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Abstract

This dissertation aims to put dynamic stochastic general equilibrium (DSGE) fore-
casts in competition with factor models (FM) forecasts considering both static and
dynamic factor models as well as regular and hybrid DSGE models. The empir-
ical study shows three main conclusions. First, DSGE models are significantly
outperformed by the generalized dynamic factor model (GDFM) in forecasting
output growth in both short and long run, while the diffusion index (DI) model
outperforms significantly DSGE models only in the short run. Second, the most
surprising result of the dissertation, we discovered that only the hybrid DSGE
model outperforms significantly all other competitive models in forecasting infla-
tion in the long run. This evidence falls out with recent papers that found just
regular DSGE models able to generate significant better forecasts for inflation in
the long run as well as papers where hybrid DSGE models are found to forecast
poorly. Third, in most cases, the unrestricted vector autoregressive (VAR) model
represents the worse forecasting model. Although our results are consistent with
the prevalent literature who gives to factor models the role to forecast output vari-
ables and to DSGE models the role to forecast monetary and financial variables,
this research documents that exploiting more information on many macroeconomic
time series, through hybrid DSGE models, is important not only to obtain more
accurate estimates, but also to get significantly better forecasts.

Keywords: Diffusion Index (DI) model, Generalized Dynamic Factor Model (GDFM),
Dynamic General Equilibrium (DSGE) model, Data-Rich DSGE (drDSGE) model, Equal
Predictive Ability Tests.
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Chapter 1

Introduction

Recent years have seen rapid growth in the availability of economic data. Statisticians,
economists and econometricians now have easy access to data on many hundreds of variables
that provide the information about the state of the economy. Coinciding with this growth
in available data, two main new econometric models that exploit this wider information have
been proposed: the factor models (FM) and the Dynamic Stochastic General Equilibrium
(DSGE) models. Factor models have been successfully applied when we have to deal with:
construction of economic indicators (Altissimo et al. (2010)), business cycle analysis (Gregory
et al. (1997) and Inklaar et al. (2003)), forecasting (Stock and Watson (2002a,b) and Forni et
al. (2000)), monetary policy (Bernanke and Boivin (2003) and Bernanke et al. (2005)), stock
market returns (Ludvigson and Ng (2007)) and interest rates (Lippi and Thornton (2004)).
DSGE models have been successfully applied when we have to deal with: forecasting (Smets
and Wouters (2002) and Smets and Wouters (2007)), estimation accurancy (Boivin and Gian-
noni (2006) and Kryshko (2009)), credit and banking (Gerali et al. (2008)), interest term of
structure analysis (Amisano and Tristani (2010)) and monetary policy (Boivin and Giannoni
(2008)).

Among all these applications, the recent economic global crisis has pointed out how fore-
casting well is central. For this reason, the main objective of this dissertation is to provide
a detailed forecasting evaluation between these two econometric models taking into account
of the recent developments in both factor and DSGE modelling. The novel of this research is
the expanded range of forecasting models treated. Infact, our forecasting competition consid-
ers not only static factor models and regular DSGE models but also dynamic factor models,
such as, the so-called Generalized Dynamic Factor Model (GDFM) of Forni et al. (2000) and
hybrid DSGE models, such as, the so-called Data-Rich DSGE (drDSGE) following Boivin

and Giannoni (2006) and Kryshko (2009). The dissertation is motivated by the fact that
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although there are some forecasting discussions on both dynamic factor model and regular
DSGE individually, there is no attempt in the literature, to carry out a strong forecasting
evaluation between dynamic factor models and hybrid DSGE models. In particular, what is
missing is a forecasting comparison between the GDFM and the drDSGE.

The empirical study shows three main conclusions. First, DSGE models are significantly
outperformed by the GDFM in forecasting output growth in both short and long run, while
the static factor model outperforms significantly DSGE models only in the short run. Second,
the most surprising result of the dissertation, we discovered that only the drDSGE outper-
forms significantly all other competitive models in forecasting inflation in the long run. This
evidence falls out with both Wang (2009) who found that a regular DSGE was able to generate
significant better forecasts for inflation in the long run, and Paccagnini (2011) where hybrid
models are found to forecast poorly. Therefore, the drDSGE outperforms significantly the reg-
ular DSGE in forecasting both output growth and inflation, confirming that exploiting more
information on many macroeconomic time series, through the drDSGE, is important not only
to obtain more accurate estimates, but also to get significant better forecasts. Third, in most
cases, the unrestricted VAR is outperformed by the unconditional mean of the time series of
interest, confirming that this model should not be used as benchmark model in forecasting
comparisons.

This work is closely related with Wang (2009), but while we share some of the features
of his study, our analysis is greatly expanded. First, we do not use the simple DSGE model
of Del Negro and Schorfheide (2004) but the most elaborated DSGE model of Smets and
Wouters (2007). Second, among factor models, we considered also the GDFM of Forni et
al. (2000) whose forecasting performance is documented to be superior than the static factor
model of Stock and Watson (2002a,b). Third, among DSGE models, we put side by side the
regular DSGE model of Smets and Wouters (2007) with its representation in terms of drDSGE
following Boivin and Giannoni (2006) and Kryshko (2009). Therefore, our work is also re-
lated with the fast growing literature in both factor models and DSGE models. About factor
models, Forni et al. (2000) have presented and estimated their GDFM using a two-sised filter
of the observations, Stock and Watson (2002a) have introduced their diffusion index model
demostrating its ability to outperform autoregressions and small vector autoregressions fore-
casts, Stock and Watson (2002b) have shown the asymptotically efficiency of static principal

components, Bai and Ng (2002) have focused on the efficient estimation of the number of
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static factors under a diffusion index model, Forni et. al. (2005) have proposed a refinement
of their two-sided filter into a one-sided filter to allow forecasting feasible, Forni et al. (2009)
have emphasized how identification schemes in strustural VAR analysis can be adapted in
their GDFM, while Stock and Watson (2010) have described in great detail dynamic factor
models. About DSGE models, Smets and Wouters (2007) have extended their previous DSGE
model allowing more structural shocks and more financial frictions confirming that the DSGE
model has a fit comparable to that of bayesian vector autoregression (BVAR) models, Del
Negro et al. (2004) and Del Negro et al. (2007) have shown that a relatively simply DSGE
model employed as a prior in a VAR is able to improve the forecasting performance of the VAR
relative to an unrestricted VAR or a Bayesian VAR, Rubaszek and Skrzypczynski (2008) have
emphasized how DSGE model forecasts are poor in forecasting inflation and interest rates in
short term, Christoffel et al. (2010) have pointed out that large bayesian VAR can outperfom
DSGE forecasts, while Edge et al. (2011) have shown how their DSGE model can forecast

poorly inflation and output growth.
The dissertation is organized following Figure (1.1). Given a large data-set, indeed a data-set

Large Data-set

Model Identification  [——» Model Estimation [ .| Model Forecasting [ | Model Forecasting

Inference
a) Diffusion Index Madel (DI(r)) a) Static Principal Components * Relative Mean Squared Forecast  * pj i
b) Generalized Dynamic Factor Model (GDFM(r,q)) b) Dynamic Principal Components  Error (rMSFE) q ) g::gglrglgpgnl\gwmg((ggggll t':ler;rti West (1996) test

c) Dynamic Stochastic General Equilibrium (DSGE) c) Bayesian Approach (MH algorithm)
Model i i
d) Data-Rich DSGE (drDSGE) Model d) Bayesian Approach (MH algorithm)

Figure 1.1: The dissertation path.

with many economic time series variables, we evaluate the forecasting performance of factor
models relatively to the DSGE models passing through: identification, estimation, fore-
casting and forecasting inference. We open discussing the identification and estimation
schemes of both factor models (Chapter (2)) and DSGE models (Chapter (3)). In particular,
Chapter (2) describes the identification and the estimation of both static and dynamic factor
models with a special focus to the recent identification and estimation scheme proposed by
Forni and Lippi (2001) of their so-called Generalized Dynamic Factor Model (GDFM), while

Chapter (3) describes the estimation of the DSGE model of Smets and Wouters (2007) mo-

3



Tesi di dottorato in Econometrics, di Gabriele Palmegiani, discussa presso I’Universita LUISS Guido Carli, in data 20 Marzo 2012.
Soggetta a copyright (©. Sono comunque fatti salvi i diritti dell’Universita LUISS Guido Carli di riproduzione per scopi di ricerca e

didattici, con citazione della fonte. 1 IHtrOdllCtiOH

tivating the advantages of using its Data-Rich Environment version. Estimated the models,
we move on forecasting and forecasting inference (Chapter (4)). The forecasting step eval-
uates the models forecasting performance through the relative mean squared forecast error

(rM SFE) metric, defined as:

MSFE,,;

MSFE =1—-—
r (m7n)\h MSFEn‘h

where MSFE,,;, and MSFE,; denote respectively the mean squared forecast error gener-
ated from model m at the forecasting horizion h and the mean squared forecast error gener-
ated from model n at the forecasting horizion h. The rMSFE(m, n)| n can be interpreted as
a forecasting gain of model m relative to the model n at the forecasting horizion h when it is
positive, or it can be interpreted as a forecasting loss of the model m relative to the model
n at the forecasting horizion h when it is negative. In other words, the rMSFE(m,n),
answers to the question: ...between model m and n, which model should be used to forecast
a given time series h steps ahead? This metric represents an appropriate tool to measure the
forecasting perfomance of DSGE models as documented by Smets and Wouters (2003), Smets
and Wouters (2007), Edge et al. (2010) and Edge et al. (2011).

As pointed out by Diebold and Mariano (1995) and West (1996) and Giacomini and White
(2006), the main drawback of this M SFE analysis is the lack of significance, indeed it is not
possible to make rigorous statistical statements by simply interpreting the observed differences
between M SF E's because any metric has not a significance power. We need to look into model
forecasting inference. We use two test of forecasting accurancy: the test of equal unconditional
predictive ability of Diebold and Mariano (1995) and West (1996) (hereafter DMW test), and
the test of equal conditional predictive ability of Giacomini and White (2006) (heafter GW
test). Since, as shown by Clark and McCracken (2001), the unconditional test has low power
in the finite sample, particularly when nested models are involved, the final results of the

dissertation come from only the interpretation of the conditional test.



Chapter 2

Factor models

“All models are wrong, but some are useful”

George Box

This chapter presents the identification and the estimation schemes of the factor models used
in the out-of-sample forecasting experiments. A factor model is an econometric model where
each observed time series variable x; is assumed to be linearly decomposed into two un-
observed orthogonal components, the common component Y;; driven by a small number of
common shocks wu;;, and the idiosyncratic component &; who accounts for the residual of
that decomposition. The common component is responsable of the co-movement of the series,
while the idiosyncratic component is responsable to the specific time series variation. Both
the common and the idiosyncratic component are unobserved and need to be consistently

estimated.

The chapter is organized as follows. In Section (2.1) we start considering the identifica-
tion and the estimation of the Generalized Dynamic Factor Model (GDFM). In Section (2.2)
we present the identification and the estimation of the static factor model or diffusion index
(DI) model, as special case of the GDFM. In Section (2.3) we describe the one-sided esti-
mation and forecasting of the GDFM. In Section (2.4) we face the problem of determining
the number of factors, while Section (2.5) concludes discussing the link between static factor

model and the GDFM.

2.1 The generalized dynamic factor model

The Generalized Dynamic Factor model (GDFM) is a factor model that differs from the ezact
factor model, in which the idiosyncratic components are mutually uncorrelated, because it

allows the idiosyncratic shocks to be weakly serial and cross-sectional correlated. It combines
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the so-called approzimate static factor model of Chamberlain and Rothschild (1983), widely
applied in financial econometrics, and the dynamic factor model of Geweke (1977) and Sargent
and Sims (1977) for which respectively cross-sectional and serial correlation was allowed. The
model is called dynamic since the common shocks may not impact a series simultaneously,
as in the static factor model, but they can propagate with leads or lags. Then, the model
is called generalized since the common components are derived assuming a dataset with an

infinite number of series and an infinite number of observations.

To setting up the model, let’s introduce the notation. Let P = (2,Z, P) be a probability
model and let Ly (P, C) be the linear space of all complex-valued, zero mean, square-integrable
random variables defined on Q. Let x = {z;,7 € N;t € Z} be the infinite double sequence
of random variables defined on x;; € Lo(P,C) and let xn¢ = (214, o, - .., xN¢)" be the finite
N-dimensional column vector for the observation made at time ¢. If P is a complex matrix we
denote P’ as the transpose of P and P* as the complex conjugate of P’. With # we denote the
real interval [—7, w]. Then, given the subset G C Lo(P,C), we denote the closed span of G as
span(G) which is the minimum closed subspace of La(P, C) containing G. If S is a closed lin-
ear subspace of Ly(P,C) and x C Ly(P, C), we denote proj(x|S) as the orthogonal projection
of x on S. Therefore, we denote with ¥*(6) the spectral density matrix of the double sequence
x = {zy,i € N,t € Z} as function of the frequencies in § € [—m, 7], while with X% (0) we
denotes the spectral density matrix of the N-dimensional vector xy¢ = (z14, Zot, - .., TNt) as
function of the frequencies in 6 € [—m, 7). The i-th largest eigenvalue of 3% (6), is denoted by
AY;» while the i-th largest eigenvalue of X*(f) is denoted by AX(#). We denote the spectral
density matrices of the common and the idiosyncratic componenents and their eigenvalues in

a similar way.

We assume that for any N € N the process xy; is covariance stationary, that is, it has
finite variance-covariance matrix: E[thx’N;t_ w] = I}, and spectral density X%, with entries
0;; bounded in modulus:
1 [, 1 X
x ezkezx 0)db »X o ezkﬁrx
S B> 10 F=y Y T,

T k=—o00
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where the spectral density matrix can be estimated applying the discrete Fourier transform

to the sample covariance matrix.

Given these assumptions the model proposed by Forni and Lippi (2001) can be defined as

following.

Definition 2.1.1 The Generalized Dynamic Factor Model: Let q be a nonnegative
integer. The double infinite sequence x = {xy,i € N, t € Z} is a q-dynamic factor se-
quence if Lo(P,C) contains an orthonormal q-dimensional white noise vector process u =
{(uit,uge, ..., uq);t € Z} = {uy,t € Z} and the double sequence & = {&;,1 € N, t € Z} such

that:

1. For any i € N:

xr = Xt+6& (2.1)

xt = bi(Lui+...+by(L)ug =Y b(L)uj =B(L)u (2.2)
j=1

where B(L) = by (L) + ... +b,(L) represents the lag polynominal of order q with b; €
Li(;C) for anyi € N and j =1,2,...,q (or alternatively each entry b;j € La(0,C) for

any i € N and j =1;2;...;q).

2. Foranyi €N, j=1,2,...,q and k € Z, we have &; L uj,_y, then &4 L Xs;t—k for any

1€N,seNand k € Z.
3. & is idiosyncratic.
4. Putting x = {xit, i € N,t € Z}, A\§(0) = 0o almost everywhere in 0.

where: x; and &; are referred as the vector of common component and the vector of the

idiosyncratic component of x;, while uy is referred to as the vector of common shocks.

The corrisponding model in vector form is:

XNt = XNt T &Nt (2.3)

= By(L)us +&ny

where By (L) = (bn1(L);by2(L);...;bng(L)) is an (N x g) matrix.
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Example 2.1 One dynamic factor GDFM
Let x;+ be the time series x at the i-th cross-sectional unit with ¢ =1,2,..., N, and at time t
witht =1,2,...,T. Stating that x;; admits a generalized dynamic factor model representation

with one dynamic factor, means decomposing the series as:

rie = Xit + &t (2.4)

Xigt = bli(L)ult + th(L)UQt + ...+ bqi(L)uqt

where: x4t 1s the common component, and & is the idiosyncratic component. The common
component is costructed with g unobserved common shocks or dynamic factors wj; for any

Jj=1,2,...,q that are loaded with the filters b;;(L) with leads and/or lags.

2.1.1 The identification of the GDFM

The GDFM model defined in Equation (2.1) must be identified. Identification means to find
conditions on the variance-covariance of the data x; for which the common x; and idiosyncratic
component &; are identified. Following Forni et al. (2000), we need to place conditions on
the spectral density matrix of the data x, indeed on 3*(#), under which the common and

idiosyncratic components are identified as IV goes to infinity.

Assumption 2.1 Given the double sequence x = {xy,i € N,t € Z} where x;; € La(P,C)

and given the form:

xt = xt+t6&
we assume that:
i) the g-dimensional vector process u = {(u1t, o, ..., uq),t € Z} is an orthonormal white

noise. That is, Eluj] = 0 and VAR[uj] = Elujul,] =1 for any j and t; uje L ujy—y,

forany j, t, and k # 0; ujy L ugy—y for any s # j, t and k.

il) € ={&t,1 € N,t € Z} is the double sequence such that, &, = {(&1t, oty -, ENt)' t € L} is

a zero-mean stationary vector process for any N, and & L uji—y for any i, j, t, k;

iii) the filters B(L) are one-sided in L and their coefficients are square summable for any

8
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1€Nandj=1,2,...,q.

This assumption has two implications. First, it implies that the vector x = {z;,7 € N,t €
Z} where i € Lo(P,C) is stationary and zero-mean for any N. Second, it implies that
the spectral density of the N-dimensional vector xy, indeed X%,(0), can be written as the
sum of the spectral density of the common component 3%,(6) and the spectral density of
the idiosyncratic component Ef\,(ﬁ). These matrices are unobserved, then to obtain their

consistent estimation we need further assumptions.

