the advantages of the dynamic approach, but permits to obtain a consistent estimate of the

optimal forecast of the common component of xNt as a one-sided filter of the observations.

This method consists of two steps: in the first step, they follow Forni et al. (2000) get-
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ting estimates of the variance-covariance matrices for the commmon and the idiosyncratic

components as the inverse Fourier transform of the spectral density matrix of the common

and idiosyncratic component respectively, then in the second step, they use these estimates

to construct r contemporaneous linear combination of the observations with the smallest id-

iosyncratic common variance ratio. In other words, they compute the eigenvalues and the

eigenvectors of the couple (Γ̂χN0(θ), Γ̂ξN0(θ)), then, ordering the eigenvalues in descending or-

der and taking the eigenvectors corresponding to the r largest ones, they obtain the so-called

generalised principal components that allow efficient estimates and forecasts of the common

component of xNt without the need of future values. Let’s inspect these steps in a more

detailed way:

first step: The first step follows Forni et al. (2000). The step is dedicated to the esti-

mation of the variance-covariance matrices of the common ΓχNk and the idiosyncratic compo-

nent ΓξNk, starting from an estimator of the spectral density matrix of the data-set, indeed

Σx
N (θ). We discussed that, under the assumption that xNt admits a Wold representation,

any periodogram smoothing or lag window estimator Σ̂x(θ) of xNT represents a consistent

estimator of Σx
N (θ) of xNt. Now, using the Assumption 2.1, we can decompose the estimated

spectral density Σ̂x(θ) into the sum of the a spectral density matrix of the common and the

idiosyncratic component, indeed:

Σ̂x(θ) = Σ̂χ(θ) + Σ̂ξ(θ)

where Σ̂χ(θ) =
∑q

j=1 p̂x∗
j (θ)λ̂x

j (θ)p̂x
j and Σ̂ξ(θ) =

∑n
l=q+1 p̂x∗

l (θ)λ̂x
l (θ)p̂x

l are the estimated

spectral density matrices of the common and idiosyncratic component respectively, while

p̂x∗
j is the j-th complex conjugate eigenvector of Σ̂x(θ). Then, applying the inverse discrete

Fourier transformation to these density matrices, the covariance matrices of the common χt

and idiosyncratic component ξt can be estimated as:

Γ̂χNk(θ) =
∫ π

−π
Σ̂χ(θ)eikθdθ (2.25)

Γ̂ξNk(θ) =
∫ π

−π
Σ̂ξ(θ)eikθdθ (2.26)
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These estimated variance-covariance matrices will be used in the second step to solve the

so-called generalized principal component (GPC) problem.

Second Step: The second step is dedicated to the estimation of the generalized principal

components given the variance-covariance matrices estimated in the first step. More precisely,

the objective is to find r independent linear combinations Wj = ẑjxNt where the weights zj

are defined as:

ẑj = argmaxg∈RN dΓ̂χN0d
′ (2.27)

subject to dΓ̂ξN0d
′ = 1

and dΓ̂ξN0ẑ
′
l = 0 for 1 ≤ l < j

for j = 1, 2, . . . , r. The idea is that the information contained in the variance-covariance

matrices estimated in the previous step, can be used to determine linear combinations which

are more efficient than standard principal components. The improvement in efficiency is

produced because the idiosyncratic variance is minimized in the first step. As we have seen

before, a problem like that can be solved by compunting the eigenvalues and the eigenvectors.

In this case, we need to compute the eigenvalues and the eigenvectors of the couple of matrices

(Γ̂χN0, Γ̂
ξ
N0), rather than the eigenvalues and eigenvectors of the estimated contemporaneous

variance-covariance matrix Γ̂x
N0. The aggregates that come from the couple (Γ̂χN0, Γ̂

ξ
N0) are

called generalized to distinguish from the static aggregates that come from Γ̂x
N0. Practically,

the generalized eigenvalues are the solutions of: det(Γ̂χN0 − vjΓ̂
ξ
N0) = 0 for j = 1, 2, . . . , r,

while the corresponding generalized eigenvectors are the weights ẑj that must satisfy:

ẑjΓ̂
χ
N0 = v̂j ẑjΓ̂

ξ
N0 for j = 1; 2; . . . ; r (2.28)

under the normalization conditions:

ẑlΓ̂
χ
N0ẑ

′
j = 1 for l = j (2.29)

ẑlΓ̂
χ
N0ẑ

′
j = 0 for l 6= j (2.30)
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Then ordering the eigenvalues v̂j in descending order and taking the eigenvectors correspond-

ing to the r largest eigenvalues, we define ĝpct = (ẑxNt ẑ2xNt . . . ẑrxNt)′ as the first r

generalized principal component of xNt.

2.4 Determing the number of factors: r and q

As mentioned in the introduction, the most important feature of factor models is to summarize

the information contained in a large panel of variables using a small number of unobserved

variables called factors. The question is that, the exact number of factors to use is not known

and it must be estimated. We need to estimate both the number of static factor r and the

number of dynamic factors q. In this dissertation the optimal number r̂ of static factors is

estimated using the criterion proposed by Alessi et al. (2007), whereas the optimal number

q̂ of dynamic factors is estimated using the criterion proposed by Hallin and Liška (2007).

Since, in empirical applications, we have to deal with finite sequences of length T of a finite

number N of variables, we describe these two criteria for a finite realization of the form

xNT = {xit, i = 1, 2, . . . , N, t = 1, 2, . . . , T}.

2.4.1 Determining the number of static factors

Alessi et al. (2007) have modified the criterion by Bai and Ng (2002) for determining the

number of static factors in approximate factor models. They select the true number of static

factors r̂ as the number that minimizes the variance explained by the idiosyncratic component,

but in order to avoid overparametrization, their minimization is subject to a penalization, in-

deed, they have modified the original procedure of Bai and Ng (2002) by multiplying the

penalty function by a positive real number, which allows us to tune its penalizing power, by

analogy with the method used by Hallin and Liška (2007) in the frequency domain. They

have shown that their modified criterion is more robust in estimating the true number of

static factors than the criterion of Bai and Ng (2002).

Formally, let’s suppose that our data-set admits a static factor model as in Equation (2.14),

here reported:

xt = ΛFt + ξt (2.31)
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where xt denotes the (N×1) vector of observations given a time t for n infinite number of time

series, Λ denotes the (N × r) matrix of static factor loadings, Ft denotes the (r × 1) vector

of static common factors, and ξt denotes the (N × 1) vector of idiosyncratic components.

Considering just one single time series in xt, we can write:

xit = λiFt + ξit (2.32)

where λi denotes the i-th row of the matrix of factor loadings Λ. Bai and Ng (2002) have

proposed an information criterion to determine the optimal number of static factors r in

Equation (2.32) assuming to have k common static factors for the matrices λi and Ft, denoted

by λ(k)
i and F(k)

t . Let:

V (k) = (N T )−1
N∑
i=1

T∑
t=1

(xit − λ̂(k)
i F̂(k)

t )2 (2.33)

be the residual variance of the idiosyncratic components ξit when the matrix of factor loadings

Λ(k)
t and the common factors F̂(k)

t are estimated using the method of static principal compo-

nents as described in SubSection (2.2.1). The idea of Bai and Ng (2002) to minimize V (k)

in order to find the optimal number of static factors. They define the following information

criterion:

r̂IC_bn = argmin0≤k<rmax IC_bn(k) (2.34)

IC_bn(k) = log(V (k)) + k p(N,T )

where: r̂IC_bn is the optimal number of static common factors, p(N,T ) is a penalty function

which counterbalances the fit improvement due to the inclusion of additional common fac-

tors, and rmax is the maximun number of static factors. Notice that, when the number k of

factors is increased, the variance explained by the factors increases too, then V (k) decreases,

so the aim of the penalty function, which is an increasing function of both n and T , is to

avoid overparametrization. The information criterion IC_bn(k) has to be minimised in order

to determine the optimal number of static factors, its consistency is proved by Bai and Ng

(2002). In empirical applications we have to fix a maximum number of static factors rmax,

and estimate the model for all numbers of factors k = 1; 2; . . . ; rmax. As a penalty function

Bai and Ng (2002) propose to use p(N,T ) = N+T
N T log(min{N,T}).
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According to what Hallin and Liška (2007) propose in a similar criterion for the number

of dynamic factors q, because a penalty p(N,T ) leads to consistent estimation of r if and only

if c p(N,T ) does, where c is an arbitrary positive real number, the idea of Alessi et al. (2007)

is to modify the criterion of Bai and Ng (2002) by multiplying the penalty function p(N,T )

by a constant c that has no influence on the asymptotic performance of the identification

method. The criterion becomes:

r̂IC_a = argmin0≤k<rmax IC_a(k) (2.35)

IC_a(k) = log(V (k)) + c k p(N,T )

where c is a constant which has the aim to tune the penalizing power of the function p(N,T ).

Alessi et al. (2007) show that the criterion IC_a(k) corrects the tendency of IC_bn(k) to

overestimate the optimal number of static factors and provide a more robust estimation of r

than the original criterion IC_bn(k) proposed by Bai and Ng(2002). To select the optimal

number of static common factors r̂, Alessi et al. (2007) suggest, as Hallin and Liška (2007),

an automatic procedure which basically fix the number of static factors in correspondence

with the second stationary interval of the variance of the selected r̂ for the whole region of

values of the constant c.

2.4.2 The number of dynamic factors

Hallin and Liška (2007) have proposed a method for determining q in a GDFM that exploits

the relation between the number of dynamic factors and the number of diverging eigenvalues

of the spectral density matrix of the finite data-set xNT . The ingredientes of the information

criterion are the estimated spectral density of xNT , indeed Σ̂x(θ), and its eigenvalues λNT,i(θ).

The criterion proposed is:

q̂IC_hl = argmin0≤k<qmax IC_hl(k) (2.36)

IC_hl(k) = log

 1
N

n∑
i=k+1

1
2MT + 1

MT∑
h=−MT

λTNi(θh)

 + c k p(N,T )

where: θh = 2πh/T for h = −MT , . . . ,MT and qmax is the maximum number of dynamic

factors. The authors suggest using MT = [0.5
√
T ] or MT = [0.7

√
T ] and as penalty function

22



From the static factor model to the GDFM

Tesi di dottorato in Econometrics, di Gabriele Palmegiani, discussa presso l’Università LUISS Guido Carli, in data 20 Marzo 2012.

Soggetta a copyright c©. Sono comunque fatti salvi i diritti dell’Università LUISS Guido Carli di riproduzione per scopi di ricerca e

didattici, con citazione della fonte.

p(N,T ) = (M−2
T + M

1/2
T + N−1logAT ) with AT = (min{N,M2

T ,M
−1/2
T T 1/2}). Therefore,

the penalty function should be large enough to avoid overestimation of q̂IC, but at the same

time it should not over penalize. To select the optimal number of dynamic common factors

q̂, Hallin and Liška (2007) suggest an automatic procedure which basically fix the number of

optimal dynamic factors in correspondence with the second stationary interval of the varaince

of the selected q̂ for the whole region of values of the constant c.

2.5 From the static factor model to the GDFM

In this section, we show that a static factor model can be rewritten as a GDFM under suitable

assumptions. Let’s start considering a particular case of the static factor model described in

Equation (2.14):

xt = ΛFt + ξt (2.37)

(I−AL)Ft = But = εt εt ∼ iid NN (0; Qε)

(I−ΨL)ξt = vt vt ∼ iid NN (0; Rv)

where we supposed that the vector (r×1) of factor exogenous shocks εt depends on the (q×1)

vector of dynamic factors ut trought the (r× q) matrix B with q < r. By plugging the law of

motion of the static factors into the equation of the data-set, we obtain a GDFM as in Forni

et al. (2000):

xt =

χt︷ ︸︸ ︷
Λ(I−AL)−1But + ξt (2.38)

Then, we have shown that starting from a static or diffusion index model is possible to obtain

a GDFM assuming that the vector of r factor exogenous shocks εt depends on the vector of

q dynamic factors ut. The relevant question is: ...does Model (2.38) exist? Indeed, ...can

εt be expressed as the product of a matrix B times the vector of dynamic factors ut?. The

answer is given by Forni et al. (2009). They argues that Model (2.38) exists with a finite

number of static factors r if and only if the space spanned by the q dynamic factors is finite

dimensional. So, if this span is finite dimensional, the static factor model can be rewritten

as a GDFM. Therefore, the advantage of Model (2.38) respect to Model (2.14) is that, by

taking into account also the law of motion of the static factors, we can consider also the non-

contemporaneous comovements among the observed variables. In this way the model should
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be particularly useful for forecasting.
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Chapter 3

DSGE models: from regular to
Data-Rich Environment

“The more specific and data-rich the model, the more effective it will be"

Jean Boivin and Marc Giannoni

This chapter presents the estimation of the Dynamic Stochastic General Equilibrium (DSGE)

models used in the out-of sample forecasting experiments. We work on two types of DSGE

models: the DSGE model of Smets and Wouters (2007), (hereafter also referred as regular or

no-augmented DSGE model), and its representation in term of the so-called Data-Rich DSGE

model (drDSGE) following Boivin and Giannoni (2006) and Kryshko (2009). The motivation

from rewriting and re-estimating the regular DSGE in term of drDSGE, stands on the doc-

umented gains provided by Boivin and Giannoni (2006). Although, they have shown that:

first, the regular DSGE model is outperformed by the drDSGE in the estimation accurancy:

...exploiting more information (through the drDSGE) is important for accurate estimation of the model’s

concepts and shocks, and that it implies different conclusions about key structural parameters and the

sources of economic fluctuations.

Boivin and Giannoni (2006)

second, better estimates imply better forecasts, at least for one quarter ahead for all pooled

observed DSGE variables:

...more precision in estimating these variables implies then more precise forecasts of the indicators.

Boivin and Giannoni (2006)

nothing has been stated on the relative forecasting performance of the drDSGE respect to

factor models, especially respect to the GDFM. It remains an open part of the empirical

reseach, that we face in detailed way in Chapter (4) for two time series of the US economy:
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the output growth and the rate of inflation.

