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Abstract

This paper aims to put dynamic stochastic general equilibrium (DSGE) forecasts
in competition with factor models (FM) forecasts considering both static and dy-
namic factor models as well as regular and hybrid DSGE models. The empirical
study shows three main conclusions. First, DSGE models are significantly outper-
formed by the generalized dynamic factor model (GDFM) in forecasting output
growth in both short and long run, while the diffusion index (DI) model outper-
forms significantly DSGE models only in the short run. Second, the most surprising
result of the paper, we discovered that only the hybrid DSGE model outperforms
significantly all other competitive models in forecasting inflation in the long run.
This evidence falls out with recent papers that found just regular DSGE models able
to generate significant better forecasts for inflation in the long run as well as papers
where hybrid DSGE models are found to forecast poorly. Third, in most cases,
the unrestricted vector autoregressive (VAR) model represents the worse forecast-
ing model. Although our results are consistent with the prevalent literature who
gives to factor models the role to forecast output variables and to DSGE models
the role to forecast monetary and financial variables, this research documents that
exploiting more information on many macroeconomic time series, through hybrid
DSGE models, is important not only to obtain more accurate estimates, but also
to get significantly better forecasts.
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1 Introduction

Recent years have seen rapid growth in the availability of economic data. Statisticians, economists

and econometricians now have easy access to data on many hundreds of variables that provide

the information about the state of the economy. Coinciding with this growth in available data,

two main new econometric models that exploit this wider information have been proposed:

factor models and Dynamic Stochastic General Equilibrium (DSGE) models. Factor models

have been successfully applied when we have to deal with: construction of economic indicators

(Altissimo et al. (2010)), business cycle analysis (Gregory et al. (1997) and Inklaar et al.

(2003)), forecasting (Stock and Watson (2002a,b) and Forni et al. (2000)), monetary policy

(Bernanke and Boivin (2003) and Bernanke et al. (2005)), stock market returns (Ludvigson and

Ng (2007)) and interest rates (Lippi and Thornton (2004)), while DSGE models have been suc-

cessfully applied for: forecasting (Smets and Wouters (2002) and Smets and Wouters (2007)),

estimation accurancy (Boivin and Giannoni (2006) and Kryshko (2009)), credit and banking

(Gerali et al. (2008)), interest term of structure analysis (Amisano and Tristani (2010)) and

monetary policy (Boivin and Giannoni (2008)).

Among all these applications, the recent economic global crisis has pointed out how fore-

casting well is central. For this reason, the main objective of the paper is to provide a detailed

forecasting evaluation between these two econometric models taking into account of the recent

developments in both factor and DSGE modelling. The novel of this study is the expanded

range of forecasting models treated. Infact, our forecasting competition considers not only static

factor models and regular DSGE models but also dynamic factor models, such as, the so-called

Generalized Dynamic Factor Model (GDFM) of Forni et al. (2000) and hybrid DSGE models,

such as, the so-called Data-Rich DSGE (drDSGE) following Boivin and Giannoni (2006) and

Kryshko (2009). The paper is motivated by the fact that although there are some forecasting

discussions on both dynamic factor model and regular DSGE individually, there is no attempt

in the literature, to carry out a strong forecasting evaluation between dynamic factor model

and hybrid DSGE models. In particular, what is missing is a forecasting comparison between

the GDFM and the drDSGE.

The empirical study shows three main conclusions. First, DSGE models are significantly
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outperformed by the GDFM in forecasting output growth in both short and long run, while

the static factor model outperforms significantly DSGE models only in the short run. Second,

the most surprising result of the thesis, we discovered that only the drDSGE outperforms

significantly all other competitive models in forecasting inflation in the long run. This evidence

falls out with both Wang (2009) who found that a regular DSGE was able to generate significant

better forecasts for inflation in the long run, and Paccagnini (2011) where hybrid models are

found to forecast poorly. Therefore, the drDSGE outperforms significantly the regular DSGE

in forecasting both output growth and inflation, confirming that exploiting more information

on many macroeconomic time series, through the drDSGE, is important not only to obtain

more accurate estimates, but also to get significant better forecasts. Third, in most cases, the

unrestricted VAR represents the worse forecasting model.

This work is closely related with Wang (2009), but while we share some of the features of

his study, our analysis is greatly expanded. First, we do not use the simple DSGE model of

Del Negro and Schorfheide (2004) but the most elaborated DSGE model of Smets and Wouters

(2007). Second, among factor models, we consider also the GDFM of Forni et al. (2000) whose

forecasting performance is documented to be superior than the static factor model of Stock

and Watson (2002a,b). Third, among DSGE models, we put side by side the regular DSGE

model of Smets and Wouters (2007) with its representation in terms of drDSGE of Boivin and

Giannoni (2006).