Assumption 2.2 For any i € N, there exist a real ¢; > 0 such that 0;;(0) < ¢; for any

0 € [—m, 7).

Assumption 2.3 The first idiosyncratic dynamic eigenvalues Af\,l 1s uniformly bounded.

That is, there exist a real A such that A§V1(9) for any 0 € [—m; 7] and N € N.

Assumption 2.4 The first ¢ common dynamic eigenvalues diverge almost everywhere in

[—m, w]. That is lim, /\’]%j(()) = oo for j < q, almost everywhere in [—m,x].

The Assumption 2.2 implies that all the entries 0;;(0) of ¥%(6) are bounded in modulus,
Assumption 2.3 implies that the dynamic eigenvalues of the idiosyncratic components have
effects concentrated on a limited number of variables, while Assumption 2.4 implies that each
common shock u;; is present in infinitely many cross-sectional units with nondecreasing im-

portance.

If the Assumptions 2.1 to 2.4 are satisfied, Forni and Lippi (2001) show that the double
sequence x = {zj,7 € N,t € Z} is a generalized dynamic factor model, or better, is a

g-generalized dynamic factor model.

2.1.2 Recovering the Common Components in the GDFM

Defined and identified the model, we briefly review this estimation method proposed by Forni
et al. (2000) to recovering consistently the common component x; in Equation (2.1) starting
from the finite N-dimensional process xn¢ = (4, T2t, - - ., n¢)'. The idea is to be aware that
for the the spectral density matrix of the finite process xy, indeed X%;, there exist IV vectors

of complex-valued functions:

Pnj(0) = (pnj1(0) pnj2(0) ... pNjN(0))
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for j =1,2,..., N such that:

a) py;(0) is the row eigenvector of 3%(0), that is:

pn; ()XY = AN;(0)pN;(0) for any 0 € [—m, 7] (2.6)

b) |pn;(0)]*> =1 for any j and 6 € [—7, 7];
c) pn;j(0)pi(0) =0 for any j # s and any 0 € [—m, 7];
d) pn;(0) is f-measurable on [—7,7].

Point a) tell us simply that the py;(0) for any j = 1,2,..., N are the eigenvectors associ-
ated to the eigenvalues )\ﬁj (0). These eigenvalues and eigenvectors are called dynamic, since
they come from spectral eigenvalue decomposition (Equation (2.6)) and not longer from the
contemporaneous variance-covariance matrix decomposition. Point b) affirms that dynamic
eigenvectors have unitary length, point c) states that dynamic eigenvectors are orthogonal,
while point d) affirms that the dynamic eigenvectors are functions misurable on the interval

[—m, 7]

As consequence of properties a) to d) each dynamic eigenvector py;(f) can be expanded

as Fourier Series:
1

o
k=—00

p;(0) [ pas@)cHan) e (2.7)

—T
then applying the inverse Fourier transforme to py; we can construct a square-summable,

N-dimensional, bilateral filter in the time domain:

Py, (L) = ;ﬁkz [ / P (0)e™] L* (2.8)

where we used the underlined notation to denotes that p Nj(L) is the inverse Fourier transfor-
mation of px;(6). The product of the dynamic eigenvectors times the data, indeed the scalar

process:

dpcjt = {EN]'(L) XNt , t € L}

is the so-called the j-th dynamic principal component of xn¢. Notice that, dynamic principal

components require to pass from frequency domain to the time domain. Now, to recover the

10
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common component from x ¢, consider the minimal closed subspace of La (€2, I, P) containing

the first ¢ dynamic principal components:
Uy =3span (pnj(L) xye =dpey, , j=1,2,...,q, t €Z) (2.9)

then by projecting the data on the minimal closed subspace containing the first ¢ dynamic

principal components, we get the N-dimensional common component:

Xit,N = proj(zqlUn)

= Ky(L) xni (2.10)

where Ky (L) = piy,(L)P (L) + P (L)Pyy (L) - + p*Nq,i(L)ENq(L) is the filter matrix
that extracts the finite /V or estimated common component x;; v from the finite N-sample data
xpn¢. Under the Assumption 2.1 and Assumption 2.2 this projection, indeed the estimated
common component X;; n, converges to X;; in mean square as N goes to infinity, indeed:
limy o0 Xit,N = Xit in mean square. This result shows that the common component x;; can

be recovered asymptotically from the sequence Ky, (L) xn¢.

2.2 The static factor model

The problem with the previous estimator is that the filter K, (L) used to recover the common
component from the data is a two-sided filter. A filter is two-sided when the observed variables
are related not only with the current and past values of the factors but also with their
future values. Although this leaves unaffected the estimate of the central part of the sample,
the performance of the estimator deteriorates as we approach the end of the sample. This
deterioration makes this method not suitable for forecasting. To outperform this forecasting

problem, the literature has proposed two approaches:

e Stock and Watson (2002b) have proposed a new estimation method based on the eigen-
value decomposition of the contemporaneous variance-covariance matrix of xp; rather

than its spectral eigenvalue decomposition;

e Forni et al. (2005) have proposed the one-sided version of their two-sided filter, which

respect to Stock and Watson (2002b) retains the advantages of their dynamic approach,

11
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described in Forni et al. (2000), allowing observed variables to be related only with

current and past value of the factors.

The approach of Stock and Watson (2002b) bring us to the so-called static factor model or
diffusion index model (DI model), while the approach of Forni et al. (2005) bring us to the
one-sided estimation and forecasting of their generalized dynamic factor model explained in

Section (2.3).

The model is called static when the vector of factors F; are loaded in xp; without leads
and /or lags, but just contemporaneoulsy. Although the relation between xy; and F; is static,

both F; and &; can have a proper law of motion. For example:

xne = An Fi + &ni (2.11)
~~ — ~ X~
(Nx1) (Nxr) (rx1) (Nx1)
A(L)Ft = €Nt ENE ™ 1id NN(O; Qe) (212)
U(L)ENt = Vi vt ~ iid Ny(0; Ry) (2.13)
is a static factor model, where: A(L) = I — A;L — ... — A,L? is the static factors lag
polynominal, ¥(L) = I — 1L — ... — W L5 is the idiosyncratic lag polynominal, while

ent and vy are exogenous shocks of the common and idiosyncratic components respectly.
We have the so-called exact factor model, if we assume that the matrix Ry is diagonal,
otherwise idiosyncratic shocks are correlated and we have the so-called approximate factor
model. Because any VAR(p) can be rewritten as VAR(1) using the so-called companion form,
throughout the dissertation, particular focus will be dedicated to the VAR(1) version of the

previous static factor model:

Xt = AFt + €t (214)
Ft = AFt,1 + €4 €t ~ iid NN(O, Qe) (215)
& = W& 1+ vy vi ~ iid Nn(0;Ry) (2.16)

where we dropped the time series index N for semplicity.

Differently from the specification by Forni and Lippi (2001), the common factors in Equation

12
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(2.11) are not required to be uncorrelated in time, and they can also be correlated with the id-
iosyncratic components. The only condition required for identification is that: VAR[F;] = I,
indeed the vector of static common factor has unit lenght. The dimension of F; is always

equal to r = g(m + 1) where ¢ is the dimension of the vector of common shocks u.

2.2.1 The estimation of the static factor model

Following Stock and Watson (2002b), let I, and F§V0 be the variance-covariance matrices
of the common component Xxn¢ and the idiosyncratic component &y respectively. Let g j

and py j be the largest eigenvalues, in descending orders, of I'y,, and F?\/o respectively.
Assumption 2.5 We assume that:
a) my—.o ;= 00 for L <j < r;

b) there exists a real M, such that M?Vj < M for any N.

Assumption 2.5 point a) establishes that, as N increases, the variance of xx; explained by the
first r eigenvalues of the common component increases to infinity. This means that as IV goes
to infinity the weight of the idiosyncratic component in explaining I'};; becomes smaller and
smaller. Assumtpion 2.5 point b) allows that the idiosyncratic components can be correlated,
but the assumption sets a limit to the amount of this correlation. As N increases, the vari-
ance of the vector xy; captured by the largest eigenvalue of the idiosyncratic component p1y,.,
remains bounded. Then, under both point a) and point b) of the Assumption 2.5, Stock and
Watson (2002b) shows that the static projection on the first r static principal components of

X ¢ converge in mean square to the common component in Equation (2.11) for N — oo.

To recover the common component ANF; in Equation (2.11), we need to estimate the vector
of static factors F;. Assume we are working on an empirical application with the finite pro-
cess Xy = {Tit,i=1,2,...,N,t =1,2,...,T}, Stock and Watson (2002b) have proposed to
estimate Fy as the r largest static principal components (SPC) starting from the estimated
contemporaneous variance-covariance matrix x =71 Zle X NT,tX/NT,t' The first principal
component is the linear combination of the observed variables that has maximum variance.
It is defined as the vector: spcy; = é&n1xpn¢. The second principal component is the linear

combination of the observed variables that has maximum variance after the first one and it

13
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is uncorrelated with the first one. It is defined as the vector: spcy; = &n2xne. To recover
the common component we need exactly r static principal components, then the r-th static
principal component will be the vector: spc,; = &n,Xn¢. To estimate the number of static

factors r, we have used the Alessi et al. (2007) criterion.

To derive these SPC, we need to maximize the variance explained by each principal compo-
nent. Because we assumed that the data-set has zero mean, the variance of the first principal
component is: VAR[&n1xnt] = E[Gnixni(Gnixne)]| = &le"o‘dQ\,l. This variance can be
incerased without limit unless we impose the unity lenght contraint éxy1é&’y; = 1. The prob-
lem becomes to maximize lef‘B‘d’Nl subject &n1é&y; = 1. The Lagrangian of constrained

maximization problem is:

L= anI%&y, — p(aniéy, — 1) (2.17)

where p is the Lagrange multiplier. Differentiation with respect to G produces:

oL
0& N

= 2aN 1 T% — 2méaN1 =0 = anI¥=méam (2.18)

Indeed, fi; is an eigenvalue of f‘f)‘ and é&pn; is the associated eigenvector. To decide which
eigenvector with maximum variance results from the product: é&xpn¢, let’s multiply by &y,

we obtain:

VAR[&n1xNt] 1
X A/ / X A/ /
aniI'géy, = nanéay, =  anlgély, = nanidly = n (2.19)

So, to maximize the variance {117 must be as large as possible. Thus, &y is the eigenvector
corrisponding to the largest eigenvalue of f‘f)‘ and VAR[&n1xn¢] = f11 s the largest eigenvalue

of f‘f)‘.

When we introduce the second principal component we require the variance of the sum of

the two to be maximum. The Lagrangian is:

L= anaT5é0 + anal56y, — pi(@ni@lyy — 1) — po(Gnadlyy — 1) (2.20)

)
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where o is the Lagrange multipliers corresponding to the second principal component. Dif-

ferenzation respect to &1 and &9 produces:

oL N . N
~ ~ A~ ~ ~ ~/ A A ~/ ~
04 = 20’.]\[11_%(—2,[1,10(]\[1:0 = aNll"f]‘:maNl = aNlI‘f)‘aleulaNlale,ul
N1
O 2Gal% — iy =0 = GaaD = nd ol alys = fndvadlys =
Dény = Z2apn2ly —z2p20N2 = U = Qan2ly = U102 = OQN2l O N9 = U1ON20 Ny = [12

Thus, the first order conditions are maximized if we consider the first two largest eigenvalues of
f‘j‘vo. In other words, the sum of first two eigenvalues ji; + fi2 maximizes the sum of variances
given the unity lenght constraints. Therefore, since the second principal component must be

orthogonal to the first one, we have:

f%( H1éeN1 ani L éapng
——— — ——
~ ~ / ~ / ~1 ~ X Al ~ ~ 1
Elanixni(@nexne)'] = ani E[xyiXy,] Qg = &I &lyo = 11 Gni1blyy =0

because eigenvectors are by definition orthogonal, indeed Gy1G&n2 = 0 or &y L Gpyo. It-
erating this procedure r times we get all the required principal components. Computing the
eigenvectors of the variance-covariance matrix of xy; is equivalent to solve the so-called static

principal component (SPC) problem, defined as:

an; = argmazgepn dyod’ (2.21)
subject to dd' =1
and dély; =0 for 1<i<y
for j =1;2;...;r. For r = 2, we have shown that the solutions of this maximization problem

are the eigenvectors corresponding to the r largest eigenvalues of I'},,. Then, ordering the
eigenvalues fi; in descending order and taking the eigenvectors corresponding from the largest

eigenvalue to smallest, we define:
—_— ~ ~ -~ /
SPC; = (&n1XNt GN2XNt ... GNyXNt)

as the vector of static principal component of x ;.
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2.3 One sided estimation and forecasting of Forni et al. (2005)

The filters Ky;(L) in Equation (2.10) that extract the common components from the infinite
data-set x ¢ are unknown and must be estimated. In practice, we have to deal with finite sam-
ples, then we need to extract the common components from xy7 = {x;,7 = 1,2,...,N,t =
1,2,...,T}, rather than its infinite couterpart xy¢. The idea is to estimate the filters K, (L)
under the assumption that xy; admits a Wold representation. Infact, if xy; admits a
Wold representation, any periodogram smoothing or lag-window estimator i]x(ﬁ) is a con-
sistent estimator of 3%(0) for T' going to infinity. Therefore, also $3%(6) is unknown, but it
can be estimated applying the discrete Fourier transform to the sample variance-covariance
matrix of xy7. Let’s consider first, the estimation of 33%(6), then we consider the estimation

of the filter Ky, (L) and its refinement as one sided filter.

Under the assumtpion that xy; admits a Wold representation:
XNt = Z Crwi i (2.22)

where: {wy, t € Z} is a second-order white noise with nonsingular covariance matrix and finite

‘k‘l/Q <

fourth-order moments, and the (i7)-th entries of the matrices Cy, satisfies Y oo [Cs ik

oo for all N,i, 7 € N. Given the sample variance-covariance matrix of the finite process xy7:

T
X, = (T k)™ Y xvruxyy (2.23)
t=h+1

with k = —M, ..., M is the lag order fixed using the so-called Bartlett lag-window M = M(T).
Infact, to allow estimation, the number of variance-covariance matrices has to be truncated
trought the Bartlett lag-window. Estimated the sample variance-covariance matrices f‘z, we
can estimate the spectral density matrix E:X(e) by applying the discrete Fourier transformation
to f‘z To avoid biases caused by the truncation, we need to multiply the sample variance-

covariance matrices by the Bartlett weights wy, =1 — M|L+|1:

M

. 1 N

SX(0n) = o > wpl e (2.24)
k=—M
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where: 0y, = 27h/(2M + 1) are the number of frequencies in which the spectral densities are
estsimated, h = 0,1,...,2M are the total number of points in which the Fourier transfor-
mation is worked out, and wj are the weights corresponding to the Bartlett lag-window of
size M = M(T). The estimation of the spectral density allows to decompose the variance-
covariance matrices into periodic components, fruitful to explain the dynamics of the data-set.
The choice of M represents the trade off between small bias (large M) and small variance
(small M). Forni et al. (2000) show that fixing M as the nearest integer to the square root of
the number of observations in the data-set performes well. Consistent estimates are ensured,

provided that M(T) — oo and M(T)/T — 0 as T — 0.

Now, we can observe that the estimated filters KNz‘(L) are infinite two-sided, that is:

[e.9] T

Kyi(L) = % 1] Kuyi(0)edoLk

k=—0c0 VT

where, as we did before, we used the underlined notation to denotes that KM‘(L) is the
inverse Fourier transformation of K ~Ni(0). But, because xy¢ is not available neither for ¢ <0
nor t > T, the projection KNi(L)XNt onto the space spanned by the ¢ dynamic principal
components cannot be calculated. Therefore, to allow estimation, a truncated version of the

filter may be used:

M
Kyi(L) = ) KyixL"
k=—M

The method discussed above produces an estimator of the common component wich is two-
sided. As discussed before, this approach has the advantage of exploring the dynamic structure
of the data, but the performance of the estimated common component deteriorates as ¢ ap-
proaches the end of the sample, indeed 1 or T'. Indeed, to compute the estimator for the last
observation, one needs M future observations which are not available, this problem makes

forecasting not possible.

To allow forecasting, Forni et al. (2005) propose a refinement of their procedure which retains
the advantages of the dynamic approach, but permits to obtain a consistent estimate of the
optimal forecast of the common component of xy; as a one-sided filter of the observations.

This method consists of two steps: in the first step, they follow Forni et al. (2000) get-
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ting estimates of the variance-covariance matrices for the commmon and the idiosyncratic
components as the inverse Fourier transform of the spectral density matrix of the common
and idiosyncratic component respectively, then in the second step, they use these estimates
to construct r contemporaneous linear combination of the observations with the smallest id-
iosyncratic common variance ratio. In other words, they compute the eigenvalues and the
eigenvectors of the couple (f‘%o(Q), f‘?vo(ﬁ)), then, ordering the eigenvalues in descending or-
der and taking the eigenvectors corresponding to the r largest ones, they obtain the so-called
generalised principal components that allow efficient estimates and forecasts of the common
component of xp; without the need of future values. Let’s inspect these steps in a more

detailed way:

first step: The first step follows Forni et al. (2000). The step is dedicated to the esti-
mation of the variance-covariance matrices of the common I‘?f,k and the idiosyncratic compo-
nent I‘]g\,k, starting from an estimator of the spectral density matrix of the data-set, indeed
3% (0). We discussed that, under the assumption that xy; admits a Wold representation,
any periodogram smoothing or lag window estimator 2*(9) of X7 represents a consistent
estimator of 3% () of xn;. Now, using the Assumption 2.1, we can decompose the estimated
spectral density z‘:X(e) into the sum of the a spectral density matrix of the common and the

idiosyncratic component, indeed:

where 3X(6) = ;1-:1 [3;‘*(0)5\3‘(0)[3;‘ and 3¢(9) = D lgi1 f)j‘*(@)j\;‘w)f)f are the estimated

spectral density matrices of the common and idiosyncratic component respectively, while

p;" is the j-th complex conjugate eigenvector of ﬁ]x(G). Then, applying the inverse discrete
Fourier transformation to these density matrices, the covariance matrices of the common x;

and idiosyncratic component &; can be estimated as:

tx (9) — /ﬂ $X(0)eM do (2.25)

-7

05,(0) = /Tr $€(0)e*d (2.26)

—Tr
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These estimated variance-covariance matrices will be used in the second step to solve the

so-called generalized principal component (GPC) problem.