The chapter is organized as follows. In Section (3.1) we open discussing why we should

set aside factor models and build up DSGE models instead. In Section (3.2) we focus on the

approach of Boivin and Giannoni (2006), while Section (3.3) concludes showing the DSGE

model of Smets and Wouters (2007) and explaining how it has been estimated in term of

Data-Rich Environment.

3.1 Why DSGE models?

As mentioned in the introduction, the main drawback of factor models is the lack of an un-

derlying economic theory. This implies that factor models are constructed on the data rather

than using a strong economic theory based on utility-maximising rational agents. This limita-

tion makes, in principle, factor models vunerable to the so-called Lucas critique which argues

that: it is naive to try to predict the effects of a change in economic policy entirely on the

basis of relationships observed in the data because the parameters of those models were not

structural, indeed not policy-invariant, and they would necessarily change whenever policy,

or the rules of the game, was changed. Then, policy conclusions based on those models would

therefore potentially be misleading:

...given that the structure of an econometric model consists of optimal decision rules of economic agents, and

that optimal decision rules vary systematically with changes in the structure of series relevant to the decision

maker, it follows that any change in policy will systematically alter the structure of econometric models

Lucas (1976)

In practice, the Lucas critique suggests that if we want to predict the effect of a policy, we

should model the deep parameters, such as preferences, technology and resource constraints

parameters, that govern the individual behavior, rather than work on the data only. This

critique has been so influential that it has encouraged macroeconomists to build microfoun-

dations in their models. In this way DSGE models have been originated.

The point is that also DSGE models have important limitations. Schorfheide (2010) evi-

dences five main limitations or challenges. First, is the fragility of parameter estimates due

to lack of identification of the parameters of the model (Canova and Sala (2009)). Second, in
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a DSGE model, exogenous disturbances generate macroeconomic fluctuations and we cannot

be sure whether these shocks capture aggregate uncertainty or model misspecification and

the formal econometrics is weak to distinguish these two interpretations. Third, many time

series show low frequency behavior which let the DSGE estimation difficult to implement.

Fourth, DSGE models often appear to be misspecified in the sense that VARs are favored by

statistical criteria that trade off goodness of in-sample fit against model dimensionality. Fifth,

the prediction of the effects of rare policy changes often relies exclusively on extrapolation by

theory which makes it difficult to provide measures of uncertainty. For example, Kocherlakota

(2007) explains that while a model with the worse statistical fit delivers the better policy pre-

diction, bad fit is not a guarantee of good policy prediction. These limitations produce DSGE

model misspecification, which leads to poor estimates and forecasts.

The idea proposed by the literature to get away from both factor models and DSGE models

limitations is to combine these models using an hybrid or mixture or augmented models. An

hybrid model is an econometric model where a DSGE model is combined with a pure statisti-

cal data model (such as: a autoregressive process, a vector autoregressive process, a bayesian

vector autoregressive, or a factor model), in order to cover the gap between theory and data

mitigating the limitations of each model. Particular attractive is, in our view, the hybrid

approach proposed by Boivin and Giannoni (2006) whose representation, estimation and fore-

casting is dedicated the rest of the chapter. For a survey of hybrid models see Paccagnini

(2011).

3.2 The Data-Rich DSGE

This section contains both the representation and the estimation theory of the so-called Data-

Rich DSGE (drDSGE) of Boivin and Giannoni (2006), while its forecasting theory is discussed

together with all other forecasting models in the next chapter.

First of all, let’s introduce the DSGE’s notation used throughout the dissertation. Let xt

be a variable at time t, let xss be the steady state value of x, indeed the value of x not

affected by random shocks, let x̂t = log(xt) − log(xss) be its log equilibrium deviation of

x. Following Sims (2002), every DSGE model has around its steady state the following lin-
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earized representation:

Γ0st = Γ1st−1 + Ψet + Πηt (3.1)

where: st is the vector of all DSGE endogenous variables (for example: the capital k̂t, or

the output growth x̂t), et is the vector of DSGE exogenous shocks (for example: monetary

shock ert , preference shock ect or government shock egt ), ηt is the vector of DSGE expectational

error (by definition is given by: ηt = s̃t − Et−1[s̃t] where s̃t is a subvector of st that contains

expectational variables, satisfying Et[ηt+1] = 0 for all t), while Γ0, Γ1 and Π are matrices of

parameters. The linearized solution of Equation (3.1) delivers a VAR process for DSGE

state variables:

ynt︸︷︷︸
(n×1)

= D(ϑ)︸ ︷︷ ︸
(n×r)

st︸︷︷︸
(r×1)

(3.2)

st︸︷︷︸
(r×1)

= G(ϑ)︸ ︷︷ ︸
(r×r)

st−1︸︷︷︸
(r×1)

+ H(ϑ)︸ ︷︷ ︸
(r×re)

et︸︷︷︸
(re×1)

et ∼ N (0; Qe(ϑ)) (3.3)

where: ynt denotes the n-dimensional vector of DSGE observed time series, st denotes the

r-dimensional vector of DSGE state variables, ϑ denotes the vector of DSGE deep parameters

that we wish to estimate, et denotes the re-dimensional vector of DSGE exogenous shocks

with diagonal variance-covariance matrix Qe(ϑ), while D(ϑ), G(ϑ) and D(ϑ) denote matri-

ces of parameters as a function of the deep parameters vector ϑ. As in Kryshko (2009), in

order to interpret the r unobserved static factors as r state variables, we assumed that st has

the same dimension of Ft.

Handling this system for estimation and/or forecasting might generate the following draw-

backs:

1. As pointed out by Ireland (2004), this system is highly stylized, indeed it can not be

expected to mimic the data generating process (DGP):

...a method for combining the power of DSGE theory with the flexibility of VAR time-series series

models, in hopes of obtaining a hybrid that shares the desirable features of both approaches to

macroeconomics. The method takes as its starting point a fullyspecified DSGE model, but also

admits that while this model may be powerful enough to account for and explain many key features of

the US data, it remains too stylized to possibly capture all of the dynamics that can be found in the

data. Hence, it augments the DSGE model so that its residuals (meaning the movements in the data

that the theory cannot explain) are described by a VAR, making estimation, hypothesis testing, and
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forecasting feasible

Ireland (2004) pag.1206

To overcome this problem Ireland (2004) has proposed to sort out the linearized solution

adding a measurement error, which differently from Sargent (1989) and Altug (1989) is

allowed to follow an unconstrained, first order vector autoregression with no-diagonal

variance-covariance matrix.

2. ynt contains only few observed variables. Differently from factor models where all N

variables in the data-set xNt are explored, in DSGE modelling only n obderved variables

(with N >> n) are accounted for. For example, in their DSGE model Smets and

Wouters (2007) consider only n = 7 observed variables, while Stock and Watson(2002a)

take into account of 215 observed variables in their diffusion index model.

3. As discussed by Boivin and Giannoni (2006), in regular DSGE models it is assumed that

each theoretical concept (such as, inflation or employment) is properly measured by a

single data indicator in xNt and this choice is quite arbitrary. It means that imperfect

information is not allowed, while in realty, institutions, researchers and central banks

have different amounts of informations available.

To get away from these limitations the linearized DSGE solution must be augmented, other-

wise information is lost and DSGE model misspecification is generated. The most powerful

way, in our view, to overcome all these limitations is to combine a DSGE model with a static

factor model as proposed by Boivin and Giannoni (2006).

3.2.1 The drDSGE: representation theory

The idea of Data-Rich DSGE (drDSGE) is to extract the common factor vector Ft from

large panel of macroeconomic time series xNt and to match the state variable vector st of

the model to the extracted common factor Ft (this matching generates the so-called Data-

Rich Environment), where the law of common factors Ft is governed by the DSGE linearized

solution. The key assumption of their approach is the separation betweeen observed or data

indicators and theoretical or model concepts:

• the data indicators or simply indicators are the observed time series variables in xNt;
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• the theoretical concepts are time series variables in the vector xNt observed by econo-

metricians or central banks, such as: employment, inflation or productivity shocks, that

are assumed to be not properly measured by a single data series, but they are merely

imperfect indicators of the observed time series. For example, the employment is im-

perfectly measured because there are discrepancies between its two main sources: one

obtained from the establishment survey and the other from the population survey.

This approach allows: first, to explore a richer amount of information by combining a DSGE

model with a static factor model; second, to introduce imperfect information on DSGE esti-

mation which is particular useful to characterize the desirable monetary policy (Boivin and

Giannoni(2008)); third, to interpret structurally the latent factors; fourth, to avoid the Lucas

critique.

Let st = [y′nt s′t]
′ be the vector collecting all variables in a given DSGE model, by defi-

nition:

st ≡

ynt

st

 =

D(ϑ)

I

 st (3.4)

where the sign ≡ means identity. Representing the vector of common factors Ft as a subset

of the variables in st, we can define:

Ft ≡ Fst = F

D(ϑ)

I

 st (3.5)

where F is a matrix that generates the common factors Ft from the vector st of all DSGE

variables. Now, by substituting Equation (3.5) into Equation (2.14), we obtain the static

drDSGE observation equation:

xt︸︷︷︸
(N×1)

= Λ︸︷︷︸
(N×r)

Ft︸︷︷︸
(r×1)

+ ξt︸︷︷︸
(N×1)

⇒ xt︸︷︷︸
(N×1)

= Λ(ϑ)︸ ︷︷ ︸
(N×r)

st︸︷︷︸
(r×1)

+ ξt︸︷︷︸
(N×1)

(3.6)

Then, the drDSGE state space representation is:

xt = Λ(ϑ)st + ξt (3.7)

st = G(ϑ)st−1 + H(ϑ)et et ∼ N (0; Qe(ϑ)) (3.8)
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where ξt can be interpreted as serially correlated measurement errors. Adding their law of

motion, as we did in Equation (2.16), we obtain the drDSGE static representation:

xt = Λ(ϑ)st + ξt (3.9)

st = G(ϑ)st−1 + H(ϑ)et et ∼ N (0; Qe(ϑ)) (3.10)

ξt = Ψξt−1 + vt vt ∼ N (0; Rv) (3.11)

where Λ(ϑ)st can be interpreted as the static DSGE common component of xt since the

state variables st are loaded in xt just in a contemporaneoulsy way. Because st contains

the vector of structural shocks ut, such as, the technical progress at and the vector of errors

in data indicators ζt , such as, the gdp measurement error εyt , we may assume that these

shocks have effect in the present and in the past. Then the associated dynamic drDSGE

representation becomes:

xt = B(L)

ut

ζt

 + ξt = B(L)st + ξt (3.12)

ξt = Ψξt−1 + vt where: vt ∼ N (0; Rv(ϑ)) (3.13)

where B(L) are one-sided filters in the lag operator L as we defined in Equation (2.2), and

st = [ut ζt]′ can be interpreted as the dynamic (primitive) factors associated to the state

variables or static factors st. This representation is not used by Boivin and Giannoni (2006)

and it remains an open part of the empirical research.

3.2.2 Regular DSGE versus drDSGE

In the drDSGE representation, the key role is played by the matrix Λ(ϑ) in Equation (3.9).

In a regular DSGE model, the number of observed variables n contained in ynt is usually kept

small (most often equal to the number of structural shocks) and theoretical concepts are often

assumed to be perfectly measured by a single data indicator in xNt. So, that there exists a

one-to-one relation between theoretical concepts and the data indicators. It implies that

matrix Λ(ϑ) is a (r × r) identity matrix, where r is the number of state variables.

On the other hand, in a drDSGE model there are many-to-many relations between xNt

and st, so that matrix Λ(ϑ) becomes (N × r) with (N >> r). It permits to brige the gap
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between data indicators in xNt and theoretical concepts in st. Therefore, the data indicators

in xNt are partitioned into two groups of variables:

• the core series xFt ∈ xNt which correspond to only one model concept in st;

• the no-core series xSt ∈ xNt which are not directly relation with one specific model

concept in st but are related with more than one model concept.

In other words, the core series are time series in xNt that cannot be expressed as a linear

combination of model concepts st, while the no-core series are time series in xNt that can

be expressed as a linear combination of more than one model concept in st. The idea is to

separate key DSGE observed variables from no-key DSGE variables. For example, the core

series might have been various measures of real output (such as: the real GDP or the in-

dustrial production), of inflation (such as: the CPI inflation or the PCE deflator inflation)

or the nominal interest rate, instead the no-core series might include exchange rates, real

exports and imports, stock returns and similar data indicators not related directly to any

model concept in xNt.

The drDSGE measurement equation becomes:


xFt

−−−

xSt


︸ ︷︷ ︸
xt (N×1)

=


Λ(ϑ)F

−−−

Λ(ϑ)S


︸ ︷︷ ︸
Λ(ϑ) (N×r)

st +


ξFt

−−−

ξSt


︸ ︷︷ ︸
ξt (N×1)

(3.14)

where the matrix Λ(ϑ)F contains just one non-zero element for each row, while the matrix

Λ(ϑ)S contains more than one non-zero element for each row and measurement errors ξt may

be serially correlated, but uncorrelated across different data indicators:

ξt = Ψξt−1 + vt vt ∼ N (0; Rv) (3.15)
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indeed, the matrices Ψ and Rv are diagonal. For example, the measurement equation assumes

the following typical form:



Output Growth # 1

Output Growth # 2

...

Output Growth # ñx

Inflation # 1

Inflation # 2

...

Inflation # ñπ

...

−−−−−

Exchange Rate # 1

Exchange Rate # 2

...

Exchange Rate # ñer

...


︸ ︷︷ ︸

xt (N×1)

=



1 0 . . . 0

γx,2 0 . . . 0
...

...
...

...

γx,ñ 0 . . . 0

0 1 . . . 0

0 γπ,2 . . . 0
...

...
...

...

0 γπ,ñ 0 0
...

...
...

...

−−− −−− −−− −−−

γ1,1 γ1,2 . . . γ1,ñ

γ2,1 γ2,2 . . . γ2,ñ

...
...