The remainder of the paper is organized as follows. The next section presents the forecasting

models in competition. Section (3) describes the out-of-sample forecasting experiment as well

as the estimation techniques and the test of equal predictive ability used. Section (4) discusses

the forecasting results and Section (5) concludes.

2 Forecasting models

This section presents the forecasting models used in our out-of-sample forecasting experiment.

We open presenting the autoregressive forecasting model, then we discuss how forecasts have

been generated using the vector autoregressive model, the diffusion index model, the generalized

dynamic factor model, the regular DSGE model and the Data-Rich DSGE model. We have
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considered also the unconditional mean of the series of interest as point forecast predictor, but

being this case quite straightforward, we prefer discussing directly the other forecasting models.

2.1 Forecasting with the AR model

Let yt be our observed stationary time series at time t. The most simple way to forecast yt is

assuming that it admits an autoregressive process of order p (hereafter AR(p)):

yT = α + δ(L)yT + εT (1)

where yT denotes the time series of interest at the end of the estimation sample, α denotes the

constant, δ(L) = 1 − δ1L − . . . − δpLp denotes the autoregressive lag polynominal of order p

fixed using the Bayesian Information Criterion (BIC) that loads the past history of yT , while

εT is the stochastic error term. The autoregressive forecasting model becomes:

yART+h = α + δh(L)yT + εT+h (2)

where δh(L) = 1−δ1L−h− . . .−δpLp−h denotes the autoregressive lag polynominal δ(L) shifted

h-steps ahead, while εT+h denotes the stochastic error term shifted h-steps ahead. The AR

forecasts has been generated by estimating the previous equation by OLS for each forecasting

horizon. What we get is:

ŷART+h|T = α̂ + δ̂h(L)yT

where ŷART+h|T is the desidered point forecast predictor used in Equation (27)

2.2 Forecasting with the VAR model

Let ynt be the n-dimensional vector of observed stationarity time series variables. If ynt admits

a vector autoregressive process of order p (hereafter VAR(p)), we have:

ynT =

p∑
j=1

Ajyn;T−j + εT εT ∼ iid N (0; Σε) (3)
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where ynT denotes our observed time series variables at the end of the estimation sample, Aj

are (n× n) matrices of parameters and εT is the n-dimensional white noise process at the end

of the estimation sample. Being our time series of interest into the set of observed time series

variables, indeed yt ∈ ynt, the VAR forecasting model is:

yV ART+h = α + δh(L)yT + γ ′h(L)ỹT + εT+h (4)

where ỹT denotes the vector of other observed time series variables in ynt and γ ′h(L) = 1 −

γ1L
−h−. . .−γpLp−h denotes the autoregressive lag polynominal shifted h steps ahead that loads

the past hystory of ỹT . The VAR forecasts have been generated by estimating the previous

equation by OLS for each forecasting horizon. What we obtain is:

ŷV ART+h|T = α̂ + δ̂h(L)yT + γ̂ ′h(L)ỹT

where ŷV ART+h|T is the desidered point forecast predictor used in Equation (27).

2.3 Forecasting with the Diffusion Index Model

Let xNt = (x1t, x2t, . . . , xNt)
′ be the N -dimensional vector (with N large) of all observed sta-

tionary time series variables in our data-set. Under the so-calledDiffusion Index (DI) model

or static factor model of Stock and Watson (2002a,b), xNt can be decomposed as:

xNT︸︷︷︸
(N×1)

= Λ︸︷︷︸
(N×r)

FNT︸︷︷︸
(r×1)

+ ξNT︸︷︷︸
(N×1)

= χNT + ξNT (5)

FNT = AFN ;T−1 + εNT εNt ∼ iid N (0; Qε) (6)

ξNT = ΨξN ;T−1 + vNT vNT ∼ iid N (0; Rv) (7)

where xNT denotes the dataset at the end of the estimation sample, FNT denotes the vector of r

static common factors, Λ denotes the matrix of static factor loadings, χNT = ΛFNT denotes the

vector of static common components while ξNT denotes the vector of idiosyncratic components.

We assumed diagonal variance-covariance matrices Qε and Rv. The DI forecasting model
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can be written as:

yDIT+h = α + β′F̂NT + δh(L)yT + εT+h h = 1; . . . ; 12 (8)

where F̂NT are the estimated static principal components factors while β′ denotes a properly

chosen row of the matrix ΛN . The DI forecasts have been generated by estimating the previous

equation using OLS for each forecasting horizon:

ŷDIT+h|T = α̂ + β̂′F̂N ;T + δ̂h(L)yT h = 1; . . . ; 12

where ŷDIT+h|T is the desidered point forecast predictor used in Equation (27).