Second Step: The second step is dedicated to the estimation of the generalized principal
components given the variance-covariance matrices estimated in the first step. More precisely,
the objective is to find 7 independent linear combinations W; = z;xy; where the weights z;

are defined as:

Zj = argmazgcgny df‘%odl (2.27)
: ¢ _
subject to dry d' =1
and df‘f\,oi; =0 for1 <l <y
for j = 1,2,...,r. The idea is that the information contained in the variance-covariance

matrices estimated in the previous step, can be used to determine linear combinations which
are more efficient than standard principal components. The improvement in efficiency is
produced because the idiosyncratic variance is minimized in the first step. As we have seen
before, a problem like that can be solved by compunting the eigenvalues and the eigenvectors.
In this case, we need to compute the eigenvalues and the eigenvectors of the couple of matrices
(f%o’ f‘?vo), rather than the eigenvalues and eigenvectors of the estimated contemporaneous
variance-covariance matrix f‘}{,o. The aggregates that come from the couple (f%o’ f‘ngo) are
called generalized to distinguish from the static aggregates that come from f"ﬁ,o. Practically,
the generalized eigenvalues are the solutions of: det(f‘%o — Ujfjgvo) =0forj=12,...,7

while the corresponding generalized eigenvectors are the weights z; that must satisfy:
2,1%, = ;2,15 for j =1;2;...;7 (2.28)

under the normalization conditions:

ulXoz; = 1 for I = j (2.29)
al%,2, = 0 for [ # j (2.30)
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Then ordering the eigenvalues 0; in descending order and taking the eigenvectors correspond-
ing to the r largest eigenvalues, we define gpc, = (Zxn¢ ZoXnt ... ZyXn¢) as the first r

generalized principal component of x ;.

2.4 Determing the number of factors: r and ¢

As mentioned in the introduction, the most important feature of factor models is to summarize
the information contained in a large panel of variables using a small number of unobserved
variables called factors. The question is that, the exact number of factors to use is not known
and it must be estimated. We need to estimate both the number of static factor r and the
number of dynamic factors q. In this dissertation the optimal number 7 of static factors is
estimated using the criterion proposed by Alessi et al. (2007), whereas the optimal number
G of dynamic factors is estimated using the criterion proposed by Hallin and Liska (2007).
Since, in empirical applications, we have to deal with finite sequences of length T" of a finite
number N of variables, we describe these two criteria for a finite realization of the form

XNT:{wit,i:1,2,...,N,t:1,2,...,T}.

2.4.1 Determining the number of static factors

Alessi et al. (2007) have modified the criterion by Bai and Ng (2002) for determining the
number of static factors in approximate factor models. They select the true number of static
factors 7 as the number that minimizes the variance explained by the idiosyncratic component,
but in order to avoid overparametrization, their minimization is subject to a penalization, in-
deed, they have modified the original procedure of Bai and Ng (2002) by multiplying the
penalty function by a positive real number, which allows us to tune its penalizing power, by
analogy with the method used by Hallin and Liska (2007) in the frequency domain. They
have shown that their modified criterion is more robust in estimating the true number of

static factors than the criterion of Bai and Ng (2002).

Formally, let’s suppose that our data-set admits a static factor model as in Equation (2.14),
here reported:

Xt = AFt + ﬁt (231)
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where x; denotes the (N x 1) vector of observations given a time ¢ for n infinite number of time
series, A denotes the (N X r) matrix of static factor loadings, F; denotes the (r x 1) vector
of static common factors, and &; denotes the (N x 1) vector of idiosyncratic components.

Considering just one single time series in x;, we can write:
zit = NiFy + it (2.32)

where A; denotes the i-th row of the matrix of factor loadings A. Bai and Ng (2002) have
proposed an information criterion to determine the optimal number of static factors r in

Equation (2.32) assuming to have k common static factors for the matrices A; and Fy, denoted

by A% and F®) Let:

T
V(k) = (N7 (@i — APEP)? (2.33)

=1 t=1

be the residual variance of the idiosyncratic components &;; when the matrix of factor loadings
A,Sk) and the common factors ng) are estimated using the method of static principal compo-
nents as described in SubSection (2.2.1). The idea of Bai and Ng (2002) to minimize V (k)

in order to find the optimal number of static factors. They define the following information

criterion:

FIC bn = argmingcgc,, - IC_bn(k) (2.34)

IC bn(k) = log(V(k))+kp(N,T)

where: 71¢_pn is the optimal number of static common factors, p(IV,T') is a penalty function
which counterbalances the fit improvement due to the inclusion of additional common fac-
tors, and 7,4 18 the maximun number of static factors. Notice that, when the number k of
factors is increased, the variance explained by the factors increases too, then V' (k) decreases,
so the aim of the penalty function, which is an increasing function of both n and T, is to
avoid overparametrization. The information criterion IC_bn(k) has to be minimised in order
to determine the optimal number of static factors, its consistency is proved by Bai and Ng
(2002). In empirical applications we have to fix a maximum number of static factors rpqz,
and estimate the model for all numbers of factors &k = 1;2;...;7 4. As a penalty function

Bai and Ng (2002) propose to use p(N,T) = 5+ log(min{N, T}).
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According to what Hallin and Liska (2007) propose in a similar criterion for the number
of dynamic factors ¢, because a penalty p(IV,T') leads to consistent estimation of r if and only
if cp(N,T) does, where ¢ is an arbitrary positive real number, the idea of Alessi et al. (2007)
is to modify the criterion of Bai and Ng (2002) by multiplying the penalty function p(N,T)
by a constant ¢ that has no influence on the asymptotic performance of the identification

method. The criterion becomes:

Pl 2 = argmingg, —IC_a(k) (2.35)

IC _a(k) = log(V(k))+ ckp(N,T)

where c is a constant which has the aim to tune the penalizing power of the function p(N,T)).
Alessi et al. (2007) show that the criterion IC _a(k) corrects the tendency of IC_bn(k) to
overestimate the optimal number of static factors and provide a more robust estimation of r
than the original criterion IC_bn(k) proposed by Bai and Ng(2002). To select the optimal
number of static common factors 7, Alessi et al. (2007) suggest, as Hallin and Liska (2007),
an automatic procedure which basically fix the number of static factors in correspondence
with the second stationary interval of the variance of the selected 7 for the whole region of

values of the constant c.

2.4.2 The number of dynamic factors

Hallin and Liska (2007) have proposed a method for determining ¢ in a GDFM that exploits
the relation between the number of dynamic factors and the number of diverging eigenvalues
of the spectral density matrix of the finite data-set x 7. The ingredientes of the information
criterion are the estimated spectral density of x y7, indeed f]x(G), and its eigenvalues Anr;(6).

The criterion proposed is:

dic_ m = argmingcg, IC_hl(k) (2.36)
1 n 1 MT
IC_hl(k) = log| — — AL (0 kp(N,T
Comll) = tog | D0 gy S0 M) |+ ckBV.T)
Z:k}+1 h:—MT
where: 0, = 27h/T for h = —Mryp, ..., Mp and @pq, is the maximum number of dynamic

factors. The authors suggest using My = [0.5v/T] or My = [0.7v/T] and as penalty function
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p(N,T) = (]\4772 + M%/Z + N~ togAr) with A7 = (min{N, M2,MT_1/2T1/2}). Therefore,
the penalty function should be large enough to avoid overestimation of §ic, but at the same
time it should not over penalize. To select the optimal number of dynamic common factors
4, Hallin and Liska (2007) suggest an automatic procedure which basically fix the number of
optimal dynamic factors in correspondence with the second stationary interval of the varaince

of the selected ¢ for the whole region of values of the constant c.

2.5 From the static factor model to the GDFM

In this section, we show that a static factor model can be rewritten as a GDFM under suitable
assumptions. Let’s start considering a particular case of the static factor model described in

Equation (2.14):

Xy = AFt + St (237)
(I — AL)Ft = But = € €t ~ iid NN(O, Qe)
(I — ‘IIL)ﬁt = Vi V¢~ iid NN(O, Rv)

where we supposed that the vector (r x 1) of factor exogenous shocks €; depends on the (¢ x 1)
vector of dynamic factors u; trought the (r x ¢) matrix B with ¢ < r. By plugging the law of
motion of the static factors into the equation of the data-set, we obtain a GDFM as in Forni

et al. (2000):
Xt

x; = AI— AL 'Bu; + & (2.38)

Then, we have shown that starting from a static or diffusion index model is possible to obtain
a GDFM assuming that the vector of r factor exogenous shocks €; depends on the vector of
g dynamic factors u;. The relevant question is: ...does Model (2.38) exist? Indeed, ...can
€ be expressed as the product of a matriz B times the vector of dynamic factors u;?. The
answer is given by Forni et al. (2009). They argues that Model (2.38) exists with a finite
number of static factors r if and only if the space spanned by the ¢ dynamic factors is finite
dimensional. So, if this span is finite dimensional, the static factor model can be rewritten
as a GDFM. Therefore, the advantage of Model (2.38) respect to Model (2.14) is that, by
taking into account also the law of motion of the static factors, we can consider also the non-

contemporaneous comovements among the observed variables. In this way the model should
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be particularly useful for forecasting.
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Chapter 3

DSGE models: from regular to
Data-Rich Environment

“The more specific and data-rich the model, the more effective it will be"

Jean Boivin and Marc Giannoni

This chapter presents the estimation of the Dynamic Stochastic General Equilibrium (DSGE)
models used in the out-of sample forecasting experiments. We work on two types of DSGE
models: the DSGE model of Smets and Wouters (2007), (hereafter also referred as regular or
no-augmented DSGE model), and its representation in term of the so-called Data-Rich DSGE
model (drDSGE) following Boivin and Giannoni (2006) and Kryshko (2009). The motivation
from rewriting and re-estimating the regular DSGE in term of drDSGE, stands on the doc-
umented gains provided by Boivin and Giannoni (2006). Although, they have shown that:

first, the regular DSGE model is outperformed by the drDSGE in the estimation accurancy:

...exploiting more information (through the drDSGE) is important for accurate estimation of the model’s
concepts and shocks, and that it implies different conclusions about key structural parameters and the
sources of economic fluctuations.

Boivin and Giannoni (2006)

second, better estimates imply better forecasts, at least for one quarter ahead for all pooled

observed DSGE variables:

...more precision in estimating these variables implies then more precise forecasts of the indicators.

Boivin and Giannoni (2006)

nothing has been stated on the relative forecasting performance of the drDSGE respect to
factor models, especially respect to the GDFM. It remains an open part of the empirical

reseach, that we face in detailed way in Chapter (4) for two time series of the US economy:
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the output growth and the rate of inflation.

The chapter is organized as follows. In Section (3.1) we open discussing why we should
set aside factor models and build up DSGE models instead. In Section (3.2) we focus on the
approach of Boivin and Giannoni (2006), while Section (3.3) concludes showing the DSGE
model of Smets and Wouters (2007) and explaining how it has been estimated in term of

Data-Rich Environment.

3.1 Why DSGE models?

As mentioned in the introduction, the main drawback of factor models is the lack of an un-
derlying economic theory. This implies that factor models are constructed on the data rather
than using a strong economic theory based on utility-maximising rational agents. This limita-
tion makes, in principle, factor models vunerable to the so-called Lucas critique which argues
that: it is naive to try to predict the effects of a change in economic policy entirely on the
basis of relationships observed in the data because the parameters of those models were not
structural, indeed not policy-invariant, and they would necessarily change whenever policy,
or the rules of the game, was changed. Then, policy conclusions based on those models would

therefore potentially be misleading:

...given that the structure of an econometric model consists of optimal decision rules of economic agents, and
that optimal decision rules vary systematically with changes in the structure of series relevant to the decision
maker, it follows that any change in policy will systematically alter the structure of econometric models
Lucas (1976)

In practice, the Lucas critique suggests that if we want to predict the effect of a policy, we
should model the deep parameters, such as preferences, technology and resource constraints
parameters, that govern the individual behavior, rather than work on the data only. This
critique has been so influential that it has encouraged macroeconomists to build microfoun-

dations in their models. In this way DSGE models have been originated.

The point is that also DSGE models have important limitations. Schorfheide (2010) evi-
dences five main limitations or challenges. First, is the fragility of parameter estimates due

to lack of identification of the parameters of the model (Canova and Sala (2009)). Second, in
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a DSGE model, exogenous disturbances generate macroeconomic fluctuations and we cannot
be sure whether these shocks capture aggregate uncertainty or model misspecification and
the formal econometrics is weak to distinguish these two interpretations. Third, many time
series show low frequency behavior which let the DSGE estimation difficult to implement.
Fourth, DSGE models often appear to be misspecified in the sense that VARs are favored by
statistical criteria that trade off goodness of in-sample fit against model dimensionality. Fifth,
the prediction of the effects of rare policy changes often relies exclusively on extrapolation by
theory which makes it difficult to provide measures of uncertainty. For example, Kocherlakota
(2007) explains that while a model with the worse statistical fit delivers the better policy pre-
diction, bad fit is not a guarantee of good policy prediction. These limitations produce DSGE

model misspecification, which leads to poor estimates and forecasts.

The idea proposed by the literature to get away from both factor models and DSGE models
limitations is to combine these models using an hybrid or mixture or augmented models. An
hybrid model is an econometric model where a DSGE model is combined with a pure statisti-
cal data model (such as: a autoregressive process, a vector autoregressive process, a bayesian
vector autoregressive, or a factor model), in order to cover the gap between theory and data
mitigating the limitations of each model. Particular attractive is, in our view, the hybrid
approach proposed by Boivin and Giannoni (2006) whose representation, estimation and fore-
casting is dedicated the rest of the chapter. For a survey of hybrid models see Paccagnini

(2011).

3.2 The Data-Rich DSGE

This section contains both the representation and the estimation theory of the so-called Data-
Rich DSGE (drDSGE) of Boivin and Giannoni (2006), while its forecasting theory is discussed

together with all other forecasting models in the next chapter.

First of all, let’s introduce the DSGE’s notation used throughout the dissertation. Let x
be a variable at time t, let 2*° be the steady state value of x, indeed the value of x not
affected by random shocks, let #; = log(z;) — log(x®%) be its log equilibrium deviation of

x. Following Sims (2002), every DSGE model has around its steady state the following lin-
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earized representation:

Fosy =Tys¢—1 + Yer + Iy (31)

where: s; is the vector of all DSGE endogenous variables (for example: the capital l;:t, or
the output growth Z;), e; is the vector of DSGE exogenous shocks (for example: monetary
shock e}, preference shock ef or government shock ef), ; is the vector of DSGE expectational
error (by definition is given by: 1, = §; — E;_1[8;] where §; is a subvector of s; that contains
expectational variables, satisfying E;[n;+1] = 0 for all ¢), while Ty, I'; and II are matrices of
parameters. The linearized solution of Equation (3.1) delivers a VAR process for DSGE

state variables:

nt = DO 3.2
Yt ( )\Si« (3.2)
(n><1) (n)(r) (T‘Xl)
st = G(9)si—1 +H(I) e e ~ N(0; Qe(19)) (3.3)
—— S
(rx1) (rxr) (rx1)  (rxre) (rex1)

where: y,: denotes the n-dimensional vector of DSGE observed time series, s; denotes the
r-dimensional vector of DSGE state variables, 9 denotes the vector of DSGE deep parameters
that we wish to estimate, e; denotes the r.-dimensional vector of DSGE exogenous shocks
with diagonal variance-covariance matrix Qe(?), while D(9), G(¥) and D(#) denote matri-
ces of parameters as a function of the deep parameters vector . As in Kryshko (2009), in
order to interpret the r unobserved static factors as r state variables, we assumed that s; has

the same dimension of F;.

Handling this system for estimation and/or forecasting might generate the following draw-

backs:

1. As pointed out by Ireland (2004), this system is highly stylized, indeed it can not be

expected to mimic the data generating process (DGP):

...a method for combining the power of DSGE theory with the flexibility of VAR time-series series
models, in hopes of obtaining a hybrid that shares the desirable features of both approaches to
macroeconomics. The method takes as its starting point a fullyspecified DSGE model, but also

admits that while this model may be powerful enough to account for and explain many key features of
the US data, it remains too stylized to possibly capture all of the dynamics that can be found in the
data. Hence, it augments the DSGE model so that its residuals (meaning the movements in the data

that the theory cannot explain) are described by a VAR, making estimation, hypothesis testing, and
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forecasting feasible

Ireland (2004) pag.1206

To overcome this problem Ireland (2004) has proposed to sort out the linearized solution
adding a measurement error, which differently from Sargent (1989) and Altug (1989) is
allowed to follow an unconstrained, first order vector autoregression with no-diagonal

variance-covariance matrix.

2. ynt contains only few observed variables. Differently from factor models where all N
variables in the data-set xy; are explored, in DSGE modelling only n obderved variables
(with N >> n) are accounted for. For example, in their DSGE model Smets and
Wouters (2007) consider only n = 7 observed variables, while Stock and Watson(2002a)

take into account of 215 observed variables in their diffusion index model.