...
...

γñer,1 γñer,2 . . . γñer,ñ
...

... . . .
...


︸ ︷︷ ︸

Λ(ϑ) (N×r)


xt

πt
...


︸ ︷︷ ︸
st (r×1)

+



ξx1,t

ξx2,t
...

ξxñ,t
...

ξπ1,t

ξπ2,t
...

ξπñ,t
...

−−−

ξer1,t

ξer2,t

...

ξerñ,t
...


︸ ︷︷ ︸
ξt (N×1)

(3.16)

where we assumed that each model concept can be measured by ñ time series variables, γi,ñ

denotes a generic parameter of the matrix Λ(ϑ) for the ñ-th time series for the same i-th

model concept. As we can see, core series admits just one no-null parameter in each row, it

means that they are directly related with only one model concept in st. Therefore, to tune

the magnitude of each model concept, the value of γi;ñ of just one variable is unity as the first

row. Meanwhile, non-core series are assumed linear combinations of all DSGE state variables

st trought the parameters [γi;1 . . . γi;ñ]. So, the state space representation of the drDSGE
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is:


xFt

−−−

xSt


︸ ︷︷ ︸
xt (N×1)

=


Λ(ϑ)F

−−−

Λ(ϑ)S


︸ ︷︷ ︸
Λ(ϑ) (N×r)

st︸︷︷︸
(r×1)

+


ξFt

−−−

ξSt


︸ ︷︷ ︸
ξt (N×1)

(3.17)

st︸︷︷︸
(r×1)

= G(ϑ)︸ ︷︷ ︸
(r×r)

st−1︸︷︷︸
(r×1)

+ H(ϑ)︸ ︷︷ ︸
r×re)

et︸︷︷︸
(Ne x 1)

et ∼ N (0; Qe(ϑ)) (3.18)

ξt︸︷︷︸
(N×1)

= Ψ︸︷︷︸
(N×N)

ξt−1︸︷︷︸
(N×1)

+ vt︸︷︷︸
(N×1)

vt ∼ N (0; Rv) (3.19)

where we assumed that the matrices Qe(ϑ), Rv and Ψ are diagonal. The essential feature

of the drDSGE is that the panel dimension of data set N is much higher than the number

of DSGE model states r (with: N >> r). This representation is quite similar to the static

factor model representation (from Equation (2.14) to Equation (2.16)). The differences are:

first, the law of motion of the unobserved factors is now governed by a DSGE model solution;

second, the some factor loadings are restricted by the economic meaning of the DSGE model

concepts.

3.2.3 The drDSGE estimation step

Following Boivin and Giannoni (2006), the state space representation (from Equation (3.17)

to Equation (3.19)) represents the starting point to estimate the drDSGE. This system is

estimated using Bayesian methods under Markov Chain Monte Carlo (MCMC) algorithm.

For convenience, we divide parameters of the model into two types: the first type are the

deep parameters in vector ϑ, and the second type are the parameters collected by the state

space representation of the model as Ξ = {Λ(ϑ),Ψ,Rv}. We denote with xT = {x1, . . . ,xT }

and sT = {s1, . . . , sT } the data and the states up to time t = T respectively. Because of the

normality of the structural shocks et and the measurement error innovations vt, the system

from Equation (3.17) to Equation (3.19) is a linear Gaussian state space model and the

likelihood function of data p(xT |ϑ,Ξ) can be evaluated using the Kalman filter.

Generally speaking a Bayesian estimation for an unknown parameter vector ϑ is imple-

mented based on following procedure:

step 1a: Set the prior distribution p(ϑ), which is the distribution of ϑ that the researcher
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have in mind before observing the data.

step 2a: Convert the prior distribution to the posterior distribution p(ϑ|xT ), which is the

distribution of ϑ conditional on the data xT , using the Bayes theorem:

p(ϑ|xT ) =
p(xT |ϑ)p(ϑ)∫
p(xT |ϑ)p(ϑ) dϑ

(3.20)

where p(xT |ϑ) denotes the likelihood function of the data given the deep parameters vector .

In our case, the aim is to estimate the couple (ϑ,Ξ), rather than just one single unknown

vector. The posterior distribution of the couple is:

p(ϑ,Ξ|xT ) =
p(xT |ϑ,Ξ)p(ϑ,Ξ)∫

p(xT |ϑ,Ξ)p(ϑ,Ξ) dϑ dΞ
(3.21)

where p(ϑ,Ξ) denotes its prior distribution, while p(ϑ,Ξ|xT ) denotes its likelihood function.

In order to generate draws from the posterior distribution p(ϑ,Ξ|xT ), since it is not directly

tractable, we divide it into the following four conditional posterior distributions:

p(Ξ|ϑ,xT ) p(sT |Ξ,ϑ; xT ) p(Ξ|sT ,ϑ; xT ) p(ϑ|Ξ,xT ) (3.22)

and we adopt the Metropolis-within-Gibbs algorithm, wherethe Gibbs sampler generats

draws from joint posterior distribution p(ϑ,Ξ|xT ) by repeating iteratively generation of draws

from conditional posterior distributions p(Ξ|ϑ,xT ) and p(ϑ|Ξ,xT ).

To be precise, the main steps of Metropolis-within-Gibbs algorithm used in drDSGE

estimation are:

step 1b: Specify initial values of parameters ϑ(0) and Ξ(0). And set the iteration index g at

g = 1.

step 2b: Solve the DSGE model numerically at ϑ(g−1) based on Sims (2002)’ method and

obtain G(ϑ(g;1)), H(ϑ), and Q(ϑ) in Equation (3.18).

step 3b: Draw Ξ(g) from p(Ξ|ϑ(g−1),xT ).

(3.1b) Generate unobserved state variables s(g)
t from p(sT |Ξ(g−1),ϑ,xT ) using simulation
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smoother by DeJong and Shephard (1995).

(3.2b) Generate parameters Ξ(g) from p(Ξ|sT ,ϑ,xT ), using the sampled draw sT (g).

step 4b: Draw deep parameters ϑ(g) from p(ϑ|Ξ(g),xT ) using Metropolis step:

(4.1b) Sample from proposal density p(ϑ|ϑ(g−1)) and, using the sampled draw p(ϑ(proposal)),

calculate the acceptance probability ap as follows:

ap =

[
p(ϑ(proposal)|Ξ(g),xT ) p(ϑ(g−1)|ϑ(proposal))
p(ϑ(g−1)|Ξ(g),xT ) p(ϑ(proposal)|ϑ(g−1))

; 1

]

(4.2b) Accept ϑ(proposal) with probability ap and reject it with probability 1 − ap. Set

ϑ(g) = ϑ(proposal) when accepted and ϑ(g) = ϑ(g−1) when rejected.

step 5b: Set the iteration index g = g + 1, return to Step 2 up to g = G where G is the

number of MCMC iterations.

Step 4b of this algorithm plays an essential role. Infact, it is important to make the acceptance

probability ap as close to one as possible especially around the mode of the posterior density

p(ϑ|Ξ,xT ) because the same values are sampled consecutively if ap is low. To achieve this

purpose, we should choose the proposal density p(ϑ(proposal)|ϑ(g−1)) that mimics the posterior

density p(ϑ|Ξ,xT ) especially around its mode. This is why we firstly run regular DSGE model

estimation and compute the posterior mode of the DSGE model parameters to obtain initial

value ϑ(0) of Step 1. Then, we generate smoothed state variables s(0)
t using ϑ(0) and obtain

initial value Ξ(0)
t from OLS regressions of xt on s(0)

t . The previous literature sugggest to use

the so-called random-walk MH algorithm (see An and Schorfheide (2007)) as Metropolis step

in Step 4b, where the proposal density ϑ(proposal) is sampled from the random-walk model:

ϑ(proposal) = ϑ(g−1) + τt τt ∼ i.i.d N (0; cH)

where H is the Hessian matrix of the logarithm of the posterior distribution, indeed, −l′′−1
p (ϑ̂)

where lp(ϑ) = ln(p(ϑ|Ξ,xT )), while c is a scalar called the adjustment coefficient, whose choice

will be explained below.

The merit of using this random-walk proposal is that p(ϑ(g−1)|ϑ(proposal)) = p(ϑ(proposal)|ϑ(g−1)),
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so that the acceptance probability ap collapses to:

ap = min

[
f(ϑ(proposal)

f(ϑ(g−1))
; 1

]

which does not depend on the proposal density p(ϑ|ϑ(g−1)). We must, however, be careful

for p(ϑ(proposal)) not to deviate from p(ϑ(g−1) so much because the acceptance probability ap

may be low when those deviate far from each other. This may be achieved by making c low,

but p(ϑ(proposal) may be sampled only from the narrow range if c is too low. In random walk

sampler, the optimal acceptance rate ap according to Roberts et al. (1997) and Neal and

Roberts (2008) is around 25%, ranging from 0.23 for large dimensions to 0.45 for univariate

case. Following the previous literature, we simply use this random-walk MH algorithm with

H = −l′′−1
p (ϑ̂).

For the prior densities, we follow the general approach used for DSGE modelling. We as-

sume that the exogenous shocks et such as technology shock, preference shocks or monetary

shocks are persistent for their past shocks and their law of motions follow an AR(1) process,

such that: ut = ρut−1 + ςt where the error term ςt is i.i.d. Since the coefficient ρ must be

between zero and one to satisfy the stationary property, their prior densities are assumed to

follow beta distributions, while the variances of the error term ςt are setted up on inverted

gamma distributions. For the other parameters we assumed normal distributions.

3.3 The DSGE model of Smets and Wouters (2007)

This section presents the DSGE model of Smets and Wouters (2007) providing the log-

linearized equilibrium conditions (SubSection 3.3.1), and shows how it can be casted in the

Data-Rich Environment (SubSection (3.3.2)) as described in the previous section.

The DSGE model of Smets and Wouters (2007) is a medium-scale New Keynesian model

with price and wage rigidities, capital accumulation, investment adjustment cost, and habit

formation. Although their model represents the workhorse of the applied DSGE research,

it has the following main drawbacks: first, it assumes few observable variables (7 observed

variables); second, it assumes that each theoretical concept is measured correctly by a single
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arbitrary time series, third, it assumes homogeneous agents; forth, assumes a closed econ-

omy; fifth, there is not financial intermediation (indeed the capital is directly rent by the

household). Here, we focus on a way to get away from the first two drawbacks.

3.3.1 The equilibrium conditions

The DSGE model of Smets and Wouters (2007) is built up using the following equilibrium

conditions:

(1) The resource contraint:

ŷt = cy ĉt + iy ît + zy ẑt + ugt (3.23)

where ŷt denotes the output, ĉt denotes the consumption, ît denotes the investment,

ẑt denotes the capital utilization rate, ugt denotes the exogenous government spending

shock, cy = 1 − gy − iy denotes the steady state share of consumption (scalar), gy

denotes the steady state exogenous spending/output ratio (scalar), and iy denotes the

steady state investment/output ratio (scalar). This equilibrium condition states simply

that output must be asborbed by consumption, investment, capital utilization costs

and exogenous government spending. Differently from Smets and Wouters(2007) we

assume that exogenous spending follows just a first-order autoregressive process with

an i.i.d-Normal error term without be affected by the productivity shock as follows:

ugt = ρgut−1 + egt

(2) Consumption Euler Equation:

ĉt = c1ĉt−1 + (1− c1)Et[ĉt+1] + c2(l̂t − Et[l̂t+1])− c3(r̂t − Et[π̂t+1] + uct) (3.24)

where c1 = h
1+h where h = λ

γ , c2 = (σc−1)(Wh
∗ L∗/C∗)

(1+h) , c3 = 1−h
(1+h)σc

are scalars, h is a

measure of the habit persistence that depends positively on λ which is the strength of

the first-order external habit formation and negatively on γ which is the steady state

growth rate of the economy while σc is the inverse of the intertemporal elasticity of

substitution. They assume that the external habit stock Ht is proportional to aggregate

past consumption: Ht = h ct−1. When h = 0, this equation reduces to the traditional

forward-looking consumption equation. As in Smets and Wouters (2007), the exogenous
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shock uct is assumed to be a AR(1) process with coefficient ρc, indeed: uct = ρcu
c
t−1 + ect .

(3) Investment Euler Equation:

ît = i1ît−1 + (1− i1)Et [̂it+1] + i2q̂t + uit (3.25)

where i1 = 1
1+βγ(1−σc) and i2 = 1

1+βγ(1−σc)γ2ϕ
are scalars, ϕ is the steady-state elasticity

of the capital adjustment cost function and β is the discount factor applied by house-

holds, uit is the investment shock, q̂t is the real value of the existing capital stock. As in

Smets and Wouters (2007), the exogenous shock uit is assumed to be a AR(1) process

with coefficient ρi, indeed: uit = ρiu
i
t−1 + eit.

(4) Value of Capital Euler Equation :

q̂t = q1Et[q̂t+1] + (1− q1)Et[r̂kt+1]− (r̂t − π̂t+1 + uct) (3.26)

where q1 = βγσc(1 − δ) is a scalar where δ is the appreciation rate for capital. The

equation states that the current value of the capital stock (or the shadow price of

capital or Tobin’s q) q̂t depends positively on its expected future value and the expected

real rental rate on capital Et[r̂kt+1] and negatively on the previous real interest rate and

the risk premium disturbance.

(5) Aggregate production function

ŷt = φp(αk̂st + (1− α)l̂t + uat ) (3.27)

where φp is one plus the share of fixed costs in production, reflecting the presence of fixed

costs in production, k̂st is the output produced using capital, l̂t are the hours worked,

and uat is the productivity shock. As in Smets and Wouters (2007), we assume that the

productivity shock admits a AR(1) process: uat = ρau
a
t−1 + eat .

(6) Capital used in production

k̂st = k̂t−1 + ẑt (3.28)

where ẑt is the capital utilization rate and k̂t−1 is the capital used the previous period.