2.4 Forecasting with the GDFM

Following Forni et al. (2000), if xNt admits a generalized dynamic factor model (GDFM), the

measurement equation takes the following form:

xNT︸︷︷︸
(N×1)

= Λ(L)︸ ︷︷ ︸
(N×q)

fNT︸︷︷︸
(q×1)

+ ξNT︸︷︷︸
(N×1)

= χ̃NT + ξNT (9)

where Λ(L) = Λ0 + Λ1L + . . . + ΛsL
S denotes the matrix of dynamic factor loadings, fNT

denotes the vector of q dynamic factors with r = q(s+ 1), χ̃NT = Λ(L)fNT denotes the vector

of dynamic commmon components while ξNT denotes the vector of idiosyncratic components.

The GDFM forecasting model can be written as:

yGDFMT+h = α + β′(L)̂fNT + δh(L)yT + εT+h h = 1; . . . ; 12 (10)

where f̂NT are the estimated dynamic principal components factors using the two step estimation

procedure of Forni et al. (2005), while β′(L) a properly chosen row of ΛN(L). The GDFM

forecasts have been generated by estimating the previous equation by OLS for each forecasting

horizon:

ŷGDFMT+h|T = α̂ + β̂
′
(L)̂fN ;T + δ̂h(L)yT
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where ŷGDFMT+h|T is the desidered point forecast predictor used in Equation (27)

2.5 Forecasting with the regular DSGE

The DSGE of Smets and Wouters (2007) is a medium-scale New Keynesian model with price

and wage rigidities, capital accumulation, investment adjustment cost, and habit formation.

This model, as every DSGE model, delivers a linearized solution which is a VAR process for

DSGE state variables:

ynt︸︷︷︸
(n×1)

= D(ϑ)︸ ︷︷ ︸
(n×r)

st︸︷︷︸
(r×1)

(11)

st︸︷︷︸
(r×1)

= G(ϑ)︸ ︷︷ ︸
(r×r)

st−1︸︷︷︸
(r×1)

+ H(ϑ)︸ ︷︷ ︸
(r×re)

et︸︷︷︸
(re×1)

et ∼ N (0; Qe(ϑ)) (12)

where: ynt denotes the n-dimensional vector of DSGE observed time series, st denotes the

r-dimensional vector of DSGE state variables, ϑ denotes the vector of DSGE deep parameters

that we wish to estimate, et denotes the re-dimensional vector of DSGE exogenous shocks with

diagonal variance-covariance matrix Qe(ϑ), while D(ϑ), G(ϑ) and D(ϑ) denote matrices of

parameters as a function of the deep parameters vector ϑ. As in Kryshko (2009), in order to

interpret the r unobserved static factors as r state variables, we assumed that st has the same

dimension of Ft.

The regular DSGE forecasts have been generated using the state space representation given

in Equation (11) and Equation (12) with a measurement error. The point forecast predictors

has been formed by iterating on the last estimate of the unobserved state using the state

equation Equation (12) and then backing out the corresponding value for the observable using

the measurement equation Equation (11). We do this using Bayesian estimation under the

Metropolis-Hastings algorithm as described from Step 1a to Step 2a of Section (3.2.3). The

mean of the posterior forecast distributions is taken as the point forecast of the relevant variable.

The Brooks and Gelman (1998) test has shown that all Markov chains for each estimation

sample have converged nicely.
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2.6 Forecasting with the drDSGE

This section describes the so-called Data-Rich DSGE (drDSGE) of Boivin and Giannoni (2006)

used in our out-of-sample forecasting experiment. We begin with its representation theory,

then we discuss its newness respect to regular DSGE, and finally we present our forecasting

evaluation.

2.6.1 Representation Theory

The idea of drDSGE is to extract the common factor vector Ft from large panel of macroeco-

nomic time series xNt and to match the state variable vector st of the model to the extracted

common factor Ft (this matching generates the so-called Data-Rich Environment), where the

law of common factors Ft is governed by the DSGE linearized solution. The key assumption of

their approach is the separation betweeen observed or data indicators and theoretical or model

concepts :

• the data indicators or simply indicators are the observed time series variables in xNt;

• the theoretical concepts are time series variables in the vector xNt observed by econome-

tricians or central banks, such as: employment, inflation or productivity shocks, that are

assumed to be not properly measured by a single data series, but they are merely imper-

fect indicators of the observed time series. For example, the employment is imperfectly

measured because there are discrepancies between its two main sources: one obtained

from the establishment survey and the other from the population survey.

Their approach allows: first, to explore a richer amount of information by combining a DSGE

model with a static factor model; second, to introduce imperfect information on DSGE es-

timation which is particular useful to characterize the desirable monetary policy (Boivin and

Giannoni(2008)); third, to interpret structurally the latent factors; fourth, to avoid the so-called

Lucas critique.