3. As discussed by Boivin and Giannoni (2006), in regular DSGE models it is assumed that
each theoretical concept (such as, inflation or employment) is properly measured by a
single data indicator in xy¢ and this choice is quite arbitrary. It means that imperfect
information is not allowed, while in realty, institutions, researchers and central banks

have different amounts of informations available.

To get away from these limitations the linearized DSGE solution must be augmented, other-
wise information is lost and DSGE model misspecification is generated. The most powerful
way, in our view, to overcome all these limitations is to combine a DSGE model with a static

factor model as proposed by Boivin and Giannoni (2006).

3.2.1 The drDSGE: representation theory

The idea of Data-Rich DSGE (drDSGE) is to extract the common factor vector F; from
large panel of macroeconomic time series xy; and to match the state variable vector s; of
the model to the extracted common factor F; (this matching generates the so-called Data-
Rich Environment), where the law of common factors F, is governed by the DSGE linearized
solution. The key assumption of their approach is the separation betweeen observed or data

indicators and theoretical or model concepts:

e the data indicators or simply indicators are the observed time series variables in X yy;
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e the theoretical concepts are time series variables in the vector xp; observed by econo-
metricians or central banks, such as: employment, inflation or productivity shocks, that
are assumed to be not properly measured by a single data series, but they are merely
imperfect indicators of the observed time series. For example, the employment is im-
perfectly measured because there are discrepancies between its two main sources: one

obtained from the establishment survey and the other from the population survey.

This approach allows: first, to explore a richer amount of information by combining a DSGE
model with a static factor model; second, to introduce imperfect information on DSGE esti-
mation which is particular useful to characterize the desirable monetary policy (Boivin and
Giannoni(2008)); third, to interpret structurally the latent factors; fourth, to avoid the Lucas

critique.

Let 5; = [y); s; be the vector collecting all variables in a given DSGE model, by defi-
nition:

St = = St (34)

where the sign = means identity. Representing the vector of common factors F; as a subset

of the variables in §;, we can define:

Ft = th =F St (35)

where F is a matrix that generates the common factors F; from the vector s; of all DSGE

variables. Now, by substituting Equation (3.5) into Equation (2.14), we obtain the static

drDSGE observation equation:

= A F =A(9 3.6
X =LA B+ & v X =A0) s+ & (36)
(Nx1)  (Nxr)(rx1) (Nx1) (Nx1)  (Nxr)(rx1) (Nx1)

Then, the drDSGE state space representation is:

Xt = A(ﬁ)st + Et (37)
s; = G(U¥)si—1+ H(9)e; e ~ N(0;Qe(19)) (3.8)
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where &; can be interpreted as serially correlated measurement errors. Adding their law of

motion, as we did in Equation (2.16), we obtain the drDSGE static representation:

Xy = A(ﬁ)st + Et (39)
si = G(9)si_1 + H()e, e ~ N(0; Qe(9)) (3.10)
& = P&+ vy vi ~ N(0;Ry) (3.11)

where A(9)s; can be interpreted as the static DSGE common component of x; since the
state variables s; are loaded in x; just in a contemporaneoulsy way. Because s; contains
the vector of structural shocks uy, such as, the technical progress a; and the vector of errors
in data indicators {; , such as, the gdp measurement error €/, we may assume that these
shocks have effect in the present and in the past. Then the associated dynamic drDSGE

representation becomes:

x = B(L)| | +&=B@)s +& (3.12)
G
& = P&+ where: vi ~ N(0; Ry (¥9)) (3.13)

where B(L) are one-sided filters in the lag operator L as we defined in Equation (2.2), and
s; = [w ]’ can be interpreted as the dynamic (primitive) factors associated to the state
variables or static factors s;. This representation is not used by Boivin and Giannoni (2006)

and it remains an open part of the empirical research.

3.2.2 Regular DSGE versus drDSGE

In the drDSGE representation, the key role is played by the matrix A(¥) in Equation (3.9).
In a reqular DSGE model, the number of observed variables n contained in y,; is usually kept
small (most often equal to the number of structural shocks) and theoretical concepts are often
assumed to be perfectly measured by a single data indicator in xy¢. So, that there exists a
one-to-one relation between theoretical concepts and the data indicators. It implies that

matrix A(9) is a (r x r) identity matrix, where r is the number of state variables.

On the other hand, in a drDSGE model there are many-to-many relations between x

and s, so that matrix A(¢) becomes (N x r) with (N >> r). It permits to brige the gap
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between data indicators in xy; and theoretical concepts in §;. Therefore, the data indicators

in xn¢ are partitioned into two groups of variables:

e the core series x" € x; which correspond to only one model concept in 8;;

e the no-core series x§ € Xx; which are not directly relation with one specific model

concept in S; but are related with more than one model concept.

In other words, the core series are time series in Xp; that cannot be expressed as a linear
combination of model concepts s;, while the no-core series are time series in xy; that can
be expressed as a linear combination of more than one model concept in s;. The idea is to
separate key DSGE observed variables from no-key DSGE variables. For example, the core
series might have been various measures of real output (such as: the real GDP or the in-
dustrial production), of inflation (such as: the CPI inflation or the PCE deflator inflation)
or the nominal interest rate, instead the no-core series might include exchange rates, real
exports and imports, stock returns and similar data indicators not related directly to any

model concept in xpny.

The drDSGE measurement equation becomes:

x{ A(9)" &
I R N T (3.14)
xp A(9)* &
—_— ~—
x¢ (Nx1) A(9) (Nxr) & (Nx1)

where the matrix A(9)F contains just one non-zero element for each row, while the matrix
A(9)° contains more than one non-zero element for each row and measurement errors & may

be serially correlated, but uncorrelated across different data indicators:

& =T 1+ vy vi ~ N(0; Ry) (3.15)
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indeed, the matrices ¥ and R are diagonal. For example, the measurement equation assumes

the following typical form:

i 1 T 1 ¥
Output Growth # 1 1 0 el 0
£5.4
Output Growth # 2 Ye,2 0 e 0 )
T
it
Output Growth # 7, Ve, it 0 e 0
Inflation # 1 0 1 e 0
3P
Inflation # 2 0 Y2 e 0
£3.¢
Tt .
Inflation # 7, = 0 Y. 0 0 m | T (3-16)
. Aot
——
————— _— = _— — _ - — _— — St(T‘Xl)
Exchange Rate # 1 V1,1 V1,2 . V1,7
er
1t
Exchange Rate # 2 V2,1 Y2,2 . . Y2,/
o
Exchange Rate # e, Yhier,1 Vhier,2 .. Vher it
At
x; (Nx1) A(S) (Nxr) < -
gt (NX 1)

where we assumed that each model concept can be measured by n time series variables, v; 7
denotes a generic parameter of the matrix A(1#) for the n-th time series for the same i-th
model concept. As we can see, core series admits just one no-null parameter in each row, it
means that they are directly related with only one model concept in s;. Therefore, to tune
the magnitude of each model concept, the value of v;.5 of just one variable is unity as the first
row. Meanwhile, non-core series are assumed linear combinations of all DSGE state variables

s; trought the parameters [v;.1 ... 7i;5]. So, the state space representation of the drDSGE

33



Tesi di dottorato in Econometrics, di Gabriele Palmegiani, discussa presso I’Universita LUISS Guido Carli, in data 20 Marzo 2012.

Soggetta a copyright (©. Sono comunque fatti salvi i diritti dell’Universita LUISS Guido Carli di riproduzione per scopi di ricerca e

didattici, con citazione della fonte. 3 DSGE mOde]S: fl"om l"egular tO Data—RiCh EHViI"OHmth
is:
x; A(9)F &f
o= o s e (3.17)
(rx1)
rx1
Xy A(ﬂ)s ffq
S—— S—— S——
x¢ (Nx1) A(9) (Nxr) & (Nx1)
st = G)si—1 +H(WI) e e ~ N(0;Qe(1)) (3.18)
~~ SN Y N
(rx1) (rxr) (rx1)  rxre) (Ne x 1)
= |\ _ ~ 0: R, 3.19
& T &+ vy vi ~ N(0;Ry) ( )
(Nx1) (NXN)(Nx1) (Nx1)

where we assumed that the matrices Qe(?), Ry and ¥ are diagonal. The essential feature
of the drDSGE is that the panel dimension of data set N is much higher than the number
of DSGE model states r (with: N >> r). This representation is quite similar to the static
factor model representation (from Equation (2.14) to Equation (2.16)). The differences are:
first, the law of motion of the unobserved factors is now governed by a DSGE model solution;
second, the some factor loadings are restricted by the economic meaning of the DSGE model

concepts.

3.2.3 The drDSGE estimation step

Following Boivin and Giannoni (2006), the state space representation (from Equation (3.17)
to Equation (3.19)) represents the starting point to estimate the drDSGE. This system is
estimated using Bayesian methods under Markov Chain Monte Carlo (MCMC) algorithm.
For convenience, we divide parameters of the model into two types: the first type are the
deep parameters in vector 1, and the second type are the parameters collected by the state
space representation of the model as & = {A(9), ¥, Ry}. We denote with x’ = {xy,...,x7}
and s” = {sy,...,sr} the data and the states up to time ¢ = T respectively. Because of the
normality of the structural shocks e; and the measurement error innovations vy, the system
from Equation (3.17) to Equation (3.19) is a linear Gaussian state space model and the

likelihood function of data p(x”|9, Z) can be evaluated using the Kalman filter.

Generally speaking a Bayesian estimation for an unknown parameter vector ¥ is imple-

mented based on following procedure:

step la: Set the prior distribution p(¥), which is the distribution of 9 that the researcher
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have in mind before observing the data.

step 2a: Convert the prior distribution to the posterior distribution p(ﬁ]xT), which is the

distribution of 9 conditional on the data x’, using the Bayes theorem:

p(’l9|XT) _ p(XT|'(9)p(19) (320)

[T |9)p(9) dv

where p(x?|9) denotes the likelihood function of the data given the deep parameters vector .

In our case, the aim is to estimate the couple (9, E), rather than just one single unknown

vector. The posterior distribution of the couple is:

Ty _ p(xT |9, E)p(9, E)
[p(xT|9,E)p(9,E) d¥ d=

p(9, E|x (3.21)

where p(19, E) denotes its prior distribution, while p(9, E|x) denotes its likelihood function.

In order to generate draws from the posterior distribution p(19, E[xT), since it is not directly

tractable, we divide it into the following four conditional posterior distributions:

p(E,xT)  p(sTIE,9:x") pE[sT 9;x")  p(IExT) (3.22)

and we adopt the Metropolis-within-Gibbs algorithm, wherethe Gibbs sampler generats
draws from joint posterior distribution p(«9, Z|x’) by repeating iteratively generation of draws

from conditional posterior distributions p(Z|¢,x”) and p(9|=, xT).

To be precise, the main steps of Metropolis-within-Gibbs algorithm used in drDSGE

estimation are:

step 1b: Specify initial values of parameters 9(9 and 2(©). And set the iteration index ¢ at
g=1.

step 2b: Solve the DSGE model numerically at 99~ based on Sims (2002)" method and
obtain G(91), H(®), and Q(¥) in Equation (3.18).

step 3b: Draw £ from p(E[9-D, xT).

(9)

(3.1b) Generate unobserved state variables s;? from p(s” |20~ 9, xT) using simulation
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smoother by DeJong and Shephard (1995).

—
=

(3.2b) Generate parameters £ from p(Z|s”, 9, xT), using the sampled draw s’(9).
step 4b: Draw deep parameters 99 from p(19|E(9),xT) using Metropolis step:

(4.1b) Sample from proposal density p(#9¢—1) and, using the sampled draw p(Proresal)),

calculate the acceptance probability ap as follows:

p(ﬂ(proposal) |E(g)’XT) p(ﬂ(gfl) ’ﬂ(proposal))
p(ﬂ(9*1)|E(9)’XT) p(ﬂ(proposal)hg(gfl))

ap = ;1
(4.2b) Accept 9ProPosal) ith probability ap and reject it with probability 1 — ap. Set

99 = grorosal) when accepted and 99 = 99~ when rejected.

step 5b: Set the iteration index g = ¢g + 1, return to Step 2 up to ¢ = G where G is the

number of MCMC iterations.

Step 4b of this algorithm plays an essential role. Infact, it is important to make the acceptance
probability ap as close to one as possible especially around the mode of the posterior density
p(9|E,xT) because the same values are sampled consecutively if ap is low. To achieve this
purpose, we should choose the proposal density p(ﬂ(pmposal) |19(9 _1)) that mimics the posterior
density p(9|=2, x") especially around its mode. This is why we firstly run regular DSGE model
estimation and compute the posterior mode of the DSGE model parameters to obtain initial

(0)

value 99 of Step 1. Then, we generate smoothed state variables s; ~ using 90 and obtain

(0)

initial value EEO) from OLS regressions of x; on s; . The previous literature sugggest to use
the so-called random-walk MH algorithm (see An and Schorfheide (2007)) as Metropolis step

in Step 4b, where the proposal density 9P P54 is sampled from the random-walk model:
glerovosal) — 9(9=1) 4 T ~i.i.d N(0;cH)

where H is the Hessian matrix of the logarithm of the posterior distribution, indeed, —lZ_l(ﬁ)
where I,(9) = In(p(9|Z, xT)), while ¢ is a scalar called the adjustment coefficient, whose choice

will be explained below.

The merit of using this random-walk proposal is that p(9(9—1 |9prepesal)y — p(g(proposal) |pg(9—1))
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so that the acceptance probability ap collapses to:

ap = min

f(,ﬂ(proposal)
fED)

which does not depend on the proposal density p(99¢~1). We must, however, be careful
for p(®@Prorosal)) not to deviate from p(99—1) so much because the acceptance probability ap
may be low when those deviate far from each other. This may be achieved by making c low,
but p(ﬂ(pmposal) may be sampled only from the narrow range if ¢ is too low. In random walk
sampler, the optimal acceptance rate ap according to Roberts et al. (1997) and Neal and
Roberts (2008) is around 25%, ranging from 0.23 for large dimensions to 0.45 for univariate

case. Following the previous literature, we simply use this random-walk MH algorithm with

H=—11"1(9).

For the prior densities, we follow the general approach used for DSGE modelling. We as-
sume that the exogenous shocks e; such as technology shock, preference shocks or monetary
shocks are persistent for their past shocks and their law of motions follow an AR(1) process,
such that: u; = pus—1 + ¢ where the error term ¢ is 7.i.d. Since the coefficient p must be
between zero and one to satisfy the stationary property, their prior densities are assumed to
follow beta distributions, while the variances of the error term ¢ are setted up on inverted

gamma distributions. For the other parameters we assumed normal distributions.

3.3 The DSGE model of Smets and Wouters (2007)

This section presents the DSGE model of Smets and Wouters (2007) providing the log-
linearized equilibrium conditions (SubSection 3.3.1), and shows how it can be casted in the

Data-Rich Environment (SubSection (3.3.2)) as described in the previous section.

The DSGE model of Smets and Wouters (2007) is a medium-scale New Keynesian model
with price and wage rigidities, capital accumulation, investment adjustment cost, and habit
formation. Although their model represents the workhorse of the applied DSGE research,
it has the following main drawbacks: first, it assumes few observable variables (7 observed

variables); second, it assumes that each theoretical concept is measured correctly by a single
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arbitrary time series, third, it assumes homogeneous agents; forth, assumes a closed econ-

omy; fifth, there is not financial intermediation (indeed the capital is directly rent by the

household). Here, we focus on a way to get away from the first two drawbacks.

3.3.1 The equilibrium conditions

The DSGE model of Smets and Wouters (2007) is built up using the following equilibrium

conditions:

(1) The resource contraint:

Qt = Cyét + iy%t + Zyét + Utg (323)

where 3y denotes the output, ¢ denotes the consumption, i, denotes the investment,
% denotes the capital utilization rate, u{ denotes the exogenous government spending
shock, ¢, = 1 — g, — iy denotes the steady state share of consumption (scalar), g,
denotes the steady state exogenous spending/output ratio (scalar), and i, denotes the
steady state investment/output ratio (scalar). This equilibrium condition states simply
that output must be asborbed by consumption, investment, capital utilization costs
and exogenous government spending. Differently from Smets and Wouters(2007) we
assume that exogenous spending follows just a first-order autoregressive process with
an i.i.d-Normal error term without be affected by the productivity shock as follows:

9 _ g
Up = PgUt—1 + €

(2) Consumption Euler Equation:

38

ét = Clét—l + (1 — Cl)Et[ét+1] =+ CQ(lAt — Et[it+1]) — Cg(f’t — Et[ﬁ't+1] + Ug) (324)

_ h i
%, c3 = ﬁ are scalars, h is a

where ¢; = Hih where h = %, co =
measure of the habit persistence that depends positively on A which is the strength of
the first-order external habit formation and negatively on « which is the steady state
growth rate of the economy while g, is the inverse of the intertemporal elasticity of
substitution. They assume that the external habit stock H; is proportional to aggregate

past consumption: Hy = h ¢;—1. When h = 0, this equation reduces to the traditional

forward-looking consumption equation. As in Smets and Wouters (2007), the exogenous
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shock uf is assumed to be a AR(1) process with coefficient p., indeed: u§ = pouf_; + €f.