The equation states that newly installed capital becomes only effective with a one lag.
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(7) Degree capital utilization

ẑt = z1r̂
k
t (3.29)

where z1 = 1−ψ
ψ where ψ is a parameter that takes values between 0 and 1 and measures

the elasticity of the capital utilization adjustment cost. When ψ = 1, it is extremely

costly to change the utilisation of capital and as a result the utilisation of capital remains

constant. In contrast, when ψ = 0, the marginal cost of changing the utilisation of

capital is constant and as a result in equilibrium the rental rate on capital is constant.

(8) Installed Capital

k̂t = k1k̂t−1 + (1− k1)̂it + k2u
i
t (3.30)

where k1 = (1 − δ)/γ and k2 = (1 − (1 − δ)/γ)(1 − βγ(1−σc))γ2ψ are scalars. The

equilibrium equation states that the accumulation of installed capital k̂t is not only a

function of the flow of investment but also of the relative efficiency of these investment

expenditures as captured by the investment disturbance uit.

(9) Mark-up equation:

µ̂pt = m̂plt − ŵt = α(k̂st − l̂t)− ŵt + uat (3.31)

where µ̂pt denotes the price mark-up by firms, m̂plt denotes the marginal product of

labour, ŵt denotes the real wage, uat denotes the productivity shock, l̂t denotes the hours

worked, and k̂st denotes the capital installed. Being the Smets and Wouters (2007) model

constructed under monopolist competition, this equilibrium equation states simply that

cost minimisation by firms implies the price mark-up µ̂pt over the marginal cost.

(10) Inflation:

π̂t = π1π̂t−1 + π2Et[π̂t+1]− π3µ̂
p
t + uπt (3.32)

where π1 = ιp
1+βγ1−σc ιp

, π2 = βγ1−σc

1+βγ1−σc ιp
and π3 = 1

1+βγ1−σc ιp

(1−βγ1−σcξp)(1−ξp)
ξp((φp−1)ξp+1) are

scalars where ξp is the degree of price stickiness. The equation represents the New

Keynesian Phillips Curve with price adjustment a la Calvo. It states that inflation π̂t

depends positively on past and expected future inflation, negatively on the current price

mark-up µ̂pt and positively on a inflation disturbance (or as called by Smets and Wouters

(2007) price mark-up disturbance) uπt . Differently from Smets and Wouters (2007), we
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assume simply that the price mark-up disturbance is assumed to follow AR(1) process:

uπt = ρπu
π
t + eπt , where eπt is an i.i.d-Normal price mark-up shock. When the degree of

indexation to past inflation is zero ιp = 0, this equation reverts to a standard purely

forward-looking Phillips curve π1 = 0.

(10) Rental Rate of Capital:

r̂kt = ŵt − (k̂t − l̂t) (3.33)

this equation states that the rental rate of capital r̂kt is negatively related to the capital-

labour ratio k̂t − l̂t and positively to the real wage ŵt.

(12) Wage mark-up:

µ̂wt = ŵt − m̂rst = ŵt − (σl l̂t +
1

1− λ
(ĉt − λĉt−1)) (3.34)

where m̂rst is the current marginal rate of substitution, σl is the elasticity of labour

supply with respect to the real wage. Being the model constructed under monopolistic

competition, this equation states simply that the wage mark-up will be equal to the

difference between the real wage and the marginal rate of substitution between working

and consuming.

(13) Real Wage:

ŵt = w1ŵt−1 + (1− w1)(E[ŵt−1] + E[π̂t+1])− w2π̂t + w3π̂t−1 − w4µ
w
t + uwt (3.35)

where w1 = 1
1+βγ1−σc , w2 = 1+βγ1−σcιw

1+βγ1−σc , w4 = 1
1+βγ1−σc

(1−βγ1−σcξw)(1−ξw)
ξw((φw−1)ξw+1) and w3 =

ιw
1+βγ1−σc are scalars where ξw and ιw are defined analogously to their counterparts in

the price setting conditions. This equation states that the real wage ŵt is a function of

expected and past real wages, expected current and past inflation, the wage mark-up

µwt and a wage-markup disturbance uwt . Differently from Smets and Wouters (2007),

we assumed that the wage-markup disturbance follows: uwt = ρwu
w
t + ewt where ewt is

an i.i.d-Normal term.

(14) Monetary Policy Reaction function:

r̂t = ρr̂t−1 + (1− ρ){rππ̂t + ry(ŷt − ŷpt )}+ r∆y|(ŷt − ŷpt )− (ŷt−1 − ŷpt−1)|+ urt (3.36)
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where r̂t is the interest rate and urt is the monetary policy shock. The equation state

that the monetary authorities follow a generalised Taylor rule by gradually adjusting

the policy-controlled interest rate r̂t in response to inflation and the output gap, defined

as the difference between actual ŷt and potential output ŷpt . As in Smets and Wouters

(2007), we assume that the monetary policy shock follows a first-order autoregressive

process with an i.i.d-Normal error term: urt = ρru
r
t−1 + ert .

These equilibrium conditions determine:

+ 7 exogenous shocks or 7 exogenous variables;

(15) Consumption Shock: uct = ρcu
c
t−1 + ect

(16) Investment Shock: uit = ρiu
i
t−1 + eit

(17) Productivity Shock: uat = ρau
a
t−1 + eat

(18) Govenment Shock: ugt = ρgu
g
t−1 + egt

(19) Mark-up Shock (or Inflation Shock): uπt = ρπu
π
t−1 + eπt

(20) Wage Shock: uwt = ρwu
w
t−1 + ewt

(21) Monetary Policy Shock: urt = ρru
r
t−1 + ert

+ 7 forecasts errors;

(22) Consumption Forecast Error: ĉt = Et−1[ĉt] + ηct

(23) Investment Forecast Error: ît = Et−1 [̂it] + ηit

(24) Value of Capital Forecast Error: q̂t = Et−1[q̂t−1] + ηqt

(25) Wage Forecast Error: ŵt = Et−1[ŵt−1] + ηwt

(26) Mark-up Forecast Error (or Inflation Forecast Error): π̂t = Et−1[π̂t−1] + ηπt

(27) Cost of Capital Forecast Error: r̂kt = Et−1[r̂kt−1] + ηr
k

t

(28) Labour demand Forecast Error: l̂t = Et−1[l̂t−1] + ηlt

+ 7 observed variables: output ŷt, consumption ĉt, investment ît, hours worked l̂t, inflation
π̂t, real wage ŵt and the real interest rate r̂t. Briefly: yt = [ŷt ĉt . . . r̂t]′

+ 40 all endogenous variables:

These conditions from (1) to (28) form a system of rational linear expectational difference

equations, that can be jointly solved using the Sims (2002) method. The Equation (3.1)
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becomes:

Γ0



ŷt

π̂t

ŵt

k̂t

q̂t

ît

ĉt

r̂t

r̂kt

l̂t
...

E[πt+1]
...

uct

uit
...

eat

egt
...


︸ ︷︷ ︸
st (40 x 1)

= Γ1



ŷt−1

π̂t−1

ŵt−1

k̂t−1

q̂t−1

ît−1

ĉt−1

r̂t−1

r̂kt−1

l̂t−1

...

E[πt]
...

uct−1

uit−1

...

eat−1

egt−1

...


︸ ︷︷ ︸

st−1 (40 x 1)

+Ψ



ect

eit

ewt

eat

eπt

egt

ert


︸ ︷︷ ︸

et (7 x 1)

+Π



ηπt

ηwt

ηqt

ηit

ηlt

ηct

ηr
k

t


︸ ︷︷ ︸
ηt (7 x 1)

(3.37)

where the coefficient matrices Γ0, Γ1, Ψ and Π are opportunely setted. The vector of deep

parameters is:

ϑ = [ϕ σc h ξw σL ξp ιw ιp ψ φ rπ ρ ry r∆y π̄ β l̄ γ̄ α]′

it has been estimated using Bayesian estimation under the Metropolis-Hastings algorithm

(Step 1a and Step 2a). The forecasts generated from the DSGE model are h-step ahead

forecasts of quarter-to-quarter output growth and inflation.

3.3.2 The data-rich form

The drDSGE observation equation (Equation (3.16)), can be obtained just by adding ob-

servable time series variables to the vector ynt as core series and/or no-core series. In this
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dissertaion, we used just Case C of Boivin and Giannoni (2006), where 21 time series are

added as core series and 7 are added as no-core series.

The drDSGE has been estimated starting from the state space representation (Equation

(3.17) to Equation (3.19)) using the Metropolis-within-Gibbs algorithm (from Step 1b to

5b). As the regular DSGE, the forecasts generated from the drDSGE model are h-step ahead

forecasts of quarter-to-quarter output growth and inflation.
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Chapter 4

The forecasting results

“The best thing about being a statistician is that you get to play in everyone’s backyard”

John Tukey

This chapter presents the out-of-sample forecasting experiments of the models discussed in

the previous chapters using real data on 83 quarterly U.S time series variables similar to those

variables used by Stock and Watson (2002a) and reported in Appendix A. We focus on two key

U.S macroeconomic time series variables: the output growth and the inflation. The empirical

study has shown three main conclusions: first, DSGE models are outperformed significantly

by the GDFM in forecasting the output growth in both short and long run, while the static

factor model outperforms significantly DSGE models only in the short run. Second, the most

surprising result of the thesis, we discovered that the drDSGE outperforms significantly all

other competitive models in forecasting inflation in the long run, while the regular DSGE does

not. Therefore, the drDSGE outperforms significantly the regular DSGE in forecasting both

output growth and inflation. Third, in most cases, the unrestricted VAR represents the worse

forecasting model. The implications of these results are discussed troughtout the chapter.

The chapter is organized as follows. In Section (4.1) we open presenting the forecasting

experiments and the metric used. In Section (4.2) we discuss the forecasting models in com-

petition. In Section (4.3) we describe the tests of equal predictive ability, while Section (4.4)

concludes providing the final results.

4.1 The forecasting experiments

The out-of-sample forecasting experiments are organized as follows. As described in the intro-

duction, we use rolling regressions with sample size fixed at R = 80 to forecast up to h = 12

45



Tesi di dottorato in Econometrics, di Gabriele Palmegiani, discussa presso l’Università LUISS Guido Carli, in data 20 Marzo 2012.

Soggetta a copyright c©. Sono comunque fatti salvi i diritti dell’Università LUISS Guido Carli di riproduzione per scopi di ricerca e

didattici, con citazione della fonte. 4. The forecasting results

quarters ahead the output growth and inflation. The models in competition are: the un-

conditional mean of the time series, the autoregressive process (hereafter AR(p)), the vector

autoregressive process (hearafter VAR(p)), the static factor model or diffusion index (hereafter

DI(r)) model of Stock and Watson (2002a), the generalized dynamic factor model (hereafer

GDFM(r,q)) of Forni et al. (2000) and Forni et al. (2005), the regular DSGE of Smets and

Wouters (2007) and its Data-Rich Environment form following Boivin and Giannoni (2006).

The orders p, r and q has been estimated using different ways. The autoregressive order p has

been estimated using the Bayesian Information Criterion (BIC), the number of static factor

model r has been estimated using the procedure of Alessi et al. (2007), while the number of

dynamic factors q has been estimated using the procedure of Hallin and Liška (2007). The

first estimation sample starts from 1959:1 and ends in 1978:4 so that the first forecasting date

is 1979:1. Earlier observations are used to compute the initial growth rates. After all models

have been estimated, the first set of out-of-sample forecasts is computed. Then, sample range

shifts one-step forward to 1959:2-1979:1 in order to compute the second set of forecasts. All

models are fully re-estimated for each rolling sample with estimation procedures described

in the previous chapter. The estimation is performed S = 96 times to obtain a series of

forecasts for each forecast horizon and each model. The last sample is 1973:1-2001:4 and the

last forecasting date is 2004:4.

The metric used to evalute the relative forecasting performance is the relative mean squared

forecast error (rMSFE), defined as:

rMSFE(m,n)|h = 1−
MSFEm|h

MSFEn|h
(4.1)

where MSFEm|h and MSFEn|h denote respectively the mean squared forecast error gen-

erated from model m at the forecasting horizion h and the mean squared forecast error

generated from model n at the forecasting horizon h. The metric interpretation is: fixed h,

if rMSFE(m,n)|h > 0 means a forecasting gain of model m relatively to model n, simmetri-

cally if rMSFE(m,n)|h < 0 means a forecasting loss of the model m relatively to model n.

The MSFEs have been constructed in the following way. Let xNT be the finite dataset of N

stationary time series up to time T used in the empirical out-of-sample forecasting experiment

where T = R + s − 1 is the end of each rolling sample s of size R = 80. Let yt be the time
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series variable in xNT that we wish to forecast h steps ahead, and let S be the number of

replications. The mean square forecasting error (MSFE) of stochastic process yt repect to

the i-th forecasting model has been worked out as:

MSFEi|h = S−1
S∑
i=1

(yT+h − ŷi,sT+h|T )2 (4.2)

where yT+h denotes the observed stochastic process yt at time T + h, and ŷi,sT+h|T denotes its

unknown point forecast predictor using the i-th forecasting model for the s-th rolling sample.

4.2 Forecasting models

The point forecast predictor ŷi,sT+h|T in Equation (4.2) has been worked out using the following

forecasting models: the unconditional mean, the autoregressive model, the vector autoregres-

sive model, the static factor model, the generalized dynamic factor model, the DSGE of Smets

and Wouters (2007) and its representation in term of Data-Rich Environment.

The use of the unconditional mean of the series of interest as forecasting model is quite

straightforward. In this case the point forecast predictor coincides with the unconditional

mean of the series for any forecasting horizon. For this reason, we prefer to skip this case

considering the other forecasting models directly.