The drDSGE forecasts have been generated iterating its state space representation. Let st =
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[y′nt s′t]
′ be the vector collecting all variables in a given DSGE model, by definition:

st ≡

ynt

st

 =

D(ϑ)

I

 st (13)

Representing the vector of common factors Ft as a subset of the variables in st, we can define:

Ft ≡ Fst = F

D(ϑ)

I

 st (14)

where F is a matrix that generates the common factors Ft from the vector st of all DSGE

variables. Now, by substituting Equation (14) into Equation (5), we obtain the static drDSGE

observation equation:

xt︸︷︷︸
(N×1)

= Λ︸︷︷︸
(N×r)

Ft︸︷︷︸
(r×1)

+ ξt︸︷︷︸
(N×1)

⇒ xt︸︷︷︸
(N×1)

= Λ(ϑ)︸ ︷︷ ︸
(N×r)

st︸︷︷︸
(r×1)

+ ξt︸︷︷︸
(N×1)

(15)

Then, the drDSGE state space representation is:

xt = Λ(ϑ)st + ξt (16)

st = G(ϑ)st−1 + H(ϑ)et et ∼ N (0; Qe(ϑ)) (17)

where ξt can be interpreted as serially correlated measurement errors. Adding their law of

motion, as we did in Equation (7), we obtain the drDSGE static representation:

xt = Λ(ϑ)st + ξt (18)

st = G(ϑ)st−1 + H(ϑ)et et ∼ N (0; Qe(ϑ)) (19)

ξt = Ψξt−1 + vt vt ∼ N (0; Rv) (20)

where Λ(ϑ)st can be interpreted as the static DSGE common component of xt since the state

variables st are loaded in xt just in a contemporaneoulsy way. Otherwise, we might assume

that the structural shocks contained st may impact the data in the present and in the past. In
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this case, the associated drDSGE representation becomes a dynamic representation:

xt = B(L)

ut

ζt

+ ξt = B(L)st + ξt (21)

ξt = Ψξt−1 + vt where: vt ∼ N (0; Rv(ϑ)) (22)

where B(L) are one-sided filters in the lag operator L, and st = [ut ζt]
′ can be interpreted

as the dynamic (primitive) factors associated to the state variables or static factors st. This

representation is not used by Boivin and Giannoni (2006) and it remains an open part of the

empirical research.

2.6.2 Regular DSGE versus drDSGE

In the drDSGE representation, the matrix Λ(ϑ) in Equation (18) plays the key role. Infact,

in a regular DSGE model, the model concepts in st are assumed to be perfectly measured by

a single data indicator in xNt, so that the matrix Λ(ϑ) is a (r × r) identity matrix, while

the drDSGE model allows many-to-many relations between data indicators and theoretical

concepts, so that the matrix Λ(ϑ) becomes (N×r) with (N >> r). It permits to brige the gap

between data indicators and theoretical concepts. Therefore, to separate key DSGE variables

from no-key DSGE variables, Boivin and Giannoni (2006) have proposed a partition of the data

indicators in xNt into two groups of variables:

• the core series xFt ∈ xNt which correspond to only one model concept;

• the no-core series xSt ∈ xNt which are related linearly with more than one model concept.

In other words, the core series are time series in xNt that cannot be expressed as a linear

combination of model concepts in st, while the no-core series are time series in xNt that can

be expressed as a linear combination of more than one model concept in st. The state space

10
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representation becomes:


xFt

−−−

xSt


︸ ︷︷ ︸

xt (N×1)

=


Λ(ϑ)F

−−−

Λ(ϑ)S


︸ ︷︷ ︸
Λ(ϑ) (N×r)

st︸︷︷︸
(r×1)

+


ξFt

−−−

ξSt


︸ ︷︷ ︸
ξt (N×1)

(23)

st︸︷︷︸
(r×1)

= G(ϑ)︸ ︷︷ ︸
(r×r)

st−1︸︷︷︸
(r×1)

+ H(ϑ)︸ ︷︷ ︸
r×re)

et︸︷︷︸
(Ne x 1)

et ∼ N (0; Qe(ϑ)) (24)

where Λ(ϑ)F is the core matrix loadings that contains just one non-zero element for each row,

while the matrix Λ(ϑ)S is the no-core matrix loadings that contains more than one non-zero

element for each row. The measurement errors are assumed to follow:

ξt︸︷︷︸
(N×1)

= Ψ︸︷︷︸
(N×N)

ξt−1︸︷︷︸
(N×1)

+ vt︸︷︷︸
(N×1)

vt ∼ N (0; Rv) (25)

where the matrices Qe(ϑ), Rv and Ψ are assumed to be diagonal. The essential feature of

the drDSGE is that the panel dimension of data set N is much higher than the number of

DSGE model states r (with: N >> r). Respect to the static factor model representation (from

Equation (5) to Equation (7)) now: the law of motion of the unobserved factors is now governed

by a DSGE model solution and some factor loadings are restricted by the economic meaning

of the DSGE model concepts.