(3) Investment Euler Equation:

iy = i1is—1 4+ (1 — 1) Egfigy1] + dodge + ul (3.25)

1

T 5,002, are scalars, ¢ is the steady-state elasticity

where i; = ﬁ and io =

146
of the capital adjustment cost function and [ is the discount factor applied by house-
holds, u! is the investment shock, §; is the real value of the existing capital stock. As in

Smets and Wouters (2007), the exogenous shock u} is assumed to be a AR(1) process

with coefficient p;, indeed: ui = p;ul_; + el

(4) Value of Capital Euler Equation :

Gt = @ EilGr1) + (1 — qO)Ee[fq] — (e — T + uf) (3.26)

where ¢ = (77¢(1 — 0) is a scalar where ¢ is the appreciation rate for capital. The
equation states that the current value of the capital stock (or the shadow price of
capital or Tobin’s q) ¢; depends positively on its expected future value and the expected
real rental rate on capital E, [ff 1) and negatively on the previous real interest rate and

the risk premium disturbance.

(5) Aggregate production function

0t = dp(aki + (1 — a)ly + uf) (3.27)

where ¢, is one plus the share of fixed costs in production, reflecting the presence of fixed
costs in production, I;:f is the output produced using capital, ft are the hours worked,
and uf is the productivity shock. As in Smets and Wouters (2007), we assume that the

productivity shock admits a AR(1) process: uf = puf_ + ef.

(6) Capital used in production

kS =k + 2 (3.28)

where 2; is the capital utilization rate and k;_1 is the capital used the previous period.

The equation states that newly installed capital becomes only effective with a one lag.
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(7) Degree capital utilization

5 = 2 F (3.29)

where z1 = % where 1 is a parameter that takes values between 0 and 1 and measures
the elasticity of the capital utilization adjustment cost. When ¢ = 1, it is extremely
costly to change the utilisation of capital and as a result the utilisation of capital remains

constant. In contrast, when ¢ = 0, the marginal cost of changing the utilisation of

capital is constant and as a result in equilibrium the rental rate on capital is constant.

(8) Installed Capital

]Af/'t = k‘ﬂ;‘tfl + (1 — k’l)%t + k‘gu% (3.30)

where k; = (1 —8)/v and ky = (1 — (1 — 8)/7)(1 — By1799))424) are scalars. The
equilibrium equation states that the accumulation of installed capital k; is not only a
function of the flow of investment but also of the relative efficiency of these investment

expenditures as captured by the investment disturbance wu}.

(9) Mark-up equation:

~ ~

(P = mpl, — iy = ok — Iy) — by + ud (3.31)

where (¥ denotes the price mark-up by firms, n/’L;lt denotes the marginal product of
labour, w; denotes the real wage, uf denotes the productivity shock, [; denotes the hours
worked, and l%f denotes the capital installed. Being the Smets and Wouters (2007) model
constructed under monopolist competition, this equilibrium equation states simply that

cost minimisation by firms implies the price mark-up ji}’ over the marginal cost.

(10) Inflation:

40

Ty = M7—1 + FQEt[th+1] — 7T3ﬂf + uj (3.32)
_ t _ _BylTee _ 1 (1=Br'7¢&p) (1-€p)
where T = Tgytse,, M S mgyee, 4™ S mmims e gD A

scalars where &, is the degree of price stickiness. The equation represents the New
Keynesian Phillips Curve with price adjustment a la Calvo. It states that inflation 7,
depends positively on past and expected future inflation, negatively on the current price
mark-up /if’ and positively on a inflation disturbance (or as called by Smets and Wouters

(2007) price mark-up disturbance) uf. Differently from Smets and Wouters (2007), we
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assume simply that the price mark-up disturbance is assumed to follow AR(1) process:
uy = pruy + ef, where €] is an 4.7.d-Normal price mark-up shock. When the degree of
indexation to past inflation is zero ¢, = 0, this equation reverts to a standard purely

forward-looking Phillips curve m; = 0.

(10) Rental Rate of Capital:

=iy — (ke — 1) (3.33)

this equation states that the rental rate of capital ff is negatively related to the capital-

labour ratio k — I; and positively to the real wage ;.

(12) Wage mark-up:

! )\(ét — Aét-1)) (3.34)

ﬂ%UZUA)t—TﬁTTSt:UAJt—(O'llt—Fl

where mrs; is the current marginal rate of substitution, o; is the elasticity of labour
supply with respect to the real wage. Being the model constructed under monopolistic
competition, this equation states simply that the wage mark-up will be equal to the
difference between the real wage and the marginal rate of substitution between working

and consuming.

(13) Real Wage:

Wy = WiWe—1 + (1 — wl)(]E[wt,l] + E[ﬁ-t+1]) — WoTt + W31 — w4,u%” + u;” (335)

_ 1+Byl—0ctw _ 1 (1=By1—0cbw)(1—Ew)

w2 = 1+Bv1—0c Wa = 1+6y1—0c Zw(Pw—1)Ew+1) and wy =

_ 1
where w1 = m,

W are scalars where &, and ¢, are defined analogously to their counterparts in
the price setting conditions. This equation states that the real wage w; is a function of

expected and past real wages, expected current and past inflation, the wage mark-up

w

pi and a wage-markup disturbance uj’. Differently from Smets and Wouters (2007),

we assumed that the wage-markup disturbance follows: uy’ = p,u’ + e’ where e}’ is

an ¢.7.d-Normal term.

(14) Monetary Policy Reaction function:

P = prry+ (L= p){rafe +ry (G — 99} +rayl(@e = 07) — @1 — 70| +up (3.36)
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where 7; is the interest rate and uj is the monetary policy shock. The equation state
that the monetary authorities follow a generalised Taylor rule by gradually adjusting
the policy-controlled interest rate 7; in response to inflation and the output gap, defined
as the difference between actual §; and potential output §¥. As in Smets and Wouters
(2007), we assume that the monetary policy shock follows a first-order autoregressive

process with an 7.i.d-Normal error term: uj = p,uy_; + ej.

These equilibrium conditions determine:
1= 7 exogenous shocks or 7 exogenous variables;

(15) Consumption Shock: u§ = p.uf | + ef

(16) Investment Shock: u} = pjul_; + ¢!

(17) Productivity Shock: uf = p,uf | + €

(18) Govenment Shock: uf = pyui ;| + e

(19) Mark-up Shock (or Inflation Shock): u] = prul | + €]
(20) Wage Shock: u}’ = pyui’ | + e}’

(21) Monetary Policy Shock: uj = pyuj_; + €]
1z 7 forecasts errors;

(22) Consumption Forecast Error: ¢; = E;1[¢] + 7§

(23) Investment Forecast Error: iy = Et_l[ft] +n

(24) Value of Capital Forecast Error: ¢ = E;_1[¢—1] + n}

(25) Wage Forecast Error: w; = E;_1[w;—1] + nf*

(26) Mark-up Forecast Error (or Inflation Forecast Error): 7y = E;_1[ft_1] + nf
(27) Cost of Capital Forecast Error: ff = Et_l[ff;l] + n{k

(28) Labour demand Forecast Error: Iy = Et_l[ft_1] 4+t

s 7 observed variables: output ¢, consumption &, investment 7, hours worked l}, inflation
7it, real wage w; and the real interest rate 7. Briefly: y; = [§: ¢ ... 7]

i 40 all endogenous variables:

These conditions from (1) to (28) form a system of rational linear expectational difference

equations, that can be jointly solved using the Sims (2002) method. The Equation (3.1)
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becomes: -~ - _ -
Ut Ut—1
Tt -1
Wy Wy—1
]2715 ift—l
qt Gt—1
it i1
ét ét—l ef 77?
Tt Tr_1 6% 77#)
it o ef’ n
To I, =0 Iy 1 +¥ e | HIT | g (3.37)
€ 77115
E[m41] E[m] € U
| €t | _77{ k_
—— ——

uf ug_l e (7Txz1) n (7 z 1)
U% U§—1
€t €1
€ el 1

L J L J

s¢ (40 z 1) s¢—1 (40 z 1)

where the coefficient matrices 'y, I'y, ¥ and II are opportunely setted. The vector of deep
parameters is:

ﬁ:[soachfwO'prbwpr(brwpryrﬁyﬁﬁif?a]l

it has been estimated using Bayesian estimation under the Metropolis-Hastings algorithm
(Step 1a and Step 2a). The forecasts generated from the DSGE model are h-step ahead

forecasts of quarter-to-quarter output growth and inflation.

3.3.2 The data-rich form

The drDSGE observation equation (Equation (3.16)), can be obtained just by adding ob-

servable time series variables to the vector y,; as core series and/or no-core series. In this
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dissertaion, we used just Case C of Boivin and Giannoni (2006), where 21 time series are

added as core series and 7 are added as no-core series.

The drDSGE has been estimated starting from the state space representation (Equation
(3.17) to Equation (3.19)) using the Metropolis-within-Gibbs algorithm (from Step 1b to
5b). As the regular DSGE, the forecasts generated from the drDSGE model are h-step ahead

forecasts of quarter-to-quarter output growth and inflation.
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Chapter 4

The forecasting results

“The best thing about being a statistician is that you get to play in everyone’s backyard”

John Tukey

This chapter presents the out-of-sample forecasting experiments of the models discussed in
the previous chapters using real data on 83 quarterly U.S time series variables similar to those
variables used by Stock and Watson (2002a) and reported in Appendix A. We focus on two key
U.S macroeconomic time series variables: the output growth and the inflation. The empirical
study has shown three main conclusions: first, DSGE models are outperformed significantly
by the GDFM in forecasting the output growth in both short and long run, while the static
factor model outperforms significantly DSGE models only in the short run. Second, the most
surprising result of the thesis, we discovered that the drDSGE outperforms significantly all
other competitive models in forecasting inflation in the long run, while the regular DSGE does
not. Therefore, the drDSGE outperforms significantly the regular DSGE in forecasting both
output growth and inflation. Third, in most cases, the unrestricted VAR represents the worse

forecasting model. The implications of these results are discussed troughtout the chapter.

The chapter is organized as follows. In Section (4.1) we open presenting the forecasting
experiments and the metric used. In Section (4.2) we discuss the forecasting models in com-
petition. In Section (4.3) we describe the tests of equal predictive ability, while Section (4.4)

concludes providing the final results.

4.1 The forecasting experiments

The out-of-sample forecasting experiments are organized as follows. As described in the intro-

duction, we use rolling regressions with sample size fixed at R = 80 to forecast up to h = 12
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quarters ahead the output growth and inflation. The models in competition are: the un-
conditional mean of the time series, the autoregressive process (hereafter AR(p)), the vector
autoregressive process (hearafter VAR(p)), the static factor model or diffusion index (hereafter
DI(r)) model of Stock and Watson (2002a), the generalized dynamic factor model (hereafer
GDFM(r,q)) of Forni et al. (2000) and Forni et al. (2005), the regular DSGE of Smets and
Wouters (2007) and its Data-Rich Environment form following Boivin and Giannoni (2006).
The orders p, r and ¢ has been estimated using different ways. The autoregressive order p has
been estimated using the Bayesian Information Criterion (BIC), the number of static factor
model 7 has been estimated using the procedure of Alessi et al. (2007), while the number of
dynamic factors ¢ has been estimated using the procedure of Hallin and Liska (2007). The
first estimation sample starts from 1959:1 and ends in 1978:4 so that the first forecasting date
is 1979:1. Earlier observations are used to compute the initial growth rates. After all models
have been estimated, the first set of out-of-sample forecasts is computed. Then, sample range
shifts one-step forward to 1959:2-1979:1 in order to compute the second set of forecasts. All
models are fully re-estimated for each rolling sample with estimation procedures described
in the previous chapter. The estimation is performed S = 96 times to obtain a series of
forecasts for each forecast horizon and each model. The last sample is 1973:1-2001:4 and the

last forecasting date is 2004:4.

The metric used to evalute the relative forecasting performance is the relative mean squared

forecast error (rM SFE), defined as:

MSFE,,;,

MSFE =1—-—
rMSFE(m,n)y, MSF By,

(4.1)

where MSFE,,;, and MSFE,, denote respectively the mean squared forecast error gen-
erated from model m at the forecasting horizion h and the mean squared forecast error
generated from model n at the forecasting horizon h. The metric interpretation is: fixed h,
if rMSFE(m,n);, > 0 means a forecasting gain of model m relatively to model n, simmetri-
cally if rM SFE(m,n), < 0 means a forecasting loss of the model m relatively to model n.
The M SFEs have been constructed in the following way. Let xy7 be the finite dataset of NV
stationary time series up to time 7" used in the empirical out-of-sample forecasting experiment

where T' = R + s — 1 is the end of each rolling sample s of size R = 80. Let y; be the time
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series variable in xy7 that we wish to forecast h steps ahead, and let S be the number of
replications. The mean square forecasting error (M SFE) of stochastic process y; repect to

the i-th forecasting model has been worked out as:

S

MSFE, =5 Z(yT-I—h - @iT’ih|T)2 (4.2)
i1

where yr.; denotes the observed stochastic process y; at time T+ h, and g;';jh‘T denotes its

unknown point forecast predictor using the i-th forecasting model for the s-th rolling sample.

4.2 Forecasting models

The point forecast predictor QiT’iMT in Equation (4.2) has been worked out using the following
forecasting models: the unconditional mean, the autoregressive model, the vector autoregres-
sive model, the static factor model, the generalized dynamic factor model, the DSGE of Smets
and Wouters (2007) and its representation in term of Data-Rich Environment.

The use of the unconditional mean of the series of interest as forecasting model is quite
straightforward. In this case the point forecast predictor coincides with the unconditional
mean of the series for any forecasting horizon. For this reason, we prefer to skip this case

considering the other forecasting models directly.

4.2.1 Forecasting with the AR model

Let y; be our observed stationary time series at time ¢. The most simple way to forecast a time
series is assuming that it follows an autoregressive process. If y; admits an autoregressive

process of order p (hereafter AR(p)), we have:
yr =a+6(L)yr + er (4.3)

where yr denotes the time series of interest at the end of the estimation sample, o denotes
the constant, §(L) = 1 — ;L — ... — 0,LP denotes the autoregressive polynominal of order
p in the lag operator L fixed using the Bayesian Information Criterion (BIC) that loads the
past history of yr, while e is the stochastic error term. The autoregressive forecasting
model becomes:

Y, = a+ o (L)yr + erin h=1,...,12 (4.4)
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where 85 (L) =1 — 8 L~" — ... — §,LP~" denotes the autoregressive polynominal §(L) shifted
h-steps ahead, while e, denotes the stochastic error term shifted h-steps ahead. The AR
forecasts have been generated by estimating the previous equation by OLS for each forecasting

horizon. What we get is:

Q%fh‘T:Q—f‘Sh(L)yT h=1,...,12
where ?géfth is the desidered point forecast predictor used in Equation (4.2)

4.2.2 Forecasting with the VAR model

Let y,: be the n-dimensional vector of observed stationary time series variables. If y,; admits

a vector autoregressive process of order p (hereafter VAR(p)), we have:

P
Ynr = ZAan,T—j + €r er ~ iid N(0; %) (4.5)
j=1

where y,,7 is our observed time series varaibles at the end of the estimation sample, A; are
(n x n) matrices of parameters and ep is the n-dimensional white noise process at the end of
the estimation sample. Being our time series of interest into the set of observed time series

variables, indeed y; € ynt, the VAR forecasting model is:
yrin = a+ Su(L)yr + 1 (L)yT + erin h=1,...,12 (4.6)

where 7 denotes the vector of other observed time series variables in y,; and v, (L) =
1—mLh—. .. — 'prp_h denotes the autoregressive polynominal shifted h steps ahead that
loads the past hystory of yr. The VAR forecasts have been generated by estimating the

previous equation by OLS for each forecasting horizon. What we obtain is:

pinr = &+ on(L)yr +47,(L)3r h=1,...,12

where g):,‘ff,ﬁT is the desidered point forecast predictor used in Equation (4.2).
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4.2.3 Forecasting with the Diffusion Index Model

Let xnt = (214, %2, ..., 2N¢)" be the N-dimensional vector (with N large) of all observed
stationary time series variables in our data-set. Under the so-called Diffusion Index (DI)

model or static factor model of Stock and Watson (2002a,b), xn; can be decomposed as:

xnyt = AN Fnr+ Envrt = xnr +EnT

<~ — =

(Nx1) (Nxr) (rx1) (Nx1)

Fnr = AFn7_1+e€nt ent ~ tid N(0; Qe)
Ent = WYENT-1+VNT vy ~ iid N (0;Ry)

where F 7 denotes the vector of r static common factors, Ay denotes the matrix of factor
loadings, xnT denotes the vector of common components and &y7 denotes the vector of
idiosyncratic components. We assumed diagonal variance-covariance matrices Q¢ and Ry,
indeed we are working with an ezact Diffusion Index model. The DI forecasting model can

be written as:
yrin = a+ BFnr + 6n(L)yr + ergn h=1,...,12

where F yr are the estimated static principal components factors. The DI forecasts have been

generated by estimating the previous equation using OLS for each forecasting horizon:
~DI A ~l A A B
ITinr =&+ BFENT + 0n(L)yr h=1,...,12

where g frth is the desidered point forecast predictor used in Equation (4.2).