4.2.1 Forecasting with the AR model

Let yt be our observed stationary time series at time t. The most simple way to forecast a time

series is assuming that it follows an autoregressive process. If yt admits an autoregressive

process of order p (hereafter AR(p)), we have:

yT = α+ δ(L)yT + εT (4.3)

where yT denotes the time series of interest at the end of the estimation sample, α denotes

the constant, δ(L) = 1 − δ1L − . . . − δpLp denotes the autoregressive polynominal of order

p in the lag operator L fixed using the Bayesian Information Criterion (BIC) that loads the

past history of yT , while εT is the stochastic error term. The autoregressive forecasting

model becomes:

yART+h = α+ δh(L)yT + εT+h h = 1, . . . , 12 (4.4)
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where δh(L) = 1− δ1L
−h − . . .− δpLp−h denotes the autoregressive polynominal δ(L) shifted

h-steps ahead, while εT+h denotes the stochastic error term shifted h-steps ahead. The AR

forecasts have been generated by estimating the previous equation by OLS for each forecasting

horizon. What we get is:

ŷART+h|T = α̂+ δ̂h(L)yT h = 1, . . . , 12

where ŷART+h|T is the desidered point forecast predictor used in Equation (4.2)

4.2.2 Forecasting with the VAR model

Let ynt be the n-dimensional vector of observed stationary time series variables. If ynt admits

a vector autoregressive process of order p (hereafter VAR(p)), we have:

ynT =
p∑
j=1

Ajyn,T−j + εT εT ∼ iid N (0; Σε) (4.5)

where ynT is our observed time series varaibles at the end of the estimation sample, Aj are

(n× n) matrices of parameters and εT is the n-dimensional white noise process at the end of

the estimation sample. Being our time series of interest into the set of observed time series

variables, indeed yt ∈ ynt, the VAR forecasting model is:

yV ART+h = α+ δh(L)yT + γ ′h(L)ỹT + εT+h h = 1, . . . , 12 (4.6)

where ỹT denotes the vector of other observed time series variables in ynt and γ ′h(L) =

1− γ1L
−h − . . .− γpLp−h denotes the autoregressive polynominal shifted h steps ahead that

loads the past hystory of ỹT . The VAR forecasts have been generated by estimating the

previous equation by OLS for each forecasting horizon. What we obtain is:

ŷV ART+h|T = α̂+ δ̂h(L)yT + γ̂ ′h(L)ỹT h = 1, . . . , 12

where ŷV ART+h|T is the desidered point forecast predictor used in Equation (4.2).
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4.2.3 Forecasting with the Diffusion Index Model

Let xNt = (x1t, x2t, . . . , xNt)′ be the N -dimensional vector (with N large) of all observed

stationary time series variables in our data-set. Under the so-called Diffusion Index (DI)

model or static factor model of Stock and Watson (2002a,b), xNt can be decomposed as:

xNT︸︷︷︸
(N×1)

= ΛN︸︷︷︸
(N×r)

FNT︸︷︷︸
(r×1)

+ ξNT︸︷︷︸
(N×1)

= χNT + ξNT

FNT = AFN,T−1 + εNT εNt ∼ iid N (0; Qε)

ξNT = ΨξN,T−1 + vNT vT ∼ iid N (0; Rv)

where FNT denotes the vector of r static common factors, ΛN denotes the matrix of factor

loadings, χNT denotes the vector of common components and ξNT denotes the vector of

idiosyncratic components. We assumed diagonal variance-covariance matrices Qε and Rv,

indeed we are working with an exact Diffusion Index model. The DI forecasting model can

be written as:

yDIT+h = α+ β′F̂NT + δh(L)yT + εT+h h = 1, . . . , 12

where F̂NT are the estimated static principal components factors. The DI forecasts have been

generated by estimating the previous equation using OLS for each forecasting horizon:

ŷDIT+h|T = α̂+ β̂
′
F̂NT + δ̂h(L)yT h = 1, . . . , 12

where ŷDIT+h|T is the desidered point forecast predictor used in Equation (4.2).

4.2.4 Forecasting with the GDFM

Following Forni et al. (2000), if xNT admits a generalized dynamic factor model (GDFM),

the measurement equation takes the following form:

xNT = ΛN (L)fNT + ξNT (4.7)
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where fNT denotes the vector of q dynamic factors and ΛN (L) denotes the matrix of dynamic

factor loadings. The GDFM forecasting model can be written as:

yGDFMT+h = α+ β′(L)f̂NT + δh(L)yT + εT+h h = 1, . . . , 12 (4.8)

where f̂NT are the estimated dynamic principal components factors. The GDFM forecasts have

been generated by estimating the previous equation by OLS for each forecasting horizon:

ŷGDFMT+h|T = α̂+ β̂
′
(L)f̂NT + δ̂h(L)yT h = 1, . . . , 12

where ŷGDFMT+h|T is the desidered point forecast predictor used in Equation (4.2)

4.2.5 Forecasting with the regular DSGE

The forecasts from the Smets and Wouters (2007) DSGE model, explained in Section (3.3),

have been generated using the state space representation given in Equation (3.2) and Equation

(3.3) with a measurement error. The point forecast predictors has been formed by iterating

on the last estimate of the unobserved state using the state equation Equation (3.3) and

then backing out the corresponding value for the observable using the measurement equa-

tion Equation (3.2). We do this using Bayesian estimation under the Metropolis-Hastings

algorithm as described from Step 1a to Step 2a of SubSection (3.2.3). The mean of the

posterior forecast distributions is taken as the point forecast of the relevant variable. The

Brooks and Gelman (1998) test has shown that all Markov chains for each estimation sample

have converged nicely.

4.2.6 Forecasting with the drDSGE

The forecasts from the drDSGE model, have been generated using the state space represen-

tation formed by Equation (3.17), Equation (3.18) and Equation (3.19). As in the regular

DSGE case, the point forecast predictors has been formed by iterating on the last estimate

of the unobserved state using the state equation Equation (3.18) and then backing out the

corresponding value for the observable using the measurement equation Equation (3.17). We

do this using Bayesian estimation under the Metropolis-within-Gibbs algorithm as described

from Step 1b to Step 5b of SubSection (3.2.3). The mean of the posterior forecast distribu-

tions is taken as the point forecast of the relevant variable. The Brooks and Gelman (1998)
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test has shown that all Markov chains for each estimation sample have converged nicely.

4.3 Tests of equal predictive ability

To asses the significance power of the observed differences in the MSFE between alternative

forecasting models, we used two tests of equal predictive ability: the unconditional predic-

tive ability test of Diebold and Mariano (1995) and West (1996) (hereafter: DMW test) and

the conditional predictive ability test of Giacomini and White (2006) (hereafter: GW

test).

4.3.1 Test of equal unconditional predictive ability

Let ε1T+h|T and ε2T+h|T be two forecast error series from two alternative forecasting models.

The null hypothesis of equal unconditional predictive ability is:

H0 : E[L(ε1T+h|T )− L(ε2T+h|T )] = E[∆LT+h|T ] = 0 (4.9)

where L(·) denotes a given loss function and ∆LT+h|T denotes the loss differential series.

Given a large sample from a standard normal N (0; 1), the correspondent test statistics of

equal unconditional predictive ability is:

SDMW :
∆̄Lτ√
2πf̂∆(0)

K

(4.10)

where ∆̄Lτ denotes the sample mean of the loss differential ∆LT+h|T , indeed, ∆̄Lτ = τ−1
∑T1−h

τ=T ∆Lτ+h|T ,

K denotes the total number of predictions, while f̂∆(0) denotes the estimate of the spectral

density of the loss differential at frequency zero given by:

f∆(0) = 2π−1
∞∑

ς=−∞
γ∆(ς)

where γ∆(ς) denotes the autocovariances of the loss differential at displacement ς. This

spectral density can be consistenly estimated using the heteroskedasticity and autocorrelation

consistent (HAC) estimator proposed by Newey and West (1987):

f̂∆(0) = 2π−1[γ∆(0) + 2
C∑
ς=1

(1− ς

C
)γ̂∆(ς)]
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where γ̂∆(ς) denotes the sample estimates of the autocovariances and C denotes the trunc-

tation lag. In this dissertation, we use a quadratic loss function, the truncation C = h − 1

and the critical values suggested by Diebold and Mariano (1995). The test works in this

way: if the observed statistic Equation (4.10) is smaller than the critical value, we can reject

the null hyphotesis Equation (4.9) stating that the difference between forecast error series

is significanlty different from zero, then the observed difference in MSFE has a significant

power.

4.3.2 Test of equal conditional predictive ability

The DMW test has three main drawbacks. First, it answers basically to the question of which

forecast was more accurate on average, it does not answer to the question of whether one can

predict which forecast will be more accurate at a future date. So, it does not take into ac-

count of the information set at a given time, then it does not allow to ask whether additional

information can help to identify which forecast is more appropriate for that date. Second,

as pointed out by Clark and McCracken (2001), it has low power in finite samples. Third,

it cannot accommodate Bayesian, no-parametric and semi-parametric method estimations.

To overcome these drawbacks the literature has suggested conditional tests instead. At the

moment the most used and suggested conditional predictive ability test is the test of Giaco-

mini and White (2006). Differently from DMW test, the GW test has three main advantages:

first, it can be applied to Bayesian, no-parametric and semi-parametric method estimations;

second, under a rolling regression scheme the limiting distribution of the test statistic is still

standard normal; third, it has higher power in finite samples.

The null hypothesis of equal conditional predictive ability is:

H0 : E[L(ε1T+h|T )− L(ε2T+h|T )|IT ] = E[∆LT+h|T |IT ] = 0 (4.11)

where L(·) denotes a given loss function, ∆LT+h|T denotes the loss differential series and IT

denotes the information set matured at time T , indeed, the end of the s-th rolling sample. The

test statistic of Giacomini and White (2006) can be viewed as the test statistic of Diebold

and Mariano (1995) and West (1996) given in Equation (4.10), because under the rolling

regression scheme, Giacomini and White (2006) show that the limiting distribution of the test
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statistic is still standard normal. In this dissertation, we use a quadratic loss function and

the critical values suggested by Giacomini and White (2006). The test works in the same way

as the unconditional one.

4.4 Empirical results

This section presents the results of this dissertation. We start providing the relative mean

square forecasting error (rMSFE) analysis in SubSection (4.4.1), then to asses its significance

we apply in Subsection (4.4.2) the tests of equal predictive ability previously explained. Since

the GW test is superior than the DMW test, the final results of the dissertation come from

only the interpretation of the conditional test.

4.4.1 The mean square forecasting error analysis

We set up the rMSFE analysis calculating Equation (4.1) between the following combinations

of forecasting models:

Figure (4.1): Models versus the unconditional mean The Figure (4.1) plots the rMSFE

of forecasting models respect to the unconditional mean of the series of interest. In the

upper graph, we have: rMSFE(m, ȳ) = 1−MSFE(m)
MSFE(ȳ) , while in the lower graph we have:

rMSFE(m, π̄) = 1 − MSFE(m)
MSFE(π̄) , where m={AR(p∗),VAR(p∗),DI(r∗),DSGE,drDSGE}

are the models in competition, ȳ is the unconditional mean of the output growth, and π̄

is the unconditional mean of inflation. The observed values are reported in Table (4.1),

where the better rMSFEs for any forecasting horizon h are denoted in bold. These

values depend critically upon the choice of: the number of lags p, the number of static

factors r, and the number of dynamic factors q. The order p has been estimated using

the Bayesian Information Criterion (BIC), the number of static factors r has been esti-

mated using the Alessi et al. (2007) criterion as discussed in SubSection (2.4.1), while

the number of dynamic factors q has been estimated using the Hallin and Liška (2007)

as discussed in SubSection (2.4.2). To determine r and q, we used Figure (4.2) where

the graph on the left suggests the optimal number of static factor r∗, while the graph on

the right suggests the optimal number of dynamic factor q∗. Practically, to determine

r, we need to look for the first zero variance interval for c (the dotted blu line on the

left graph), corresponding to a stable value of r̂IC < rmax. This interval is located in
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Figure 4.1: The figure plots the rMSFEs of forecasting models relatively to the time series uncon-
ditional mean. The corresponding values are reported in Table (4.1).

Figure 4.2: The figure plots the Alessi et al. (2007) criteria [on the left] and the Hallin and Liška
(2007) criteria [on the right] used to determine respectively the number of static factor r and the
number od dynamic factors q.
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rMSFE of models versus the unconditional mean
Output Growth

AR(p∗) DI(r∗) VAR(p∗) DSGE GDFM(r∗,q∗) drDSGE
h = 1 -0.0320 0.3037 -0.6299 -0.3653 0.2226 -0.3553
h = 2 -0.0496 0.3694 -0.9077 -0.3223 0.3634 -0.3011
h = 3 -0.0718 0.3718 -1.1813 -0.3192 0.3594 -0.3002
h = 4 -0.0494 0.2700 -1.4518 -0.3386 0.3984 -0.3156
h = 5 -0.0580 0.0801 -1.6694 -0.3409 0.3854 -0.2811
h = 6 -0.0469 0.2318 -1.8954 -0.3166 0.3843 -0.3011
h = 7 -0.0234 0.2512 -2.1720 -0.3473 0.3863 -0.3173
h = 8 -0.0034 0.0762 -2.4567 -0.4047 0.3897 -0.3247
h = 9 -0.0061 0.1225 -2.9116 -0.5428 0.3472 -0.3328
h = 10 0.0015 0.2055 -3.5283 -0.7684 0.2474 -0.3384
h = 11 -0.0028 0.1399 -4.2084 -1.0366 0.2258 -0.3401
h = 12 -0.0158 0.0304 -5.1195 -1.3826 0.1580 -0.3446

Inflation
h = 1 0.3940 0.5637 0.3876 0.4020 0.6738 0.4195
h = 2 0.4558 0.5388 0.4094 0.4564 0.6653 0.4694
h = 3 0.4350 0.5225 0.3514 0.4763 0.7058 0.4998
h = 4 0.3819 0.4906 0.2620 0.4854 0.5956 0.5094
h = 5 0.3448 0.4899 0.2015 0.5001 0.5907 0.5321
h = 6 0.3068 0.3882 0.1590 0.5255 0.5401 0.5615
h = 7 0.2659 0.4245 0.1077 0.5443 0.4861 0.5943
h = 8 0.2360 0.3953 0.0533 0.5699 0.3673 0.6196
h = 9 0.2008 0.3998 0.0082 0.5939 0.2992 0.6459
h = 10 0.1725 0.4098 -0.0287 0.6108 0.2427 0.6608
h = 11 0.1334 0.4104 -0.0618 0.6258 0.1377 0.6958
h = 12 -0.0623 0.3863 -0.0913 0.6456 -0.0042 0.7096

Table 4.1: The entries in the table are the rMSFEs of alternative forecasting models relatively to the
time series unconditional mean. A positive entry indicates model informative forecasts. A negative
entry indicates noninformative model forecasts. The entries in bold indicate the most informative
model forecasts for any forecasting horizon h. For example, for output growth at one step ahead, the
most informative forecasts are produced by the DI model with r∗=3 static factors, while the AR(p∗),
the VAR(p∗), the DSGE and the drDSGE yield noninformative forecasts that are outperformed by
the unconditional mean of the series.
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correspondence of r∗ = 5 static factors. So in Figure (4.1), we have estimated the DI

model with r∗ = 5 static factors. The same reasoning is valid to estimate q. Then we

need to look for the first zero variance interval for c (the blu line on the right graph),

corresponding to a stable value of q̂IC < qmax. This interval is located in correspondence

of q∗ = 3 dynamic factors. So, we have estimated the GDFM with r∗ = 5 static factors

and q∗ = 3 dynamic factors.