2.6.3 Forecasting with the drDSGE

The drDSGE forecasts have been generated by iterating on the last estimate of the unobserved

state using Equation (24) and then backing out the corresponding value for the observable

using the measurement equation Equation (23). We do this using Bayesian estimation under

the Metropolis-within-Gibbs algorithm as described from Step 1b to Step 5b of Section

(3.2.4). The mean of the posterior forecast distributions is taken as the point forecast of the

relevant variable. The Brooks and Gelman (1998) test has shown that all Markov chains for

each estimation sample have converged nicely.
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3 The empirical application

This section discusses our empirical application. We describe the experimental design of our

out-of-sample forecasting experiment as well as the estimation techniques and the test of equal

predictive ability used. All time series variables are transformed in a similar way to Stock and

Watson (2002b) as reported in Appendix A. The forecasting results are reported in the next

section.

3.1 The experimental design and the forecasting metric

The out-of-sample forecasting experiments are organized as follows. We use rolling regressions

with sample size fixed at R = 80 observations to generate forecasts up to h = 12 quarters

ahead for two key US time series varaibles: the output growth and inflation. The models in

competition are: the unconditional mean of the time series, the autoregressive process (AR(p)),

the vector autoregressive process (VAR(p)), the static factor model or diffusion index (DI(r))

model of Stock and Watson (2002a), the generalized dynamic factor model (GDFM(r;q)) of

Forni et al. (2000) and Forni et al. (2005), the regular DSGE of Smets and Wouters (2007)

and its Data-Rich Environment form following Boivin and Giannoni (2006).

The orders p, r and q has been estimated using different ways. The autoregressive order p

has been estimated using the Bayesian Information Criterion (BIC), the number of static factor

model r has been estimated using the procedure of Alessi et al. (2007), while the number of

dynamic factors q has been estimated using the procedure of Hallin and Liška (2007). The

first estimation sample starts from 1959:1 and ends in 1978:4 so that the first forecasting date

is 1979:1. Earlier observations are used to compute the initial growth rates. After all models

have been estimated, the first set of out-of-sample forecasts is computed. Then, sample range

shifts one-step forward to 1959:2-1979:1 in order to compute the second set of forecasts. All

models are fully re-estimated for each rolling sample with estimation procedures described in the

previous chapter. The estimation is performed S = 96 times to obtain a series of forecasts for

each forecast horizon and each model. The last sample is 1973:1-2001:4 and the last forecasting

date is 2004:4.

The metric used to evalute the forecasting performance of alternative forecasting models is

12
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the relative mean squared forecast error (rMSFE), defined as:

rMSFE(m;n)|h = 1−
MSFEm|h
MSFEn|h

(26)

where MSFEm|h and MSFEn|h denote the mean squared forecast error generated from two

different alternative forecasting models at forecasting horizon h. This metric can be interpreted

as gain (or loss) inMSFE of modelm relatively to the model n when it it positive (or negative).

The model m forecast is considered as informative if its rMSFE is larger than zero. The

MSFEs have been constructed in the following way. Let xNT be the finite dataset of N

stationary time series up to time T used in the empirical out-of-sample forecasting experiment

where T = R + s− 1 is the end of each rolling sample s of size R = 80. If yt is our time series

of interest in xNT , the mean square forecast error (MSFE) of yt repect to the i-th forecasting

model has been worked out as:

MSFEi|h = S−1

S∑
i=1

(yT+h − ŷi,sT+h|T )2 (27)

where yT+h denotes the observed stochastic process yt at time T + h, and ŷi,sT+h|T denotes its

unknown point forecast predictor using the i-th forecasting model for the s-th rolling sample.

This metric represents an appropriate tool to measure the forecasting perfomance of DSGE

models as documented by Smets and Wouters (2003), Smets and Wouters (2007), Wang(2009),

Edge et al. (2010) and Edge et al. (2011).

3.2 The Estimation

3.2.1 Diffusion Index estimation

The estimation of Equation (8) requires the estimation of the static factors FT . Stock and

Watson (2002b) have proposed to estimate FT as the r largest static principal components

(SPC) of xNT :

F̂NT = ŜTxNT (28)

13
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where ŜT is the (r×N) matrix of eigenvectors corresponding to the r largest eigenvalues of the

estimated contemporaneous variance covariance matrix of xNT , indeed Γ̂x
0 = T−1

∑T
t=1 xNT,tx

′
NT,t.

The estimator F̂NT of FNT is proved to be consistent even in the presence of time variation in

the factor model. We provide the forecasting results up to r = 7 as well as using an automatic

selection with the BIC.

3.2.2 Generalized Dynamic Factor model estimation

Differently from Stock and Watson(2002b), Forni et al. (2000) have proposed a dynamic es-

timation method based on the spectral density of xNT rather than on its contemporaneous

variance covariance matrix that has: on the one hand, the advantage of exploring the dynamic

structure of the data and needs few dynamic aggregates to approximate the space spanned

by the common factors, and on the other, the drawback of producing a twosided filter of the

observations that makes the method inappropriate for forecasting. This problem was solved

successively by Forni et al. (2005) where they have proposed the one-sided version of their

two-sided filter, which retains the advantages of their dynamic approach but allows observed

variables to be related only with current and past value of the factors.