4.2.4 Forecasting with the GDFM

Following Forni et al. (2000), if xy7 admits a generalized dynamic factor model (GDFM),

the measurement equation takes the following form:

xnt = An(L)fnT + ENnT (4.7)
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where 7 denotes the vector of ¢ dynamic factors and Ay (L) denotes the matrix of dynamic

factor loadings. The GDFM forecasting model can be written as:
yer ™ = a+ B'(L)Enr + 0u(L)yr + e h=1,...,12 (4.8)

where fyr are the estimated dynamic principal components factors. The GDFM forecasts have

been generated by estimating the previous equation by OLS for each forecasting horizon:

N . N ~ «
gEPEA = &+ B(L)Ent + on(L)yr h=1,...,12

~GDFM

YT T is the desidered point forecast predictor used in Equation (4.2)

where

4.2.5 Forecasting with the regular DSGE

The forecasts from the Smets and Wouters (2007) DSGE model, explained in Section (3.3),
have been generated using the state space representation given in Equation (3.2) and Equation
(3.3) with a measurement error. The point forecast predictors has been formed by iterating
on the last estimate of the unobserved state using the state equation Equation (3.3) and
then backing out the corresponding value for the observable using the measurement equa-
tion Equation (3.2). We do this using Bayesian estimation under the Metropolis-Hastings
algorithm as described from Step la to Step 2a of SubSection (3.2.3). The mean of the
posterior forecast distributions is taken as the point forecast of the relevant variable. The
Brooks and Gelman (1998) test has shown that all Markov chains for each estimation sample

have converged nicely.

4.2.6 Forecasting with the drDSGE

The forecasts from the drDSGE model, have been generated using the state space represen-
tation formed by Equation (3.17), Equation (3.18) and Equation (3.19). As in the regular
DSGE case, the point forecast predictors has been formed by iterating on the last estimate
of the unobserved state using the state equation Equation (3.18) and then backing out the
corresponding value for the observable using the measurement equation Equation (3.17). We
do this using Bayesian estimation under the Metropolis-within-Gibbs algorithm as described
from Step 1b to Step 5b of SubSection (3.2.3). The mean of the posterior forecast distribu-

tions is taken as the point forecast of the relevant variable. The Brooks and Gelman (1998)
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test has shown that all Markov chains for each estimation sample have converged nicely.

4.3 Tests of equal predictive ability

To asses the significance power of the observed differences in the M SF'E between alternative
forecasting models, we used two tests of equal predictive ability: the unconditional predic-
tive ability test of Diebold and Mariano (1995) and West (1996) (hereafter: DMW test) and
the conditional predictive ability test of Giacomini and White (2006) (hereafter: GW

test).

4.3.1 Test of equal unconditional predictive ability

1 2 . . .
Let € Ah|T and €7, Ah|T be two forecast error series from two alternative forecasting models.

The null hypothesis of equal unconditional predictive ability is:
Ho: E[L(epypr) — (€ ypr)]) = E[ALpyr] = 0 (4.9)

where L(-) denotes a given loss function and ALy +n|7 denotes the loss differential series.
Given a large sample from a standard normal A(0;1), the correspondent test statistics of

equal unconditional predictive ability is:
AL
Spuw :  ———
27TfA(O)
VK

where AL, denotes the sample mean of the loss differential ALy, indeed, AL, =771 Zflz}h AL prs

(4.10)

K denotes the total number of predictions, while fA(O) denotes the estimate of the spectral

density of the loss differential at frequency zero given by:

fa(0)=27"">" qals)

C=—00

where ya(s) denotes the autocovariances of the loss differential at displacement ¢. This
spectral density can be consistenly estimated using the heteroskedasticity and autocorrelation

consistent (HAC) estimator proposed by Newey and West (1987):

C
Fa(0) =277 7a(0) +2 3 (1 = 2)9a(6)]
=1
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where YA (s) denotes the sample estimates of the autocovariances and C' denotes the trunc-
tation lag. In this dissertation, we use a quadratic loss function, the truncation C' = h — 1
and the critical values suggested by Diebold and Mariano (1995). The test works in this
way: if the observed statistic Equation (4.10) is smaller than the critical value, we can reject
the null hyphotesis Equation (4.9) stating that the difference between forecast error series
is significanlty different from zero, then the observed difference in M SFFE has a significant

power.

4.3.2 Test of equal conditional predictive ability

The DMW test has three main drawbacks. First, it answers basically to the question of which
forecast was more accurate on average, it does not answer to the question of whether one can
predict which forecast will be more accurate at a future date. So, it does not take into ac-
count of the information set at a given time, then it does not allow to ask whether additional
information can help to identify which forecast is more appropriate for that date. Second,
as pointed out by Clark and McCracken (2001), it has low power in finite samples. Third,
it cannot accommodate Bayesian, no-parametric and semi-parametric method estimations.
To overcome these drawbacks the literature has suggested conditional tests instead. At the
moment the most used and suggested conditional predictive ability test is the test of Giaco-
mini and White (2006). Differently from DMW test, the GW test has three main advantages:
first, it can be applied to Bayesian, no-parametric and semi-parametric method estimations;
second, under a rolling regression scheme the limiting distribution of the test statistic is still

standard normal; third, it has higher power in finite samples.

The null hypothesis of equal conditional predictive ability is:
Hy : E[L(€1T+h\T) - L(6%+h\T)’IT] =E[AL7 pr|Zr] = 0 (4.11)

where L(-) denotes a given loss function, ALp 1 denotes the loss differential series and Zr
denotes the information set matured at time 7', indeed, the end of the s-th rolling sample. The
test statistic of Giacomini and White (2006) can be viewed as the test statistic of Diebold
and Mariano (1995) and West (1996) given in Equation (4.10), because under the rolling

regression scheme, Giacomini and White (2006) show that the limiting distribution of the test
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statistic is still standard normal. In this dissertation, we use a quadratic loss function and
the critical values suggested by Giacomini and White (2006). The test works in the same way

as the unconditional one.

4.4 Empirical results

This section presents the results of this dissertation. We start providing the relative mean
square forecasting error (rMSFE) analysis in SubSection (4.4.1), then to asses its significance
we apply in Subsection (4.4.2) the tests of equal predictive ability previously explained. Since
the GW test is superior than the DMW test, the final results of the dissertation come from

only the interpretation of the conditional test.

4.4.1 The mean square forecasting error analysis

We set up the r M SFE analysis calculating Equation (4.1) between the following combinations

of forecasting models:

Figure (4.1): Models versus the unconditional mean The Figure (4.1) plots the rM SFE

of forecasting models respect to the unconditional mean of the series of interest. In the

MSFE(m)

MSFE() while in the lower graph we have:

upper graph, we have: rMSFE(m,y) =1—
rMSFE(m,7) = 1 - ™, where m—{AR(p*),VAR(p*),DI(r*), DSGE,drDSGE}
are the models in competition, 7 is the unconditional mean of the output growth, and 7
is the unconditional mean of inflation. The observed values are reported in Table (4.1),
where the better rM SFEs for any forecasting horizon h are denoted in bold. These
values depend critically upon the choice of: the number of lags p, the number of static
factors r, and the number of dynamic factors q. The order p has been estimated using
the Bayesian Information Criterion (BIC), the number of static factors r has been esti-
mated using the Alessi et al. (2007) criterion as discussed in SubSection (2.4.1), while
the number of dynamic factors ¢ has been estimated using the Hallin and Liska (2007)
as discussed in SubSection (2.4.2). To determine r and ¢, we used Figure (4.2) where
the graph on the left suggests the optimal number of static factor r*, while the graph on
the right suggests the optimal number of dynamic factor ¢*. Practically, to determine

r, we need to look for the first zero variance interval for ¢ (the dotted blu line on the

left graph), corresponding to a stable value of 77¢ < Tpqs. This interval is located in
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GOF Growth: Relative MSE of Models respect to Uinconditional mean
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Figure 4.1: The figure plots the rMSFEs of forecasting models relatively to the time series uncon-
ditional mean. The corresponding values are reported in Table (4.1).
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Figure 4.2: The figure plots the Alessi et al. (2007) criteria [on the left] and the Hallin and Liska
(2007) criteria [on the right] used to determine respectively the number of static factor r and the
number od dynamic factors q.
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’ rMSFFE of models versus the unconditional mean ‘

Output Growth
AR(p*) | DI(r*) | VAR(p*) | DSGE | GDFM(r*,q*) | drtDSGE

= -0.0320{0.3037| -0.6299 [-0.3653 0.2226 -0.3553
= -0.0496 | 0.3694 | -0.9077 |-0.3223 0.3634 -0.3011
= -0.0718 {0.3718 | -1.1813 |-0.3192 0.3594 -0.3002

-0.0494 | 0.2700 | -1.4518 |-0.3386 0.3984 -0.3156
-0.0580 | 0.0801 | -1.6694 |-0.3409 0.3854 -0.2811
-0.0469 | 0.2318 | -1.8954 |-0.3166 0.3843 -0.3011
-0.0234 | 0.2512 | -2.1720 [-0.3473 0.3863 -0.3173
-0.0034 | 0.0762 | -2.4567 |-0.4047 0.3897 -0.3247
-0.0061 | 0.1225 | -2.9116 |-0.5428 0.3472 -0.3328

ST
I
= © 00~ O U W N

=101 0.0015 | 0.2055 | -3.5283 |-0.7684 0.2474 -0.3384

=11|-0.0028 | 0.1399 | -4.2084 |-1.0366 0.2258 -0.3401

=12]-0.0158 | 0.0304 | -5.1195 |-1.3826 0.1580 -0.3446

Inflation

h=1 |0.3940 | 0.5637 | 0.3876 | 0.4020 0.6738 0.4195
h=2 | 0.4558 | 0.5388 | 0.4094 | 0.4564 0.6653 0.4694
h=3 |0.4350 | 0.5225 | 0.3514 | 0.4763 0.7058 0.4998
h=4 | 0.3819 | 0.4906 | 0.2620 | 0.4854 0.5956 0.5094
h=15 |0.3448 | 0.4899 | 0.2015 | 0.5001 0.5907 0.5321
h=6 | 0.3068 | 0.3882 | 0.1590 | 0.5255 0.5401 0.5615
h=7 |0.2659 | 0.4245 | 0.1077 | 0.5443 0.4861 0.5943
h =28 | 0.2360 | 0.3953 | 0.0533 | 0.5699 0.3673 0.6196
h=9 | 0.2008 | 0.3998 | 0.0082 | 0.5939 0.2992 0.6459
h=10| 0.1725 | 0.4098 | -0.0287 | 0.6108 0.2427 0.6608
h=11|0.1334 | 0.4104 | -0.0618 | 0.6258 0.1377 0.6958
h =12]-0.0623 | 0.3863 | -0.0913 | 0.6456 -0.0042 0.7096

Table 4.1: The entries in the table are the rMSF Es of alternative forecasting models relatively to the
time series unconditional mean. A positive entry indicates model informative forecasts. A negative
entry indicates noninformative model forecasts. The entries in bold indicate the most informative
model forecasts for any forecasting horizon h. For example, for output growth at one step ahead, the
most informative forecasts are produced by the DI model with r*=3 static factors, while the AR(p*),
the VAR(p*), the DSGE and the drDSGE yield noninformative forecasts that are outperformed by
the unconditional mean of the series.
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correspondence of r* = 5 static factors. So in Figure (4.1), we have estimated the DI
model with r* = 5 static factors. The same reasoning is valid to estimate q. Then we
need to look for the first zero variance interval for ¢ (the blu line on the right graph),
corresponding to a stable value of ;¢ < ¢maz. This interval is located in correspondence
of ¢* = 3 dynamic factors. So, we have estimated the GDFM with r* = 5 static factors

and ¢* = 3 dynamic factors.

In terms of forecasting output growth, we found that factor models yield lower rMSF E's
respect to the all other competitive models in both short and long run. In particular,
the DI(r*) model produces lower M SFEs in the short run (up to 3 quarters ahead),
while the GDFM(r*,q*) yields lower M SFFE's in the long run (from 4 quarter up to 12
quarters ahead). Therefore, the AR(p*), the VAR(p*), the DSGE, and the drDSGE do
not provide informative forecasts (only the AR(p*) model has a positive rMSFE at

h = 10), meaning that the unconditional mean should be used instead.

With regard of inflation, we found that the GDFM(r*,q*) yields lower M SFESs in the
short run (up to 5 quarters ahead), while the drDSGE produces lower M SFEs in the
long run (from 6 quarter up to 12 quarters ahead). Therefore, we discovered that the
DI(r*) is able to produce lower M SF Es than the GDFM(r*,¢*) in the long run (from 8
quarter ahead up to 12 quarters ahead). This results is against the prelevant literature
who gives to the GDFM better accurancy in forecasting time series variables than DI

especially in the long run (Forni et al. (2000) and Forni et al. (2005)).

Figure (4.3): DI(r) versus AR(p*) The Figure (4.3) plots the rMSFE of diffusion index
model with altenative number of static factors, respect to the autoregressive model with
the optimal lag p* fixed using the BIC. In the upper graph, we have: rMSFE(DI(r), AR(p*))|y, =
1— W |y, forr = BIC,1,2,...,7, while in the lower graph we have: *MSFE(DI(r), AR(p*))|x,

1-— %]m for r = BIC,1,2,...,7. The observed values are reported in Table

(4.2), where the better rM SFEs for any forecasting horizon h are denoted in bold.

For both output growth and inflation we see that only few static factors are needed to
outperform the AR(p*) model. Infact, we need just 2 factors to outperforme the AR(p*)
model for any forecasting horizon. It confirms the findings of Stock and Watson (2002b)

where their DI model was found superior in M SFE than an autoregressive process.
With regard to output growth, there are considerable forecasting gains when we pass
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’ rMSFE of DI(r) with r = BIC,1,2,...,7 versus AR(p*)

DI(BIC)
h=1 | 03253
h=2 | 0.3992
h=3 | 04138
h=4 | 0.3043
h=5 | 0.1305
h=6 | 0.2662
h=7 | 02684
h=38 | 0.0793
h=9 | 0.1278
h=10| 0.2043
h=11| 0.1423
h=12| 0.0454
h=1 | 0.2801
h=2 | 01525
h=3 | 0.1549
h=4 | 01758
h=5 | 0.2215
h=6 | 0.1174
h=7 | 02160
h=8 | 0.2085
h=9 | 0.2491
h=10| 0.2868
h=11| 0.3197
h=12| 04223

DI(1)
0.1936
0.0895
0.0774
0.0462
0.0043
0.0016

-0.0934

-0.1250

-0.0303

-0.0390

-0.0319

-0.0948

0.0342
-0.0400
-0.0304

0.0463

0.1014

0.1647

0.2336

0.2723

0.3044

0.3375
0.3602
0.4321

Output Growth

DI(2)
0.3313
0.4150
0.3727
0.2391
0.1185
0.2499
0.2534
0.2714
0.2565
0.2162
0.2467
0.2354

0.3882
0.2362
0.2723
0.2602
0.1706
0.2509
0.1077
0.2289
0.0892
0.0526
0.1173
0.2312

DI(3)
0.2950
0.3906
0.3685
0.3312
0.2928
0.3430
0.3289
0.2843
0.2461
0.2182
0.2486
0.2422

Inflation

0.2882
0.1276
0.2169
0.1270
0.1015
0.2991
0.1929
0.0921
0.0129
-0.0504
-0.0077
0.1315

DI(4)
0.2588
0.3869
0.4108
0.3901
0.3188
0.3654
0.3748
0.3395
0.3267
0.2732
0.3122
0.3077

0.2736
0.0659
0.1616
0.2031
0.2194
0.2522
0.2917
0.2356
0.2073
0.2020
0.2374
0.3115

DI(5)
0.2773
0.4171
0.4232
0.3538
0.3874
0.3576
0.2443
0.0351
0.0493
0.1217
0.1593
0.0820

0.3903
0.2611
0.1729
0.0936
0.1008
0.1686
0.1485
0.2148
0.1974
0.1767
0.1362
0.1961

DI(6)
0.3258
0.4131
0.3623
0.3223
0.3349
0.3191
0.2804
0.1949
0.1002
0.1468
0.1325
0.0599

0.3339
0.3557
0.3634
0.3006
0.2826
0.4068
0.3864
0.4084
0.4005
0.3795
0.2382
0.3279

DI(7)
0.3181
0.4093
0.3785
0.3436
0.3527
0.3171
0.3095
0.2662
0.2052
0.1341
0.1761
0.1173

0.4036
0.3691
0.4275
0.4248
0.3728
0.4226
0.4372
0.4577
0.3624
0.3711
0.3576
0.3883

Table 4.2: The entries in the table are the rMSFEs of diffusion index (DI(r)) models with an

alternative number of static factors r = BIC, 1,2, ..

., 7 relatively to the autoregressive model (AR(p))

with the lag p fixed using the BIC. A positive entry indicates DI informative forecasts, while a negative
entry indicates DI noninformative forecasts. The entries in bold indicate the most informative forecasts
for any forecasting horizon h. For example, for output growth at one step ahead, the most informative

forecasts are produced by the DI model with two static factors.
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GDP Growth: Relative MSE of DI(r) respect to AR(p™)
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Figure 4.3: The figure plots the rMSFEs of diffusion index models with an alternative number of
static factors r = BIC,1,2,...,7 relatively to the autoregressive model (AR) with the lag p fixed
using the BIC. The corresponding values are reported in Table (4.2).
from 2 to 4 factors especially when the forecasting horizon increases. At 4 quarters
ahead, the DI(4) yields 15.1% higher rM SFE than DI(2), at 6 quarters ahead, the
DI(4) yields 11.55% higher rM SFE than DI(2), while at 12 quarters ahead the DI(4)

yields 7.23% higher rM SFE than DI(2).

With regard to inflation, there are considerable gains when we consider a larger number
of factors, 6 or 7, at least for the short and medium run. At 1 quarter ahead, the DI(7)
yields 36.94% higher rM SFE than DI(1), and 6.97% higher M SFE than DI(6). At 6
quarters ahead, the DI(7) yields 25.79% higher rM SFE than DI(1), and 1.58% higher
rMSFE than DI(6). But at 12 quarter ahead, the DI(1) yields 4.38% higher rM SFE

than DI(7), and 10.42% higher rM SFE than DI(6).