In terms of forecasting output growth, we found that factor models yield lower rMSFEs

respect to the all other competitive models in both short and long run. In particular,

the DI(r∗) model produces lower MSFEs in the short run (up to 3 quarters ahead),

while the GDFM(r∗,q∗) yields lower MSFEs in the long run (from 4 quarter up to 12

quarters ahead). Therefore, the AR(p∗), the VAR(p∗), the DSGE, and the drDSGE do

not provide informative forecasts (only the AR(p∗) model has a positive rMSFE at

h = 10), meaning that the unconditional mean should be used instead.

With regard of inflation, we found that the GDFM(r∗,q∗) yields lower MSFEs in the

short run (up to 5 quarters ahead), while the drDSGE produces lower MSFEs in the

long run (from 6 quarter up to 12 quarters ahead). Therefore, we discovered that the

DI(r∗) is able to produce lower MSFEs than the GDFM(r∗,q∗) in the long run (from 8

quarter ahead up to 12 quarters ahead). This results is against the prelevant literature

who gives to the GDFM better accurancy in forecasting time series variables than DI

especially in the long run (Forni et al. (2000) and Forni et al. (2005)).

Figure (4.3): DI(r) versus AR(p∗) The Figure (4.3) plots the rMSFE of diffusion index

model with altenative number of static factors, respect to the autoregressive model with

the optimal lag p∗ fixed using the BIC. In the upper graph, we have: rMSFE(DI(r), AR(p∗))|yt =

1− MSFE(DI(r))
MSFE(AR(p∗)) |yt for r = BIC, 1, 2, . . . , 7, while in the lower graph we have: rMSFE(DI(r), AR(p∗))|πt =

1− MSFE(DI(r))
MSFE(AR(p∗)) |πt for r = BIC, 1, 2, . . . , 7. The observed values are reported in Table

(4.2), where the better rMSFEs for any forecasting horizon h are denoted in bold.

For both output growth and inflation we see that only few static factors are needed to

outperform the AR(p∗) model. Infact, we need just 2 factors to outperforme the AR(p∗)

model for any forecasting horizon. It confirms the findings of Stock and Watson (2002b)

where their DI model was found superior in MSFE than an autoregressive process.

With regard to output growth, there are considerable forecasting gains when we pass
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rMSFE of DI(r) with r = BIC, 1, 2, . . . , 7 versus AR(p∗)
Output Growth

DI(BIC) DI(1) DI(2) DI(3) DI(4) DI(5) DI(6) DI(7)
h = 1 0.3253 0.1936 0.3313 0.2950 0.2588 0.2773 0.3258 0.3181
h = 2 0.3992 0.0895 0.4150 0.3906 0.3869 0.4171 0.4131 0.4093
h = 3 0.4138 0.0774 0.3727 0.3685 0.4108 0.4232 0.3623 0.3785
h = 4 0.3043 0.0462 0.2391 0.3312 0.3901 0.3538 0.3223 0.3436
h = 5 0.1305 0.0043 0.1185 0.2928 0.3188 0.3874 0.3349 0.3527
h = 6 0.2662 0.0016 0.2499 0.3430 0.3654 0.3576 0.3191 0.3171
h = 7 0.2684 -0.0934 0.2534 0.3289 0.3748 0.2443 0.2804 0.3095
h = 8 0.0793 -0.1250 0.2714 0.2843 0.3395 0.0351 0.1949 0.2662
h = 9 0.1278 -0.0303 0.2565 0.2461 0.3267 0.0493 0.1002 0.2052
h = 10 0.2043 -0.0390 0.2162 0.2182 0.2732 0.1217 0.1468 0.1341
h = 11 0.1423 -0.0319 0.2467 0.2486 0.3122 0.1593 0.1325 0.1761
h = 12 0.0454 -0.0948 0.2354 0.2422 0.3077 0.0820 0.0599 0.1173

Inflation
h = 1 0.2801 0.0342 0.3882 0.2882 0.2736 0.3903 0.3339 0.4036
h = 2 0.1525 -0.0400 0.2362 0.1276 0.0659 0.2611 0.3557 0.3691
h = 3 0.1549 -0.0304 0.2723 0.2169 0.1616 0.1729 0.3634 0.4275
h = 4 0.1758 0.0463 0.2602 0.1270 0.2031 0.0936 0.3006 0.4248
h = 5 0.2215 0.1014 0.1706 0.1015 0.2194 0.1008 0.2826 0.3728
h = 6 0.1174 0.1647 0.2509 0.2991 0.2522 0.1686 0.4068 0.4226
h = 7 0.2160 0.2336 0.1077 0.1929 0.2917 0.1485 0.3864 0.4372
h = 8 0.2085 0.2723 0.2289 0.0921 0.2356 0.2148 0.4084 0.4577
h = 9 0.2491 0.3044 0.0892 0.0129 0.2073 0.1974 0.4005 0.3624
h = 10 0.2868 0.3375 0.0526 -0.0504 0.2020 0.1767 0.3795 0.3711
h = 11 0.3197 0.3602 0.1173 -0.0077 0.2374 0.1362 0.2382 0.3576
h = 12 0.4223 0.4321 0.2312 0.1315 0.3115 0.1961 0.3279 0.3883

Table 4.2: The entries in the table are the rMSFEs of diffusion index (DI(r)) models with an
alternative number of static factors r = BIC, 1, 2, . . . , 7 relatively to the autoregressive model (AR(p))
with the lag p fixed using the BIC. A positive entry indicates DI informative forecasts, while a negative
entry indicates DI noninformative forecasts. The entries in bold indicate the most informative forecasts
for any forecasting horizon h. For example, for output growth at one step ahead, the most informative
forecasts are produced by the DI model with two static factors.
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Figure 4.3: The figure plots the rMSFEs of diffusion index models with an alternative number of
static factors r = BIC, 1, 2, . . . , 7 relatively to the autoregressive model (AR) with the lag p fixed
using the BIC. The corresponding values are reported in Table (4.2).

from 2 to 4 factors especially when the forecasting horizon increases. At 4 quarters

ahead, the DI(4) yields 15.1% higher rMSFE than DI(2), at 6 quarters ahead, the

DI(4) yields 11.55% higher rMSFE than DI(2), while at 12 quarters ahead the DI(4)

yields 7.23% higher rMSFE than DI(2).

With regard to inflation, there are considerable gains when we consider a larger number

of factors, 6 or 7, at least for the short and medium run. At 1 quarter ahead, the DI(7)

yields 36.94% higher rMSFE than DI(1), and 6.97% higher rMSFE than DI(6). At 6

quarters ahead, the DI(7) yields 25.79% higher rMSFE than DI(1), and 1.58% higher

rMSFE than DI(6). But at 12 quarter ahead, the DI(1) yields 4.38% higher rMSFE

than DI(7), and 10.42% higher rMSFE than DI(6).

Figure (4.4): regular DSGE versus VAR(p) The Figure (4.4) plots the rMSFE of DSGE

model respect to the VAR(p) model with alternative number of lags p. In the up-

per graph, we have: rMSFE(DSGE;V AR(p))|yt = 1 − MSFE(DSGE)
MSFE(V AR(p)) |yt for p =

BIC, 1, 2, . . . , 5, while in the lower graph we have: rMSFE(DSGE;V AR(p))|πt =

1− MSFE(DSGE)
MSFE(V AR(p)) |πt for p = BIC, 1, 2, . . . , 5. The observed values are reported in Table

(4.3), where we have denoted in bold the cases where forecasting using a VAR is supe-

rior than forecasting with the DSGE, and in italic the values of rMSFEs for which the

underlying V AR(p) loses less respect to the DSGE.
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Figure 4.4: The rMSFE of DSGE versus the V AR(p).

rMSFE of DSGE versus V AR(p) with p = BIC, 1, 2, . . . , 5
Output Growth

VAR(BIC) VAR(1) VAR(2) VAR(3) VAR(4) VAR(5)
h = 1 0.2602 0.2602 0.3210 0.3158 0.4055 0.4592
h = 2 0.2840 0.2840 0.3525 0.2656 0.3219 0.4187
h = 3 0.3430 0.3430 0.3849 0.2430 0.2895 0.4129
h = 4 0.3923 0.3923 0.4191 0.2833 0.3126 0.4003
h = 5 0.4357 0.4357 0.4434 0.3419 0.3643 0.4433
h = 6 0.4833 0.4833 0.4725 0.4088 0.4157 0.4728
h = 7 0.5141 0.5141 0.4851 0.4557 0.4461 0.4951
h = 8 0.5310 0.5310 0.4902 0.4887 0.4593 0.4843
h = 9 0.5423 0.5423 0.4924 0.5147 0.4622 0.4806
h = 10 0.5451 0.5451 0.4889 0.5347 0.4686 0.4701
h = 11 0.5426 0.5426 0.4815 0.5487 0.4755 0.4701
h = 12 0.5431 0.5431 0.4798 0.5632 0.4823 0.4623

Inflation
h = 1 0.0399 0.0399 0.0013 0.1074 0.1603 0.1856
h = 2 0.1227 0.1227 0.0886 0.2087 0.2496 0.2726
h = 3 0.2271 0.2271 0.1857 0.2765 0.3246 0.3607
h = 4 0.3230 0.3230 0.2705 0.3477 0.3770 0.3992
h = 5 0.3947 0.3947 0.3251 0.4161 0.4250 0.4379
h = 6 0.4529 0.4529 0.3688 0.4745 0.4697 0.4806
h = 7 0.5048 0.5048 0.4147 0.5241 0.5103 0.5182
h = 8 0.5614 0.5614 0.4726 0.5816 0.5611 0.5568
h = 9 0.6068 0.6068 0.5232 0.6311 0.6039 0.5907
h = 10 0.6395 0.6395 0.5623 0.6706 0.6384 0.6192
h = 11 0.6673 0.6673 0.5961 0.7047 0.6699 0.6489
h = 12 0.6961 0.6961 0.6311 0.7391 0.7031 0.6827

Table 4.3: The entries in the table are the rMSFEs of the dynamic stochastic general equilibrium
(DSGE) model of Smets and Wouters (2007) relatively to the vector autoregressive model (VAR(p))
with an alternative number of lags p = BIC, 1, 2, . . . , 5. A positive entry indicates DSGE informative
forecasts, while a negative entry indicates a noninformative DSGE forecasts. The entries in italic
indicate the VAR model that loses less respect to the regular DSGE.
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For both time series, the table shows that there are no cases where the the VAR(p) model

is able to produce lowerMSFE than the the DSGE of Smets and Wouters (2007). This

result is in line with the findings of Del Negro and Schorfheide (2004), where a VAR(4)

is used as the benchmark. Here, we find that the DSGE model is able to outperform

not only the VAR(4) but all the VAR models considerared. For the output growth, the

VAR(1) is the VAR model that loses less respect to the DSGE at 1 quarter ahead, while

in the long run is the VAR(5) the model that minimize the loses respect to the regular

DSGE. The results of inflation are quite similar. The only difference is that now is the

VAR(2) the model that loses less respect to the regular DSGE.

Figure (4.5): DI(r) versus GDFM(r∗,q∗) The Figure (4.5) plots the rMSFE of DI model

with alternative number of static factors r respect to the GDFM(r∗; q∗). In the upper

graph, we have: rMSFE(DI(r), GDFM(r∗, q∗))|yt = 1− MSFE(DI(r))
MSFE(GDFM(r∗;q∗)) |yt for r =

BIC, 1, 2, . . . , 7, while in the lower graph we have: rMSFE(DI(r), GDFM(r∗, q∗))|πt =

1− MSFE(DI(r))
MSFE(GDFM(r∗;q∗)) |πt for r = BIC, 1, 2, . . . , 7. The observed values are reported in

Figure 4.5: The figure plots the rMSFEs of the diffusion index model (DI(r)) with an alterna-
tive number of static factors r = BIC, 1, 2, . . . , 7 relatively to the generalized dynamic factor model
(GDFM(p, q)) with the number of static factors r fixed using Alessi et al. (2007) criterion and the
number of dynamic factors q fixed using the Hallin and Liška (2007) criterion. The corresponding
values are reported in Table (4.4).