Their one-sided estimation and forecasting method consists of two steps: in the first step,

they follow Forni et al. (2000) getting estimates of the variance covariance matrices for the

commmon and the idiosyncratic components as the inverse Fourier transform of the spectral

density matrix of the common and idiosyncratic component respectively, then in the second

step, they use these estimates to construct r contemporaneous linear combination of the obser-

vations with the smallest idiosyncratic common variance ratio. In other words, they compute

the eigenvalues and the eigenvectors of the couple (Γ̂χN0(θ); Γ̂
ξ
N0(θ)), then, ordering the eigen-

values in descending order and taking the eigenvectors corresponding to the r largest ones,

they obtain the so-called generalised principal components that allow efficient estimates and

forecasts of the common component of xNT without the need of future values. Practically, the

generalized eigenvalues are the solutions of det(Γ̂χN0 − vjΓ̂
ξ
N0) = 0 for j = 1, 2, . . . , r, while the

corresponding generalized eigenvectors are the weights ẑj that must satisfy:

ẑjΓ̂
χ
N0 = v̂j ẑjΓ̂

ξ
N0 for j = 1; 2; . . . ; r (29)

14
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under the normalization conditions: ẑlΓ̂
χ
N0ẑ

′
j = 1 for l = j and ẑlΓ̂

χ
N0ẑ

′
j = 0 for l 6= j. Then

ordering the eigenvalues v̂j in descending order and taking the eigenvectors corresponding to

the r largest eigenvalues, they estimate the dynamic factors as:

f̂NT = ẐTxNT (30)

where ẐT is the (q × N) matrix of generalized eigenvectors corresponding to the r largest

generalized principal components. The order r is fixed using the Alessi et al. (2009) criteria,

while the order q is fixed using the Hallin and Liška (2007) criteria.

3.2.3 Regular DSGE estimation

Let xT = {x1, . . . ,xT} be the data-set up to time t = T and let sT = {s1, . . . , sT} the states

up to time t = T . As suggested by the literature, we estimate the system formed by Equation

(11) and Equation (12) plus a measurement error for the unknown parameter vector ϑ using

Bayesian estimation. Because of the normality of the structural shocks et , the system is a

linear Gaussian state space model where the likelihood function of data p(xT |ϑ) can be

evaluated using the Kalman filter. The estimation procedure is organized as follows:

step 1a: Set the prior distribution p(ϑ), which is the distribution of ϑ that the researcher have

in mind before observing the data.

step 2a: Convert the prior distribution to the posterior distribution p(ϑ|xT ), which is the

distribution of ϑ conditional on the data xT , using the Bayes theorem:

p(ϑ|xT ) =
p(xT |ϑ)p(ϑ)∫
p(xT |ϑ)p(ϑ) dϑ

(31)

where p(xT |ϑ) denotes the likelihood function of the data given the deep parameter vector.

3.2.4 Data-Rich DSGE estimation

Following Boivin and Giannoni (2006), the state space representation (from Equation (23) to

Equation (25)) represents the starting point to estimate the drDSGE, where the observation

equation can be obtained just by adding observable time series variables to the vector ynt as

15



Sintesi della tesi di dottorato in Econometrics, di Gabriele Palmegiani, discussa presso l’Università LUISS Guido Carli, in data 20 Marzo 2012.

Soggetta a copyright c©. Sono comunque fatti salvi i diritti dell’Università LUISS Guido Carli di riproduzione per scopi di ricerca e didattici, con

citazione della fonte.

core series and/or no-core series. In this paper, we usedCase C of Boivin and Giannoni (2006),

where 21 time series are added as core series and 7 are added as no-core series. This result-

ing system is estimated using Bayesian methods under Markov Chain Monte Carlo (MCMC)

algorithm. For convenience, we divide parameters of the model into two types: the first type

are the deep parameters in vector ϑ, and the second type are the parameters collected by the

state space representation of the model as Ξ = {Λ(ϑ),Ψ,Rv}. Because of the normality of

the structural shocks et and the measurement error innovations vt, the system from Equation

(23) to Equation (25) is a linear Gaussian state space model and the likelihood function

of data p(xT |ϑ,Ξ) can be evaluated using the Kalman filter.

Differently from regular DSGE estimation, now the aim is to estimate the couple (ϑ,Ξ),

rather than just one single unknown vector. The posterior distribution of the couple is:

p(ϑ,Ξ|xT ) =
p(xT |ϑ,Ξ)p(ϑ,Ξ)∫

p(xT |ϑ,Ξ)p(ϑ,Ξ) dϑ dΞ
(32)

where p(ϑ,Ξ) denotes its prior distribution, while p(ϑ,Ξ|xT ) denotes its likelihood function.