Figure (4.4): regular DSGE versus VAR(p) The Figure (4.4) plots the rM SFE of DSGE
model respect to the VAR(p) model with alternative number of lags p. In the up-
per graph, we have: rMSFE(DSGE;VAR(p))|y, = 1 — %‘%bt for p =

BIC,1,2,...,5, while in the lower graph we have: rMSFE(DSGE;VAR(D))|r, =

| _ MSFE(DSGE)

— WVAR@))’W for p= BIC,1,2,...,5. The observed values are reported in Table

(4.3), where we have denoted in bold the cases where forecasting using a VAR is supe-
rior than forecasting with the DSGE, and in italic the values of rM SF Es for which the

underlying V AR(p) loses less respect to the DSGE.

58



Tesi di dottorato in Econometrics, di Gabriele Palmegiani, discussa presso 1’Universita LUISS Guido Carli, in data 20 Marzo 2012.
Soggetta a copyright (©. Sono comunque fatti salvi i diritti dell’Universita LUISS Guido Carli di riproduzione per scopi di ricerca e

Empirical l"esu]ts didattici, con citazione della fonte.

GDP Growth: Relative MSE of DSGE respect to VAR(p)
038 . . . . .

Figure 4.4: The rMSFE of DSGE versus the VAR(p).

’ rMSFE of DSGE versus VAR(p) with p=BIC,1,2,...,5 ‘

Output Growth
VAR(BIC) | VAR(1) | VAR(2) | VAR(3) | VAR (4) | VAR(5)
h=1 0.2602 0.2602 | 0.3210 | 0.3158 | 0.4055 | 0.4592
h=2 0.2840 0.2840 | 0.3525 | 0.2656 | 0.3219 | 0.4187
h= 0.3430 0.3430 | 0.3849 | 0.2430 | 0.2895 | 0.4129
h=14 0.3923 0.3923 | 0.4191 | 0.2833 | 0.3126 | 0.4003
h=5 0.4357 0.4357 | 0.4434 | 0.3419 | 0.3643 | 0.4433
h=6 0.4833 0.4833 | 0.4725 | 0.4088 | 0.4157 | 0.4728
h=T7 0.5141 0.5141 | 0.4851 | 0.4557 | 0.4461 | 0.4951
h= 0.5310 0.5310 | 0.4902 | 0.4887 | 0.4593 | 0.4843
h=9 0.5423 0.5423 | 0.4924 | 0.5147 | 0.4622 | 0.4806
h=10| 0.5451 0.5451 | 0.4889 | 0.5347 | 0.4686 | 0.4701
h=11] 0.5426 0.5426 | 0.4815 | 0.5487 | 0.4755 | 0.4701
h=12| 0.5431 0.5431 | 0.4798 | 0.5632 | 0.4823 | 0.4623

Inflation
0.0399 0.0399 | 0.0013 | 0.1074 | 0.1603 | 0.1856
0.1227 0.1227 | 0.0886 | 0.2087 | 0.2496 | 0.2726
0.2271 0.2271 | 0.1857 | 0.2765 | 0.3246 | 0.3607
0.3230 0.3230 | 0.2705 | 0.3477 | 0.3770 | 0.3992
0.3947 0.3947 | 0.3251 | 0.4161 | 0.4250 | 0.4379
0.4529 0.4529 | 0.3688 | 0.4745 | 0.4697 | 0.4806
0.5048 0.5048 | 0.4147 | 0.5241 | 0.5103 | 0.5182
0.5614 0.5614 | 0.4726 | 0.5816 | 0.5611 | 0.5568
0.6068 0.6068 | 0.52532 | 0.6311 | 0.6039 | 0.5907
0.6395 0.6395 | 0.5623 | 0.6706 | 0.6384 | 0.6192
0.6673 0.6673 | 0.5961 | 0.7047 | 0.6699 | 0.6489
0.6961 0.6961 | 0.6311 | 0.7391 | 0.7031 | 0.6827

ST
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o= = O 000 Uk Wi

N = O

Table 4.3: The entries in the table are the rM SFE's of the dynamic stochastic general equilibrium
(DSGE) model of Smets and Wouters (2007) relatively to the vector autoregressive model (VAR(p))
with an alternative number of lags p = BIC,1,2,...,5. A positive entry indicates DSGE informative
forecasts, while a negative entry indicates a noninformative DSGE forecasts. The entries in italic
indicate the VAR model that loses less respect to the regular DSGE.
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For both time series, the table shows that there are no cases where the the VAR(p) model
is able to produce lower M SF'E than the the DSGE of Smets and Wouters (2007). This
result is in line with the findings of Del Negro and Schorfheide (2004), where a VAR(4)
is used as the benchmark. Here, we find that the DSGE model is able to outperform
not only the VAR(4) but all the VAR models considerared. For the output growth, the
VAR(1) is the VAR model that loses less respect to the DSGE at 1 quarter ahead, while
in the long run is the VAR(5) the model that minimize the loses respect to the regular
DSGE. The results of inflation are quite similar. The only difference is that now is the

VAR(2) the model that loses less respect to the regular DSGE.

Figure (4.5): DI(r) versus GDFM(r*,q*) The Figure (4.5) plots the rM SF E of DI model

with alternative number of static factors r respect to the GDFM(r*; ¢*). In the upper

graph, we have: rMSFE(DI(r), GDFM (r*,q*))|y, = 1— MS%igg%DAz((:)*);q*)) |y, for r =

BIC,1,2,...,7, while in the lower graph we have: TM SFE(DI(r), GDFM (r*,q¢*))|x, =

1-— MSI*]“VJ[ESEZLE)(;)J\Q((?*);q*)) |z, for r = BIC,1,2,...,7. The observed values are reported in

GDP Growth: Relative MSE of DI(r) respect to GDFM
0.5 . . T T .

r=3| 2 4 6 8 10 12

Figure 4.5: The figure plots the rMSFEs of the diffusion index model (DI(r)) with an alterna-
tive number of static factors r = BIC,1,2,...,7 relatively to the generalized dynamic factor model
(GDFM(p, ¢)) with the number of static factors r fixed using Alessi et al. (2007) criterion and the
number of dynamic factors ¢ fixed using the Hallin and Liska (2007) criterion. The corresponding
values are reported in Table (4.4).

Table (4.4), where we have denoted in bold the cases where forecasting using a DI(r) is

superior than forecasting with the GDFM(r* p*), and in italic the values of rM SFEs

for which the underlying DI(r) loses less respect to the GDFEM(r* p*).
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rMSFE of DI(r) versus GDFM (r*; ¢*) with r = BIC,1,2,...,7 ‘
Output Growth
DI(BIC)| DI(1) | DI(2) | DI(3) | DI(4) | DI(5) | DI(6) | DI(7)
0.1044 |-0.0705|0.1123]| 0.0641 | 0.0160 | 0.0406 | 0.1050 | 0.0947
0.0095 |-0.5011 | 0.0355 |-0.0046 | -0.0108 | 0.0390 | 0.0325 | 0.0261
0.0193 |-0.5435{-0.0495 |-0.0565| 0.0142 | 0.0350 |-0.0668 | -0.0398
-0.2134 |-0.6637|-0.3273|-0.1665 | -0.0639 | -0.1272 | -0.1821 | -0.1450
-0.4967 |-0.7139 |-0.5174|-0.2173 | -0.1727 | -0.0545 | -0.1449 | -0.1142
-0.2477 |-0.6976 | 0.5925 |-0.1172|-0.0790 | -0.0923 | -0.1577 | -0.1612
-0.2200 |-0.8233{-0.2449|-0.1190|-0.0425 | -0.2601 |-0.1999 | -0.1515
-0.5137 |-0.8496|-0.1979 | -0.1767 | -0.0859 | -0.5864 | -0.3237 | -0.2065
-0.3442 |-0.5880 |-0.1460 | -0.1620 | -0.05877 | -0.4653 | -0.3867 | -0.2250
-0.0557 |-0.3785|-0.0400|-0.0373 | 0.0357 | -0.1652 | -0.1320 | -0.1489
-0.1110 |-0.3366 | 0.0242 | 0.0268 | 0.1092 | -0.0890 |-0.1236 | -0.0672
-0.1516 |-0.3208 | 0.0775 | 0.0858 | 0.1648 |-0.1075 |-0.1342 | -0.0649

N = O

ST
Il
== = O 000 Uk W~

Inflation
-0.3373 |-0.7942 | -0.1365 | -0.3223 | -0.3495 | -0.1327 | -0.2374 | -0.1080
-0.3779 |-0.6909 |-0.2419|-0.4184| -0.5187 | -0.2014 |-0.0475 | -0.0258
-0.6231 |-0.9789|-0.3976 | -0.5038 | -0.6102 | -0.5884 |-0.2226 | -0.0995
-0.2596 |-0.4576|-0.1307|-0.3342| -0.2179 | -0.3853 | -0.0689 | 0.1209
-0.2462 |-0.4384|-0.3278 | -0.4383| -0.2495 | -0.4395 | -0.1484 | -0.0041
-0.3303 |-0.2590|-0.1718 | -0.0564 | -0.1272 | -0.2532 | 0.1059 | 0.1297
-0.1198 |-0.0946 | -0.0699 | -0.1528 | -0.0117 | -0.2162 | 0.1236 | 0.1961
0.0443 | 0.1214 | 0.0689 |-0.0963| 0.0771 | 0.0519 | 0.2857 | 0.3452
0.1436 | 0.2067 |-0.0387 [-0.1257| 0.0960 | 0.0847 | 0.3164 | 0.2729
0.2207 | 0.2761 |-0.0352 |-0.1478| 0.1280 | 0.1004 [0.3220| 0.3129
0.3162 [0.3569| 0.1129 |-0.0128| 0.2336 | 0.1318 | 0.2343 | 0.3544
0.3889 [0.3992| 0.1867 | 0.0812 | 0.2716 | 0.1495 | 0.2890 | 0.3529

IS DS DS RS RS RS RS s s s s
Il
= = = © 000 Ok WwiNh k-

N = O

Table 4.4: The entries in the table are the rMSFEs of the diffusion index model (DI(r)) with an
alternative number of static factors r = BIC,1,2,...,7 relatively to the generalized dynamic factor
model (GDFM(r,q)) with the number of static factors r fixed using Alessi et al. (2007) criterion
and the number of dynamic factors ¢ fixed using the Hallin and Liska (2007) criterion. We found
r* =5 e g* = 3. A positive entry indicates DI informative forecasts, while a negative entry indicates
noninformative DI forecasts. The entries in italic indicate the DI model that loses less respect to
the GDFM. The entries in bold indicate the most informative forecasts for any forecasting horizion
h. For example, for inflation at one step ahead, there are no cases in which a DI yields informative
forecasts and the DI(7) is the model that loses less, while at four step ahead the DI(7) is able to
produce informative forecasts.
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Most of the values contained in the table are negative, meaning that there are few
occasions in which the DI model yield a lower M SFFE. Regard to output growth, there
are few cases where the GDFM is outperformed by the DI, while for inflation these
cases are increased. For the output growth, the DI model with 5 and 4 factors tend
to outperform the GDFM(r*, ¢*) in both short term (up to 2 quarters ahead) and long
term (from 10 to 12 quarters ahead). For inflation, there are no cases where the DI
model is able to produce informative forecasrs in the short run, while in the medium
run and in the long run the DI(7) and the DI(1) are able to produce lower MSFEs

respectively.

Figure (4.6): DSGE models versus GDFM(r*,¢*) The Figure (4.6) plots the rMSFE

of DSGE models respect to the GDFM(r*; ¢*). In the upper graph, we have: rMSFE(z, GDFM (r*;q*))|y,

1— MSFEA(/IGS;:?]E;ET*’Q*)) |y, for z = {DSGE,drDSGEY}, while in the lower graph we have:
rMSFE(2; GDFM ;¢ )|, = 1_MSFE]‘(”GS§§]E4ZET*7Q*)) |r, where z = {DSGE, drDSGE}.

The observed values are reported in Table (4.5), where we have denoted in bold the cases

GDP Growth: Relative MSE of DSGE Models respect to GDFM
O T T T T T

05k i
Ak .
—A—DSGE
rDSGE N

L I 1 1 1 1
: 2 4 5] 3 10 12

Inflation: Relative MSE of DSGE Models respect to GDFM
2 T T T T T

1F A

Figure 4.6: The figure plots the rM SFEs of the dynamic stochastic general equilibrium models rela-
tively to the generalized dynamic factor model (GDFM(r, q)) with 7* = 5 e ¢* = 3. The corresponding
values are reported in Table (4.5).
where a DSGE model is able to outperform the GDFM(r*,¢q*) in terms of rMSFE.
About the output growth, the GDFM yields lower MSF Es than the DSGE models for

any forecasting horizon. It confirms the results of Table (4.1) where the DSGE models

was found to generate higher rM SF Es than the GDFM.

62



Tesi di dottorato in Econometrics, di Gabriele Palmegiani, discussa presso 1’Universita LUISS Guido Carli, in data 20 Marzo 2012.
Soggetta a copyright (©. Sono comunque fatti salvi i diritti dell’Universita LUISS Guido Carli di riproduzione per scopi di ricerca e

Empirical l"esu]ts didattici, con citazione della fonte.

[rMSFE of DSGE models versus GDFM(r*,q") |

Output Growth Inflation

DSGE | drDSGE || DSGE drDSGE
h=1 |-0.7573| -0.6963 ||-0.8331 -0.8129
h=2 |-1.0791| -0.8770 [[-0.6239 -0.5754
h =3 [-1.0595| -0.8643 |/-0.7801 -0.6705
h=4 [-1.2252| -0.6249 ||-0.2724 -0.1309
h=5 [-1.1810| -0.7016 |[-0.2213 -0.0215
h=6 [-1.1334| -0.6885 |[[-0.0328 -0.0019
h=7 |-1.1926| -0.6752 || 0.1142 0.3131
h =28 |-1.3087| -0.5316 || 0.3287 0.6204
h=9 |-1.3632| -0.5034 || 0.4203 0.6396
h =10(-1.3477| -0.4597 || 0.4849 0.8861
h =11[-1.6358| -0.5606 || 0.5658 0.9660
h =12|-1.8296| -0.7987 || 0.6465 1.0471

Table 4.5: The entries in the table are the rMSFEs of the dynamic stochastic general equilibrium
models relatively to the generalized dynamic factor model (GDFM(r, q)) with 7* =5 e ¢* = 3. A
positive entry indicates DSGE informative forecasts, while a negative entry indicates noninformative
DSGE forecasts. The entries in bold indicate the most informative DSGE forecasts. For example,
for output growth there are no cases in which DSGE models yield informative forecasts, while for
inflation at eight step ahead both DSGE and drDSGE produce informative forecasts but the drDSGE
forecasts are more informative.

About the output growth, the GDFM yields lower M SF Es than the DSGE models for
any forecasting horizon. It confirms the results of Table (4.1) where the DSGE models
was found to generate higher rM SF Es than the GDFM. Differently, when we have to
forecast inflation, we find that DSGE models are able to produce lower M SF Es than

the GDFM only in the long run (from 7 to 12 quarters ahead).

The interesting result is the MSFE performance gap between the DSGE and the drDSGE.
This gap, as shown in Figure (4.6) increases when the forecasting horizon is increased as
a pair of open scissors. Regarding the output growth, at 1 quarter ahead, the drDSGE
loses 6.01% less (in absolute value) than the DSGE, at 6 quarters ahead, the drDSGE
loses 44.49% less than the DSGE, and at 12 quarters ahead, the drDSGE loses 103.09%
less than the DSGE. The same situation happens for inflation. At 1 quarter ahead,
the drDSGE loses 2.02% less (in absolute value) than the regular DSGE, at 6 quarters
ahead, the drDSGE loses 3.09% less than the regular DSGE, and at 12 quarters ahead,
the drDSGE loses 40.06% less than the regular DSGE. This result is in line with the
findings of Boivin and Giannoni (2006), who show that more accurate estimates implies

better forecasts at least one step ahead.

Concluding, the rM SFE analysis has pointed out that output growth is not forecasted in-

formatively by DSGE models, while factor models yield lower and informative MSFEs for
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any forecasting horizon. Simmetrically, for the inflation, DSGE models tend to produce
lower M SFEs than factor models especially in the long run. We could take these results
as definitive, but since the M.SFE analysis has not significance power, we have to work on
forecasting inference implementing predictive ability tests. Among these tests, we interpreted

the conditional predictive ability test of Giacomini and White (2006).

4.4.2 Equal predictive ability results

The Table (4.6) reports the test statistic of the unconditional equal predictive ability test,
while the Table (4.7) reports the test statistic of the conditional equal predictive ability test.
These statistics have the following interpretation: plus signs indicate that the forecating
model in rows have lower mean squared forecasting errors than the corresponding forecating
model in columns, then the model in row outperforms significantly the model in column.
Simmetrically, negative signs indicate that the forecating model in rows have higher mean
squared forecast errors than the corresponding forecasting model in columns, then the model
in column outperforms significantly the model in column. We denoted in bold entries that
are significant at 5% level, while we denoted in underlined bold entries that are significant
at 1% level. Critical levels of test statistics are fixed as suggested by Diebold and Mariano
(1995) and West (1996) and Giacomini and White(2006) respectively. The interpretation of

the GW test is considered as definitive.

Unconditional Predictive Ability Test: Looking at output growth forecasts, we find that
there are not occasions where DSGE models show significant differences between competing
models. The GDFM outperforms significantly DSGE models in both short and long run,
while the DI model outperforms significantly only the regular DSGE at 1 quarter ahead and
at 12 quarters ahead. Therefore, the drDSGE model produces significantly better forecasts
than the regular DSGE in both short and long run.