Table (4.4), where we have denoted in bold the cases where forecasting using a DI(r) is

superior than forecasting with the GDFM(r∗,p∗), and in italic the values of rMSFEs

for which the underlying DI(r) loses less respect to the GDFM(r∗,p∗).
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rMSFE of DI(r) versus GDFM(r∗; q∗) with r = BIC, 1, 2, . . . , 7
Output Growth

DI(BIC) DI(1) DI(2) DI(3) DI(4) DI(5) DI(6) DI(7)
h = 1 0.1044 -0.0705 0.1123 0.0641 0.0160 0.0406 0.1050 0.0947
h = 2 0.0095 -0.5011 0.0355 -0.0046 -0.0108 0.0390 0.0325 0.0261
h = 3 0.0193 -0.5435 -0.0495 -0.0565 0.0142 0.0350 -0.0668 -0.0398
h = 4 -0.2134 -0.6637 -0.3273 -0.1665 -0.0639 -0.1272 -0.1821 -0.1450
h = 5 -0.4967 -0.7139 -0.5174 -0.2173 -0.1727 -0.0545 -0.1449 -0.1142
h = 6 -0.2477 -0.6976 0.5925 -0.1172 -0.0790 -0.0923 -0.1577 -0.1612
h = 7 -0.2200 -0.8233 -0.2449 -0.1190 -0.0425 -0.2601 -0.1999 -0.1515
h = 8 -0.5137 -0.8496 -0.1979 -0.1767 -0.0859 -0.5864 -0.3237 -0.2065
h = 9 -0.3442 -0.5880 -0.1460 -0.1620 -0.0377 -0.4653 -0.3867 -0.2250
h = 10 -0.0557 -0.3785 -0.0400 -0.0373 0.0357 -0.1652 -0.1320 -0.1489
h = 11 -0.1110 -0.3366 0.0242 0.0268 0.1092 -0.0890 -0.1236 -0.0672
h = 12 -0.1516 -0.3208 0.0775 0.0858 0.1648 -0.1075 -0.1342 -0.0649

Inflation
h = 1 -0.3373 -0.7942 -0.1365 -0.3223 -0.3495 -0.1327 -0.2374 -0.1080
h = 2 -0.3779 -0.6909 -0.2419 -0.4184 -0.5187 -0.2014 -0.0475 -0.0258
h = 3 -0.6231 -0.9789 -0.3976 -0.5038 -0.6102 -0.5884 -0.2226 -0.0995
h = 4 -0.2596 -0.4576 -0.1307 -0.3342 -0.2179 -0.3853 -0.0689 0.1209
h = 5 -0.2462 -0.4384 -0.3278 -0.4383 -0.2495 -0.4395 -0.1484 -0.0041
h = 6 -0.3303 -0.2590 -0.1718 -0.0564 -0.1272 -0.2532 0.1059 0.1297
h = 7 -0.1198 -0.0946 -0.0699 -0.1528 -0.0117 -0.2162 0.1236 0.1961
h = 8 0.0443 0.1214 0.0689 -0.0963 0.0771 0.0519 0.2857 0.3452
h = 9 0.1436 0.2067 -0.0387 -0.1257 0.0960 0.0847 0.3164 0.2729
h = 10 0.2207 0.2761 -0.0352 -0.1478 0.1280 0.1004 0.3220 0.3129
h = 11 0.3162 0.3569 0.1129 -0.0128 0.2336 0.1318 0.2343 0.3544
h = 12 0.3889 0.3992 0.1867 0.0812 0.2716 0.1495 0.2890 0.3529

Table 4.4: The entries in the table are the rMSFEs of the diffusion index model (DI(r)) with an
alternative number of static factors r = BIC, 1, 2, . . . , 7 relatively to the generalized dynamic factor
model (GDFM(r, q)) with the number of static factors r fixed using Alessi et al. (2007) criterion
and the number of dynamic factors q fixed using the Hallin and Liška (2007) criterion. We found
r∗ = 5 e q∗ = 3. A positive entry indicates DI informative forecasts, while a negative entry indicates
noninformative DI forecasts. The entries in italic indicate the DI model that loses less respect to
the GDFM. The entries in bold indicate the most informative forecasts for any forecasting horizion
h. For example, for inflation at one step ahead, there are no cases in which a DI yields informative
forecasts and the DI(7) is the model that loses less, while at four step ahead the DI(7) is able to
produce informative forecasts.
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Most of the values contained in the table are negative, meaning that there are few

occasions in which the DI model yield a lower MSFE. Regard to output growth, there

are few cases where the GDFM is outperformed by the DI, while for inflation these

cases are increased. For the output growth, the DI model with 5 and 4 factors tend

to outperform the GDFM(r∗, q∗) in both short term (up to 2 quarters ahead) and long

term (from 10 to 12 quarters ahead). For inflation, there are no cases where the DI

model is able to produce informative forecasrs in the short run, while in the medium

run and in the long run the DI(7) and the DI(1) are able to produce lower MSFEs

respectively.

Figure (4.6): DSGE models versus GDFM(r∗,q∗) The Figure (4.6) plots the rMSFE

of DSGEmodels respect to the GDFM(r∗; q∗). In the upper graph, we have: rMSFE(z,GDFM(r∗; q∗))|yt =

1− MSFE(z)
MSFE(GDFM(r∗,q∗)) |yt for z = {DSGE, drDSGE}, while in the lower graph we have:

rMSFE(z;GDFM(r∗; q∗))|πt = 1− MSFE(z)
MSFE(GDFM(r∗,q∗)) |πt where z = {DSGE, drDSGE}.

The observed values are reported in Table (4.5), where we have denoted in bold the cases

Figure 4.6: The figure plots the rMSFEs of the dynamic stochastic general equilibrium models rela-
tively to the generalized dynamic factor model (GDFM(r, q)) with r∗ = 5 e q∗ = 3. The corresponding
values are reported in Table (4.5).

where a DSGE model is able to outperform the GDFM(r∗,q∗) in terms of rMSFE.

About the output growth, the GDFM yields lower MSFEs than the DSGE models for

any forecasting horizon. It confirms the results of Table (4.1) where the DSGE models

was found to generate higher rMSFEs than the GDFM.
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rMSFE of DSGE models versus GDFM(r∗,q∗)
Output Growth Inflation
DSGE drDSGE DSGE drDSGE

h = 1 -0.7573 -0.6963 -0.8331 -0.8129
h = 2 -1.0791 -0.8770 -0.6239 -0.5754
h = 3 -1.0595 -0.8643 -0.7801 -0.6705
h = 4 -1.2252 -0.6249 -0.2724 -0.1309
h = 5 -1.1810 -0.7016 -0.2213 -0.0215
h = 6 -1.1334 -0.6885 -0.0328 -0.0019
h = 7 -1.1926 -0.6752 0.1142 0.3131
h = 8 -1.3087 -0.5316 0.3287 0.6204
h = 9 -1.3632 -0.5034 0.4203 0.6396
h = 10 -1.3477 -0.4597 0.4849 0.8861
h = 11 -1.6358 -0.5606 0.5658 0.9660
h = 12 -1.8296 -0.7987 0.6465 1.0471

Table 4.5: The entries in the table are the rMSFEs of the dynamic stochastic general equilibrium
models relatively to the generalized dynamic factor model (GDFM(r, q)) with r∗ = 5 e q∗ = 3. A
positive entry indicates DSGE informative forecasts, while a negative entry indicates noninformative
DSGE forecasts. The entries in bold indicate the most informative DSGE forecasts. For example,
for output growth there are no cases in which DSGE models yield informative forecasts, while for
inflation at eight step ahead both DSGE and drDSGE produce informative forecasts but the drDSGE
forecasts are more informative.

About the output growth, the GDFM yields lower MSFEs than the DSGE models for

any forecasting horizon. It confirms the results of Table (4.1) where the DSGE models

was found to generate higher rMSFEs than the GDFM. Differently, when we have to

forecast inflation, we find that DSGE models are able to produce lower MSFEs than

the GDFM only in the long run (from 7 to 12 quarters ahead).

The interesting result is the MSFE performance gap between the DSGE and the drDSGE.

This gap, as shown in Figure (4.6) increases when the forecasting horizon is increased as

a pair of open scissors. Regarding the output growth, at 1 quarter ahead, the drDSGE

loses 6.01% less (in absolute value) than the DSGE, at 6 quarters ahead, the drDSGE

loses 44.49% less than the DSGE, and at 12 quarters ahead, the drDSGE loses 103.09%

less than the DSGE. The same situation happens for inflation. At 1 quarter ahead,

the drDSGE loses 2.02% less (in absolute value) than the regular DSGE, at 6 quarters

ahead, the drDSGE loses 3.09% less than the regular DSGE, and at 12 quarters ahead,

the drDSGE loses 40.06% less than the regular DSGE. This result is in line with the

findings of Boivin and Giannoni (2006), who show that more accurate estimates implies

better forecasts at least one step ahead.

Concluding, the rMSFE analysis has pointed out that output growth is not forecasted in-

formatively by DSGE models, while factor models yield lower and informative MSFEs for
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any forecasting horizon. Simmetrically, for the inflation, DSGE models tend to produce

lower MSFEs than factor models especially in the long run. We could take these results

as definitive, but since the MSFE analysis has not significance power, we have to work on

forecasting inference implementing predictive ability tests. Among these tests, we interpreted

the conditional predictive ability test of Giacomini and White (2006).

4.4.2 Equal predictive ability results

The Table (4.6) reports the test statistic of the unconditional equal predictive ability test,

while the Table (4.7) reports the test statistic of the conditional equal predictive ability test.

These statistics have the following interpretation: plus signs indicate that the forecating

model in rows have lower mean squared forecasting errors than the corresponding forecating

model in columns, then the model in row outperforms significantly the model in column.

Simmetrically, negative signs indicate that the forecating model in rows have higher mean

squared forecast errors than the corresponding forecasting model in columns, then the model

in column outperforms significantly the model in column. We denoted in bold entries that

are significant at 5% level, while we denoted in underlined bold entries that are significant

at 1% level. Critical levels of test statistics are fixed as suggested by Diebold and Mariano

(1995) and West (1996) and Giacomini and White(2006) respectively. The interpretation of

the GW test is considered as definitive.

Unconditional Predictive Ability Test: Looking at output growth forecasts, we find that

there are not occasions where DSGE models show significant differences between competing

models. The GDFM outperforms significantly DSGE models in both short and long run,

while the DI model outperforms significantly only the regular DSGE at 1 quarter ahead and

at 12 quarters ahead. Therefore, the drDSGE model produces significantly better forecasts

than the regular DSGE in both short and long run.

Looking at inflation forecasts, the GDFM is able to outperform significantly DSGE models

only 1 quarter ahead, while at 8 and 12 quarters ahead the drDSGE dominates significatively

all other competing models. Surprising also the regular DSGE is found significant better

than the GDFM at 12 quarters ahead. This result will not be confirmed by the GW test.

Therefore, interestingly the DI outperforms significanlty the GDFM at 12 quarters ahead. We

could take these results as definitive, but since the DMW test has low power in finite samples
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Test of equal unconditional predictive ability (DMW test)

Output Growth Inflation

If h = 1: If h = 1:
Mean AR(p*) DI(r*) VAR(p*) DSGE GDFM(r*;q*) Mean AR(p*) DI(r*) VAR(p*) DSGE GDFM(r*;q*)

AR(p*) -0.7918 0 0 0 0 0 2.6920 0 0 0 0 0
DI(p*) 1.7463 1.9841 0 0 0 0 2.6646 1.3368 0 0 0 0
VAR(p*) -1.4522 -1.2933 -1.8290 0 0 0 1.8728 -0.0862 -1.1656 0 0 0
DSGE -1.4676 -1.2195 -2.2254 0.9709 0 0 2.4421 0.0836 -1.1691 0.1227 0 0
GDFM(r*;q*) 1.2930 1.5014 -0.7404 1.8507 2.3574 0 3.37792.0804 1.4511 1.6775 1.9935 0
drDSGE -1.5135 -1.2156 -1.8882 1.2017 2.1941 -2.1765 2.5034 1.0870 -0.9985 0.1459 1.9765 -1.9661

If h = 4: If h = 4:
AR(p*) -0.5556 0 0 0 0 0 2.0203 0 0 0 0 0
DI(p*) 1.2366 1.4135 0 0 0 0 1.9513 0.7181 0 0 0 0
VAR(p*) -1.6753 -1.5254 -1.7965 0 0 0 0.7002 -0.5918 -0.8532 0 0 0
DSGE -1.0382 -0.7364 -1.6713 1.5747 0 0 2.5035 0.6524 -0.0292 0.7443 0 0
GDFM(r*;q*) 1.8508 1.9591 1.6143 1.8781 2.0129 0 2.7669 1.2880 0.9917 1.0974 0.7235 0
drDSGE -0.6513 -1.3356 -1.8882 1.6017 2.1451 -1.9872 2.53822.5476 -0.9813 2.5111 2.0198 -1.5322

If h = 8: If h = 8:
AR(p*) -0.0512 0 0 0 0 0 1.1756 0 0 0 0 0
DI(p*) 0.3839 0.3398 0 0 0 0 1.8409 1.2537 0 0 0 0
VAR(p*) -1.6083 -1.5807 -1.7394 0 0 0 0.1158 -0.6590 -1.0122 0 0 0
DSGE -0.9811 -0.8915 -1.6256 1.6460 0 0 3.17691.9926 0.9056 1.3551 0 0
GDFM(r*;q*) 1.8207 1.8121 1.5060 1.7693 1.8888 0 1.5614 0.7413 -0.1877 0.8808 -0.9626 0
drDSGE -0.8755 -0.6091 -0.2698 2.1278 1.9126 -2.3176 3.21542.5985 1.9798 3.3387 2.0223 2.7655

If h = 12: If h = 12:
AR(p*) -0.1642 0 0 0 0 0 -0.2215 0 0 0 0 0
DI(p*) 0.1482 0.2473 0 0 0 0 1.7187 2.0849 0 0 0 0
VAR(p*) -1.9174 -1.8859 -1.9223 0 0 0 -0.1774 -0.1059 -1.2946 0 0 0
DSGE -2.3896-2.2422-2.4234 1.6847 0 0 3.85933.0489 1.4927 1.7108 0 0
GDFM(r*;q*) 0.8046 0.9602 1.2034 1.9475 2.6667 0 -0.0143 0.2202 -2.1764 0.2105 -2.1933 0
drDSGE -1.0103 -0.7691 -0.2698 2.1278 2.4166 -2.5455 5.18794.8805 1.9801 3.7598 3.2433 4.0131

Table 4.6: This table contains the results of pairwise tests of equal unconditional predictive accuracy
of alternative forecasting models using a quadratic loss function. The entries in the table are the
test-statistic of equal unconditional predictive ability for the methods in the corresponding row and
column. A positive (negative) entry indicates that the model in row is able to produce a significant
lower (higher) mean squared forecast error than the corresponding model in column. The entries in
bold indicate test-statistics that are significant at 5% level. The entries in underlined bold indicate
test-statistics that are significant at 1% level. For example, for output at twelve step ahead, the
GDFM forecasts outperforms significantly at 1% level the drDSGE forecasts.
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(Clark and McCracken (2001) and Clark and McCracken (2010)), we need to interpret the

conditional preditive ability test instead.