In order to generate draws from the posterior distribution p(ϑ,Ξ|xT ), since it is not directly

tractable, we divide it into the following four conditional posterior distributions:

p(Ξ|ϑ,xT ) p(sT |Ξ,ϑ; xT ) p(Ξ|sT ,ϑ; xT ) p(ϑ|Ξ,xT )

and we adopt the Metropolis-within-Gibbs algorithm, wherethe Gibbs sampler generats

draws from joint posterior distribution p(ϑ,Ξ|xT ) by repeating iteratively generation of draws

from conditional posterior distributions p(Ξ|ϑ,xT ) and p(ϑ|Ξ,xT ). To be precise, the main

steps of Metropolis-within-Gibbs algorithm used in drDSGE estimation are:

step 1b: Specify initial values of parameters ϑ(0) and Ξ(0). And set the iteration index g at

g = 1.

step 2b: Solve the DSGE model numerically at ϑ(g−1) based on Sims (2002)’ method and

obtain G(ϑ(g;1)), H(ϑ), and Q(ϑ) in Equation (24).

step 3b: Draw Ξ(g) from p(Ξ|ϑ(g−1),xT ).
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(3.1b) Generate unobserved state variables s
(g)
t from p(sT |Ξ(g−1),ϑ,xT ) using simulation smoother

by DeJong and Shephard (1995).

(3.2b) Generate parameters Ξ(g) from p(Ξ|sT ,ϑ,xT ), using the sampled draw sT (g).

step 4b: Draw deep parameters ϑ(g) from p(ϑ|Ξ(g),xT ) using Metropolis step:

(4.1b) Sample from proposal density p(ϑ|ϑ(g−1)) and, using the sampled draw p(ϑ(proposal)),

calculate the acceptance probability ap as follows:

ap =

[
p(ϑ(proposal)|Ξ(g),xT ) p(ϑ(g−1)|ϑ(proposal))

p(ϑ(g−1)|Ξ(g),xT ) p(ϑ(proposal)|ϑ(g−1))
; 1

]

(4.2b) Accept ϑ(proposal) with probability ap and reject it with probability 1− ap. Set ϑ(g) =

ϑ(proposal) when accepted and ϑ(g) = ϑ(g−1) when rejected.

step 5b: Set the iteration index g = g+1, return to Step 2 up to g = G where G is the number

of MCMC iterations.

Step 4b of this algorithm plays an essential role. Infact, it is important to make the acceptance

probability ap as close to one as possible especially around the mode of the posterior density

p(ϑ|Ξ,xT ) because the same values are sampled consecutively if ap is low. To achieve this

purpose, we should choose the proposal density p(ϑ(proposal)|ϑ(g−1)) that mimics the posterior

density p(ϑ|Ξ,xT ) especially around its mode. This is why we firstly run regular DSGE model

estimation and compute the posterior mode of the DSGE model parameters to obtain initial

value ϑ(0) of Step 1. Then, we generate smoothed state variables s
(0)
t using ϑ(0) and obtain

initial value Ξ
(0)
t from OLS regressions of xt on s

(0)
t . The previous literature sugggest to use

the so-called random-walk MH algorithm (see An and Schorfheide (2007)) as Metropolis step

in Step 4b, where the proposal density ϑ(proposal) is sampled from the random-walk model:

ϑ(proposal) = ϑ(g−1) + τt τt ∼ i.i.d N (0; cH)

where H is the Hessian matrix of the logarithm of the posterior distribution, indeed, −l′′−1
p (ϑ̂)

where lp(ϑ) = ln(p(ϑ|Ξ,xT )), while c is a scalar called the adjustment coefficient, whose choice

will be explained below.
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The merit of using this random-walk proposal is that p(ϑ(g−1)|ϑ(proposal)) = p(ϑ(proposal)|ϑ(g−1)),

so that the acceptance probability ap collapses to:

ap = min
[
f(ϑ(proposal)

f(ϑ(g−1))
; 1

]

which does not depend on the proposal density p(ϑ|ϑ(g−1)). We must, however, be careful for

p(ϑ(proposal)) not to deviate from p(ϑ(g−1) so much because the acceptance probability ap may

be low when those deviate far from each other. This may be achieved by making c low, but

p(ϑ(proposal) may be sampled only from the narrow range if c is too low. In random walk sampler,

the optimal acceptance rate according to Roberts et al. (1997) and Neal and Roberts (2008) is

around 25%, ranging from 0.23 for large dimensions to 0.45 for univariate case. Following the

previous literature, we simply use this random-walk MH algorithm with H = −l′′−1
p (ϑ̂).