Looking at inflation forecasts, the GDFM is able to outperform significantly DSGE models
only 1 quarter ahead, while at 8 and 12 quarters ahead the drDSGE dominates significatively
all other competing models. Surprising also the regular DSGE is found significant better
than the GDFM at 12 quarters ahead. This result will not be confirmed by the GW test.
Therefore, interestingly the DI outperforms significanlty the GDFM at 12 quarters ahead. We

could take these results as definitive, but since the DMW test has low power in finite samples
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Test of equal unconditional predictive ability (DMW test)

AR(p*)
DI(p*)
IVAR(p*)
DSGE

IGDFM(r*;q*)

Mean
-0.7918

1.7463
-1.4522
-1.4676

1.2930

drDSGE

AR(p*)
DI(p*)
VAR(p*)
DSGE

IGDFM(r*;q*)

AR(p*)

1.9841
-1.2933
-1.2195

1.5014

-1.5135

-0.5556
1.2366
-1.6753
-1.0382
1.8508

drDSGE

AR(p*)
DI(p*)
IVAR(p*)
DSGE

IGDFM(r*;q*)

Output Growth

If h=1:

DI(r*) [VAR(p*)

0

0
-1.8290
F2.2254
-0.7404

-1.2156

1.4135
-1.5254
-0.7364

1.9591

-0.6513

-0.0512
0.3839
-1.6083
-0.9811
1.8207

drDSGE

AR(p*)
DI(p*)
VAR(p*)
DSGE

IGDFM(r*;q*)

-1.8882

If

0

0
-1.7965
-1.6713
1.6143

-1.3356

0.3398
-1.5807
-0.8915

1.8121

-0.8755

-0.1642
0.1482
-1.9174

-2.3896
0.8046

drDSGE

-1.8882

If

0

0
-1.7394
-1.6256
1.5060

-0.6091

0
0.2473
-1.8859
-2.2422
0.9602

-1.0103

-0.2698

-1.9223
F2.4234
1.2034

-0.7691

-0.2698

0

0

0
0.9709
1.8507
1.2017

1.8781
1.6017

oo o w

1.6460
1.7693
2.1278

1.6847
1.9475
2.1278

DSGE |GDFM(r*;q*)

0 0

0 0

0 0

0 0
2.3574 0
2.1941] -2.1765

0 0

0 0

0 0

0 0
2.0129 0
2.1451] -1.9872

0 0

0 0

0 0

0 0
1.8888 0
1.9126| -2.3176

0 0

0 0

0 0

0 0
2.6667 0
2.4166, -2.5455

Mean
2.6920

AR (p*)
0

2.6646

1.3368

1.8728
2.4421
3.3779

-0.0862
0.0836
2.0804

2.5034

1.0870

2.0203
1.9513
0.7002

2.5035

2.7669

0
0.7181
-0.5918
0.6524
1.2880

2.5382

1.1756
1.8409
0.1158
3.1769

2.5476

Inflation

I
DI(r*)
0
0
-1.1656
-1.1691
1.4511

-0.9985

If

-0.8532

-0.0292
0.9917

-0.9813

0
1.2537
-0.6590
1.9926

1.5614
3.2154

0.7413
2.5985

If
0
0
-1.0122
0.9056
-0.1877

1.9798

-0.2215

1.7187
-0.1774
3.8593

0
2.0849
-0.1059
3.0489

-1.2946
1.4927

-0.0143

5.1879

0.2202
4.8805

F2.1764

1.9801

h=1:
VAR(p*)

0

0

0
0.1227
1.6775
0.1459

h = 4:
0
0

0
0.7443
1.0974

2.5111

1.7108
0.2105
3.7598

IGDFM(r*;q*)

o o O

0
0.7235

o O oo

2.0198

o O O

0
-0.9626

-1.5322

2.0223

o o O

0
F2.1933

o O oo

3.2433

4.0131

Table 4.6: This table contains the results of pairwise tests of equal unconditional predictive accuracy
of alternative forecasting models using a quadratic loss function. The entries in the table are the
test-statistic of equal unconditional predictive ability for the methods in the corresponding row and
column. A positive (negative) entry indicates that the model in row is able to produce a significant
lower (higher) mean squared forecast error than the corresponding model in column. The entries in
bold indicate test-statistics that are significant at 5% level. The entries in underlined bold indicate
test-statistics that are significant at 1% level. For example, for output at twelve step ahead, the
GDFM forecasts outperforms significantly at 1% level the drDSGE forecasts.
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(Clark and McCracken (2001) and Clark and McCracken (2010)), we need to interpret the

conditional preditive ability test instead.

|

Test of equal conditional predictive ability (GW test)

AR(p*)
DI(p*)
VAR(p*)
DSGE
GDFM (r*,q*)

drDSGE

AR(p7)
DI(p*)
IVAR(p*)
DSGE
GDFM(r*,q*)

drDSGE

AR(p*)
DI(p*)
VAR(p*)
DSGE
GDFM (r*,q*)

drDSGE

AR(p*)
DI(p*)
IVAR(p*)
DSGE

GDFM(r*,q*)

8.2512
5.1260
3.7613
2.1322
1.6440
2.1523

0.5407
2.3150
3.2082
2.9597
3.2138
3.2021

2.6710
1.3636
3.6685
3.1501
0.6531
5.2544

5.2311
3.9721
8.9385

Mean |AR(p*)

0
5.0767

3.2106 7.5801

1.5354
1.8884
1.6877

0
2.8183
2.5118
2.2769
3.3985
2.5847

0
1.3212
4.1270
3.4670
0.4712
4.8821

0
1.7715
9.3304

Output Growth

If h=1:

0
0

-8.2113
0.6445
F8.1921

-4.0286
-2.6651

1.9478
-2.4217

-3.6573
-3.8994
2.1853
-5.8621

0
0
-8.3023

6.0661
0.3319

drDSGE

6.4923

5.9044
1.4539

-5.7588
1.2591

5.9872

F6.5821

DI(r*) VAR(p*)

0

0

0
5.2770
8.6058
8.5967

3.4087
4.2912
4.2517

2.1355
2.3374
6.9063

If h=12:

0

0

0
7.4603

8.3659
6.0567

Mean
15.7459

9.5378
12.0002

13.8996

21.6968

12.2570

2.9308
8.0435
4.8213
4.8167
20.9087|

6.2033

15.3335

13.5552

3.5745
7.4830
23.4710

9.7838

10.0696
11.7056

15.1905

AR(p*)

0.7863
5.8369
4.3562
4.6374
6.0129

1.4455
1.7167
2.4049
2.0743
7.4279

7.1261
0.2973
3.5709
4.4193
8.1772

0
7.8748
11.9503

Inflation
Ifh=1:
DI(r*) VAR (")
0 0
0 0

0.7711 0

0.5602| 5.8350

3.0911| 4.9811
0.6032| 4.8701
If h = 4:

0 0
0 0

1.0193 0

0.9501| 1.5464

1.1859| 1.2578
4.5611|6.6037
Ifh=28
0 0
0 0

2.3745 0

2.7996| 1.2484

4.0713
5.8033

o O O

0
3.6244
6.5534

o O O

0
2.1791
7.9253

1.3812| 2.3919
5.991811.5446
If h=12:

0 0
0 0

2.1421 0

11.5110

DSGE lapFM(r#*,q%)

0 0

0 0

0 0

0 0
9.2396 0
8.1265 -7.9321

0 0

0 0

0 0

0 0
3.0909 0
6.0154 -2.9321

0 0

0 0

0 0

0 0
3.7045 0
6.4113| -4.9321

0 0

0 0

0 0

0 0
6.2057| 0
8.3445| -6.9355

8.0811

18.8901

5.6169
1.0432

0.8479| 1.2841
1.8838| 1.8486

9.0332

o O O

0
4.2154

7.010520.3044

IGDFM(r*,q*)

o O oo

5.9851

o o o o

0
8.7679

o O oo

0

8.2211

11.6031

Table 4.7: This table contains the results of pairwise tests of equal conditional predictive accuracy
of alternative forecasting models using a quadratic loss function. The entries in the table are the test-
statistic of equal conditional predictive ability for the methods in the corresponding row and column.
A positive (negative) entry indicates that the model in row is able to produce a significant lower
(higher) mean squared forecast error than the corresponding model in column. The entries in bold
indicate test-statistics that are significant at 5% level. The entries in underlined bold indicate test-
statistics that are significant at 1% level. For example, for inflation at one step ahead, the drDSGE
forecasts outperforms significantly the AR(p*) forecasts.

Conditional Predictive Ability Test: Regarding the output growth, the test reveals on

one hand that the GDFM is able to generate significantly better forecasts than DSGE models

in both short and long run. On the other side, the DI model is able to outperforms signifi-

cantly the DSGE models only in the short run. Therefore, is confirmed the superiority of the

drDSGE in outperforming significantly the regular DSGE in the short, medium and long run.
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Regarding the inflation, we discovered the most important result of the dissertation: only
the drDSGE outperforms significantly all other competitive models in forecasting inflation
in the long run. In other words, in the long run significant forecasts can be obtained only
by combining a DSGE model with a static factor model. It means that exploiting more
information on many macroeconomic time series, through the drDSGE, is important not only

to obtain more accurate estimates, but also to get significant better forecasts.
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Conclusion

We conducted several out-of-sample forecasting experiments to assess the forecasting power
of factor models relatively to DSGE models. We found three main conclusions. First, DSGE
models are significantly outperformed by the GDFM in forecasting output growth in both
short and long run, while the static factor model outperforms significantly DSGE models
only in the short run. Second, the most surprising result of the dissertation, we discovered
that only the drDSGE outperforms significantly all other competitive models in forecasting
inflation in the long run. This evidence falls out with both Wang (2009) who found that the
regular DSGE of Del Negro and Schorfheide (2004) was able to generate significant better
forecasts for inflation in the long run, and Paccagnini (2011) where hybrid models are found
to forecast poorly. Therefore, the drDSGE outperforms significantly the regular DSGE in
forecasting both output growth and inflation, confirming that exploiting more information
on many macroeconomic time series, through the drDSGE, is important not only to obtain
more accurate estimates, but also to get significant better forecasts. Third, in most cases, the
unrestricted VAR represents the worse forecasting model, suggesting that this model should
not be used as benchmark model in forecasting comparisons.

Given the wide variety of DSGE models in the literature, this dissertation should not be
understood as a final research into the relative predictive ability of DSGE models relatively to
factor models, but it should encourage further research in this topic. Our results raise several
issues for future research. In our view four issues are preminent. First, we have shown that
forecasting results vary according to the type of DSGE considered, then future research should
consider a wider range of DSGE models with alternative structural restrictions. Second,
being the drDSGE a static model, it would be useful to generalize its representation allowing
state variables to be loaded with leads and lags. It might raise further forecasting gains.
Third, we have estimated factor models assuming linearity but linearity is often not prevalent

in the data-set. Then, it would be useful to introduce nonlinear dynamic factor models.
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Fourth, throughout the dissertation we assumed weakly stationarity time series. Although
data-set differentiation and standardization achieve stationary in most cases, this is a strong

assumption that should be relaxed.
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Appendix A:

the data-set used

This appendix gives an overview of the dataset used to construct the factors. The data are
presented in the following ordering: series number, series mnemonic, series description and
transformation code. The transformation codes are 1 = no transformation, 2 = first difference,
3 = first difference of logs, 4 = second difference of logs. All price series are obtained from
Moody’s Economy and all other series are obtained from Datastream. The series mnemonics
and descriptions are taken directly from the associated sources. The interest rate spreads
are calculated using the average federal funds rate obtained from Moody’s Economy. The
abbreviations appearing in the series descriptions are sa/sadj = seasonally adjusted, cura =

current prices, seasonally adjusted, vola = volumn index, seasonally adjusted.

Table 8: The data-set used

Mnemonic Description Transformation

Prices

1 cpiuaa_us cpi: urban consumer apparel, (1982-84=100, sa) 4
2 cpiuac_us cpi: urban consumer commodities, (1982-84=100, sa) 4
3 cpiuad_us cpi: urban consumer durables, (1982-84=100, sa) 4
4 cpiuam_us  cpi: urban consumer medical care, (1982-84=100, sa) 4
5 cpiuas_us cpi: urban consumer services, (1982-84=100, sa) 4
6 cpiuat_us cpi: urban consumer transportation, (1982-84=100, sa) 4
7 cpiull us cpi: urban consumer all items less food, (1982-84=100, sa) 4
8 cpiul2 us cpi: urban consumer all items less shelter, (1982-84=100, sa) 4
9 cpiulb_us cpi: urban consumer all items less medical care, (1982-84=100, sa) 4
10 ppispl000_us ppi: stage of processing crude materials, (index 1982=100, sa) 4
11 ppisp2000 us ppi: stage of processing intermediate materials, (index 1982=100, sa) 4
12 ppisp3000 us ppi: stage of processing finished goods, (index 1982=100, sa) 4
13 ppisp3100 us ppi: stage of processing finished consumer goods, (index 1982=100, sa) 4
Consumption

14 uscdtan_b pce durables, new autos (ar) cura 3
15 uscondurb personal consumption expenditures durables (ar) cura 3
16 usconndrb personal consumption expenditures nondurables (ar) cura 3
17 usconsrvb personal consumption expenditures services (ar) cura 3
18 usperconb personal consumption expenditures (ar) cura 3
Employment

19 usem21 o employed mining vola 3
20 usem23 o employed construction vola 3
21 usem42 o employed wholesale trade vola 3

. continued on next page
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Table 8 ... continued from previous page

Mnemonic Description Transformation
22 usem8l o employed otherservices vola 3
23 usemig o employed government vola 3
24 usemimd o  employed durable goods vola 3
25 usemip o employed totalprivate vola 3
26 usemir o employed retail trade vola 3
27 usemit o employed trade, transportation, utilities vola 3
28 usempallo employed nonfarm industries total (payroll survey) vola 3
29 usempg o employed goodsproducing vola 3
30 usempmano employed manufacturing vola 3
31 usemps_o employed serviceproviding vola 3
32 usemptoto total civilian employment vola 3
33 ushlpwadq help wanted proportion of labor markets w/rising wantad vola 1
34 usun_totq unemployment rate sadj 2
35 usundurne average durationof unemployment (weeks) vola 1
36 usunwl4d q  unemployed distribution 5 to 14 weeks sadj 1
37 usunwlb q  unemployed distribution 15 weeks over sadj 1
38 usunw26 q  unemployed distribution 15 to 26 weeks over sad]j 1
39 usunwbd_q unemployed distribution less than 5 weeks sadj 1
40 usvactoto index of help wanted advertising vola 3
Housing
41 ushbrm_o housing started midwest (ar) vola 3
42 ushbrn_o housing started northeast (ar) vola 3
43 ushbrs o housing started south (ar) vola 3
44 ushbrw_o housing started west (ar) vola 3
45 ushous o new private housing units started (ar) vola 3
Hours and Earnings
46 ushkim o avg wkly hours manufacturing vola 3
47 ushxpmano  avg overtime hours manufacturing vola 3
48 uswr23 b avg hrly earn construction cura 4
49 uswrim b avg hrly earn manufacturing cura 4
Output and Income
50 usipmbuqg indl prod business equipment vola 3
51 usipmcogg indl prod consumer goods vola 3
52 usipmducg indl prod durable consumer goods vola 3
53 usipmfgsg industrial production manufacturing (sic) vola 3
54 usipmfing indl prod final products, total vola 3
55 usipmmatg indl prod materials, total vola 3
56 usipmnocg indl prod nondurable consumer goods vola 3
57 usipmprog indl prod final products nonindustrial supplies vola 3
58 usiptot g industrial production total index vola 3
59 usiumfgsq indl utilizationmanufacturing (sic) sadj 1
60 uspdispib disposable personal income (ar) cura 3
61 uspersinb personal income (ar) cura 3
Interest Rates
62 uscrbbaa corporate bond yield moody’s baa, seasoned issues 2
63 uscrbyld corporate bond yield moody’s aaa, seasoned issues 2
64 ustrb3av treasury bill secondary market rate on discount basis 3 month 2
65 ustrcnl0 treasury yield adjusted to constant maturity 10 year 2
66 ustrcnl treasury yield adjusted to constant maturity 1 year 2
67 ustrcnd treasury yield adjusted to constant maturity 5 year 2
68 usytb6sm treasury bill secondary market rate on discount basis 6 month 2
69 ussfycrbyld  spread uscrbyld federal funds 1
70 ussfycrbbaa  spread uscrbbaa federal funds 1
71 ussfytrb3av ~ spread ustrb3av federal funds 1
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Table 8 ... continued from previous page

Mnemonic Description Transformation

72 ussfyytb6sm spread usytb6sm federal funds 1
73 ussfytrcnl  spread ustrenl  federal funds 1
74 ussfytrcnl0  spread ustrenlO federal funds 1
75 ussfytrcn5  spread ustrenb  federal funds 1
Other Time Series

76 usmO_b monetary base cura 4
77 usnbrrsab nonborrowed reserves of depository institutions cura 3
78 uspmchin chicago purchasingmanager diffusion indexinventories(sa) 1
79 uspmchlt chicago purchasingmanager diffusion indexdeliveries(sa) 1
80 uspmchp chicago purchasingmanager diffusion indexprodn. (sa) sadj 1
81 ustotrsab total reserves of depository institutions cura 3
82 usexpgdsb exports f.a.s. cura 3
83 uscnfbusq ism purchasing managers index (mfg survey) sadj 1
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