Test of equal conditional predictive ability (GW test)

Output Growth Inflation

If h = 1: If h = 1:
Mean AR(p∗) DI(r∗) VAR(p∗) DSGE GDFM(r*,q*) Mean AR(p∗) DI(r∗) VAR(p∗) DSGE GDFM(r*,q*)

AR(p∗) 8.2512 0 0 0 0 0 15.7459 0 0 0 0 0
DI(p∗) 5.1260 5.0767 0 0 0 0 9.5378 0.7863 0 0 0 0
VAR(p∗) 3.7613 3.2106 -7.5801 0 0 0 12.0002 5.8369 0.7711 0 0 0
DSGE 2.1322 1.5354 -8.2113 5.2770 0 0 13.8996 4.3562 0.5602 5.8350 0 0
GDFM(r*,q*) 1.6440 1.8884 0.6445 8.6058 9.2396 0 21.6968 4.6374 3.0911 4.9811 4.0713 0
drDSGE 2.1523 1.6877 -8.1921 8.5967 8.1265 -7.9321 12.2570 6.0129 0.6032 4.8701 5.8033 -3.9034

If h = 4: If h = 4:
AR(p∗) 0.5407 0 0 0 0 0 2.9308 0 0 0 0 0
DI(p∗) 2.3150 2.8183 0 0 0 0 8.0435 1.4455 0 0 0 0
VAR(p∗) 3.2082 2.5118 -4.0286 0 0 0 4.8213 1.7167 1.0193 0 0 0
DSGE 2.9597 2.2769 -2.6651 3.4087 0 0 4.8167 2.4049 0.9501 1.5464 0 0
GDFM(r*,q*) 3.2138 3.3985 1.9478 4.2912 3.0909 0 20.9087 2.0743 1.1859 1.2578 3.6244 0
drDSGE 3.2021 2.5847 -2.4217 4.2517 6.0154 -2.9321 6.2033 7.4279 4.5611 6.6037 6.5534 5.9851

If h = 8: If h = 8:
AR(p∗) 2.6710 0 0 0 0 0 15.3335 0 0 0 0 0
DI(p∗) 1.3636 1.3212 0 0 0 0 13.5552 7.1261 0 0 0 0
VAR(p∗) 3.6685 4.1270 -3.6573 0 0 0 3.5745 0.2973 2.3745 0 0 0
DSGE 3.1501 3.4670 -3.8994 2.1355 0 0 7.4830 3.5709 2.7996 1.2484 0 0
GDFM(r*,q*) 0.6531 0.4712 2.1853 2.3374 3.7045 0 23.4710 4.4193 1.3812 2.3919 2.1791 0
drDSGE 5.2544 4.8821 -5.8621 6.9063 6.4113 -4.9321 9.7838 8.1772 5.991811.54467.9253 8.7679

If h = 12: If h = 12:
AR(p∗) 5.2311 0 0 0 0 0 10.0696 0 0 0 0 0
DI(p∗) 3.9721 1.7715 0 0 0 0 11.7056 7.8748 0 0 0 0
VAR(p∗) 8.93859.3304-8.3023 0 0 0 15.190511.9503 2.1421 0 0 0
DSGE 6.0661 5.9044 -5.7588 7.4603 0 0 11.5110 5.6169 0.8479 1.2841 0 0
GDFM(r*,q*) 0.3319 1.4539 1.2591 8.3659 6.2057 0 8.0811 1.0432 1.8838 1.8486 4.2154 0
drDSGE 6.4923 5.9872 -6.5821 6.0567 8.3445 -6.9355 18.8901 9.0332 7.010520.30448.2211 11.6031

Table 4.7: This table contains the results of pairwise tests of equal conditional predictive accuracy
of alternative forecasting models using a quadratic loss function. The entries in the table are the test-
statistic of equal conditional predictive ability for the methods in the corresponding row and column.
A positive (negative) entry indicates that the model in row is able to produce a significant lower
(higher) mean squared forecast error than the corresponding model in column. The entries in bold
indicate test-statistics that are significant at 5% level. The entries in underlined bold indicate test-
statistics that are significant at 1% level. For example, for inflation at one step ahead, the drDSGE
forecasts outperforms significantly the AR(p∗) forecasts.

Conditional Predictive Ability Test: Regarding the output growth, the test reveals on

one hand that the GDFM is able to generate significantly better forecasts than DSGE models

in both short and long run. On the other side, the DI model is able to outperforms signifi-

cantly the DSGE models only in the short run. Therefore, is confirmed the superiority of the

drDSGE in outperforming significantly the regular DSGE in the short, medium and long run.
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Regarding the inflation, we discovered the most important result of the dissertation: only

the drDSGE outperforms significantly all other competitive models in forecasting inflation

in the long run. In other words, in the long run significant forecasts can be obtained only

by combining a DSGE model with a static factor model. It means that exploiting more

information on many macroeconomic time series, through the drDSGE, is important not only

to obtain more accurate estimates, but also to get significant better forecasts.
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Conclusion

We conducted several out-of-sample forecasting experiments to assess the forecasting power

of factor models relatively to DSGE models. We found three main conclusions. First, DSGE

models are significantly outperformed by the GDFM in forecasting output growth in both

short and long run, while the static factor model outperforms significantly DSGE models

only in the short run. Second, the most surprising result of the dissertation, we discovered

that only the drDSGE outperforms significantly all other competitive models in forecasting

inflation in the long run. This evidence falls out with both Wang (2009) who found that the

regular DSGE of Del Negro and Schorfheide (2004) was able to generate significant better

forecasts for inflation in the long run, and Paccagnini (2011) where hybrid models are found

to forecast poorly. Therefore, the drDSGE outperforms significantly the regular DSGE in

forecasting both output growth and inflation, confirming that exploiting more information

on many macroeconomic time series, through the drDSGE, is important not only to obtain

more accurate estimates, but also to get significant better forecasts. Third, in most cases, the

unrestricted VAR represents the worse forecasting model, suggesting that this model should

not be used as benchmark model in forecasting comparisons.

Given the wide variety of DSGE models in the literature, this dissertation should not be

understood as a final research into the relative predictive ability of DSGE models relatively to

factor models, but it should encourage further research in this topic. Our results raise several

issues for future research. In our view four issues are preminent. First, we have shown that

forecasting results vary according to the type of DSGE considered, then future research should

consider a wider range of DSGE models with alternative structural restrictions. Second,

being the drDSGE a static model, it would be useful to generalize its representation allowing

state variables to be loaded with leads and lags. It might raise further forecasting gains.

Third, we have estimated factor models assuming linearity but linearity is often not prevalent

in the data-set. Then, it would be useful to introduce nonlinear dynamic factor models.
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Fourth, throughout the dissertation we assumed weakly stationarity time series. Although

data-set differentiation and standardization achieve stationary in most cases, this is a strong

assumption that should be relaxed.
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Appendix A:

the data-set used

This appendix gives an overview of the dataset used to construct the factors. The data are

presented in the following ordering: series number, series mnemonic, series description and

transformation code. The transformation codes are 1 = no transformation, 2 = first difference,

3 = first difference of logs, 4 = second difference of logs. All price series are obtained from

Moody’s Economy and all other series are obtained from Datastream. The series mnemonics

and descriptions are taken directly from the associated sources. The interest rate spreads

are calculated using the average federal funds rate obtained from Moody’s Economy. The

abbreviations appearing in the series descriptions are sa/sadj = seasonally adjusted, cura =

current prices, seasonally adjusted, vola = volumn index, seasonally adjusted.

Table 8: The data-set used

Mnemonic Description Transformation

Prices
1 cpiuaa_us cpi: urban consumer apparel, (1982-84=100, sa) 4
2 cpiuac_us cpi: urban consumer commodities, (1982-84=100, sa) 4
3 cpiuad_us cpi: urban consumer durables, (1982-84=100, sa) 4
4 cpiuam_us cpi: urban consumer medical care, (1982-84=100, sa) 4
5 cpiuas_us cpi: urban consumer services, (1982-84=100, sa) 4
6 cpiuat_us cpi: urban consumer transportation, (1982-84=100, sa) 4
7 cpiul1_us cpi: urban consumer all items less food, (1982-84=100, sa) 4
8 cpiul2_us cpi: urban consumer all items less shelter, (1982-84=100, sa) 4
9 cpiul5_us cpi: urban consumer all items less medical care, (1982-84=100, sa) 4
10 ppisp1000_us ppi: stage of processing crude materials, (index 1982=100, sa) 4
11 ppisp2000_us ppi: stage of processing intermediate materials, (index 1982=100, sa) 4
12 ppisp3000_us ppi: stage of processing finished goods, (index 1982=100, sa) 4
13 ppisp3100_us ppi: stage of processing finished consumer goods, (index 1982=100, sa) 4

Consumption
14 uscdtan_b pce durables, new autos (ar) cura 3
15 uscondurb personal consumption expenditures durables (ar) cura 3
16 usconndrb personal consumption expenditures nondurables (ar) cura 3
17 usconsrvb personal consumption expenditures services (ar) cura 3
18 usperconb personal consumption expenditures (ar) cura 3

Employment
19 usem21_o employed mining vola 3
20 usem23_o employed construction vola 3
21 usem42_o employed wholesale trade vola 3

... continued on next page
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Table 8 ... continued from previous page
Mnemonic Description Transformation

22 usem81_o employed otherservices vola 3
23 usemig_o employed government vola 3
24 usemimd_o employed durable goods vola 3
25 usemip_o employed totalprivate vola 3
26 usemir_o employed retail trade vola 3
27 usemit_o employed trade, transportation, utilities vola 3
28 usempallo employed nonfarm industries total (payroll survey) vola 3
29 usempg_o employed goodsproducing vola 3
30 usempmano employed manufacturing vola 3
31 usemps_o employed serviceproviding vola 3
32 usemptoto total civilian employment vola 3
33 ushlpwadq help wanted proportion of labor markets w/rising wantad vola 1
34 usun_totq unemployment rate sadj 2
35 usundurne average durationof unemployment (weeks) vola 1
36 usunw14_q unemployed distribution 5 to 14 weeks sadj 1
37 usunw15_q unemployed distribution 15 weeks over sadj 1
38 usunw26_q unemployed distribution 15 to 26 weeks over sadj 1
39 usunw5_q unemployed distribution less than 5 weeks sadj 1
40 usvactoto index of help wanted advertising vola 3

Housing
41 ushbrm_o housing started midwest (ar) vola 3
42 ushbrn_o housing started northeast (ar) vola 3
43 ushbrs_o housing started south (ar) vola 3
44 ushbrw_o housing started west (ar) vola 3
45 ushous_o new private housing units started (ar) vola 3

Hours and Earnings
46 ushkim_o avg wkly hours manufacturing vola 3
47 ushxpmano avg overtime hours manufacturing vola 3
48 uswr23_b avg hrly earn construction cura 4
49 uswrim_b avg hrly earn manufacturing cura 4

Output and Income
50 usipmbuqg indl prod business equipment vola 3
51 usipmcogg indl prod consumer goods vola 3
52 usipmducg indl prod durable consumer goods vola 3
53 usipmfgsg industrial production manufacturing (sic) vola 3
54 usipmfing indl prod final products, total vola 3
55 usipmmatg indl prod materials, total vola 3
56 usipmnocg indl prod nondurable consumer goods vola 3
57 usipmprog indl prod final products nonindustrial supplies vola 3
58 usiptot_g industrial production total index vola 3
59 usiumfgsq indl utilizationmanufacturing (sic) sadj 1
60 uspdispib disposable personal income (ar) cura 3
61 uspersinb personal income (ar) cura 3

Interest Rates
62 uscrbbaa corporate bond yield moody’s baa, seasoned issues 2
63 uscrbyld corporate bond yield moody’s aaa, seasoned issues 2
64 ustrb3av treasury bill secondary market rate on discount basis 3 month 2
65 ustrcn10 treasury yield adjusted to constant maturity 10 year 2
66 ustrcn1_ treasury yield adjusted to constant maturity 1 year 2
67 ustrcn5_ treasury yield adjusted to constant maturity 5 year 2
68 usytb6sm treasury bill secondary market rate on discount basis 6 month 2
69 ussfycrbyld spread uscrbyld federal funds 1
70 ussfycrbbaa spread uscrbbaa federal funds 1
71 ussfytrb3av spread ustrb3av federal funds 1

... continued on next page
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Table 8 ... continued from previous page
Mnemonic Description Transformation

72 ussfyytb6sm spread usytb6sm federal funds 1
73 ussfytrcn1_ spread ustrcn1_ federal funds 1
74 ussfytrcn10 spread ustrcn10 federal funds 1
75 ussfytrcn5_ spread ustrcn5_ federal funds 1

Other Time Series
76 usm0_b monetary base cura 4
77 usnbrrsab nonborrowed reserves of depository institutions cura 3
78 uspmchin chicago purchasingmanager diffusion indexinventories(sa) 1
79 uspmchlt chicago purchasingmanager diffusion indexdeliveries(sa) 1
80 uspmchp_ chicago purchasingmanager diffusion indexprodn. (sa) sadj 1
81 ustotrsab total reserves of depository institutions cura 3
82 usexpgdsb exports f.a.s. cura 3
83 uscnfbusq ism purchasing managers index (mfg survey) sadj 1
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