For the prior densities, we follow the general approach used for DSGE modelling. We assume

that the exogenous shocks et such as technology shock, preference shocks or monetary shocks

are persistent for their past shocks and their law of motions follow an AR(1) process, such

that: ut = ρut−1 + ςt where the error term ςt is i.i.d. Since the coefficient ρ must be between

zero and one to satisfy the stationary property, their prior densities are assumed to follow

beta distributions, while the variances of the error term ςt are setted up on inverted gamma

distributions. For the other parameters we assumed normal distributions.

3.3 Tests of equal predictive ability

The mean squared forecast error analysis suffers from the lack of significance. For this reason, we

need to quantify the significancy of the observed differences in the rMSFEs between alternative

forecasting models using statistical tests called tests of equal predictive ability. Among all these

tests, we used the conditional predictive ability test of Giacomini and White (2006) (hereafter

GW test), because respect unconditional predictive ability tests can be used with Bayesian

estimation and it has higher power with finite samples.
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3.3.1 Test of equal conditional predictive ability

Let T be the end of the estimation sample. Let ŷT+h,1 and ŷT+h,2 be two alternative forecasts

formulated at time T for the time series of interest h steps ahead. The GW test evaluates the

sequence of out-of-sample forecasts using a loss function in the form LT+h(yT+h, ŷ
i
T+h) with

i = 1, 2. The null hypothesis is:

H0 : E[LT+h(yT+h, ŷ
1
T+h)− LT+h(yT+h, ŷ

2
T+h)|IT ] = E[∆LT+h|T |IT ] = 0 (33)

∆LT+h|T denotes the loss differential series and IT denotes the information set at time T . When

It is the σ-field It = (∅,Ω) and h ≥ 1, the null hyphotesis can be viewed as the Diebold and

Mariano (1995) and West (1996) statistics and the test statistic is:

tGWτ,h =
∆L̄τ
σ̂τ/
√
τ

(34)

where ∆L̄τ denotes the sample mean of the loss differential ∆LT+h|T , indeed, ∆L̄τ = τ−1
∑T1−h

τ=T ∆Lτ+h|T ,

and σ̂2
τ denotes a consistent estimator of the asymptotic variance of the difference in the squared

forecast errors σ2
τ . The GW statistic is a two-sided test statistic with a standard t-distribution.

Positive (negative) values indicate that the MSFE generated from model 1 is significantly

lower (higher) than the MSFE generated from model 2. If α is the level of significance, the

test rejects the null hypothesis of equal unconditional predictive ability whenever |tτ,h| > zα/2

where zα/2 is the zα/2 quantile of a standard normal distribution. We used a quadratic loss func-

tion with the variance σ2
τ estimated using the heteroskedasticity and autocorrelation consistent

(HAC) estimator proposed by Newey and West (1987).

4 The forecasting results

This section concludes the paper presenting the forecasting results. First, we provide the

relative mean square forecasting error (rMSFE) analysis, then to asses the significance of the

observed differences among MSFEs we apply the test of equal predictive ability of Giacomini

and White (2006) explained before.
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4.1 Mean squared forecast error analysis

Figure (1) plots the rMSFE of forecasting models respect to the unconditional mean of the

series of interest. The observed values are reported in Table (1), where the better rMSFEs for

any forecasting horizon h are denoted in bold. These values depend critically upon the choice

of: the number of lags p, the number of static factors r, and the number of dynamic factors q.

The order p has been estimated using the Bayesian Information Criterion (BIC), the number of

static factors r has been estimated using the Alessi et al. (2007) criterion, while the number of

dynamic factors q has been estimated using the Hallin and Liška (2007). These criteria, have

suggested to estimate the GDFM with r∗ = 5 static factors and q∗ = 3 dynamic factors.

In terms of forecasting output growth, we found that factor models yield lower rMSFEs

respect to the all other competitive models in both short and long run. In particular, the

DI(r∗) model produces lower MSFEs in the short run (up to 3 quarters ahead), while the

GDFM(r∗,q∗) yields lower MSFEs in the long run (from 4 quarter up to 12 quarters ahead).

Therefore, the AR(p∗), the VAR(p∗), the DSGE, and the drDSGE do not provide informa-

tive forecasts (only the AR(p∗) model has a positive rMSFE at h = 10), meaning that the

unconditional mean should be used instead.

With regard of inflation, we found that the GDFM(r∗,q∗) yields lower MSFEs in the short

run (up to 5 quarters ahead), while the drDSGE produces lower MSFEs in the long run (from

6 quarter up to 12 quarters ahead). Therefore, we discovered that the DI(r∗) is able to produce

lower MSFEs than the GDFM(r∗,q∗) in the long run (from 8 quarter ahead up to 12 quarters

ahead). This results is against the prelevant literature who gives to the GDFM better accu-

rancy in forecasting time series variables than DI especially in the long run (Forni et al. (2000)

and Forni et al. (2005)).

Figure (2) plots the rMSFE of diffusion index model with altenative number of static factors,

respect to the autoregressive model with the optimal lag p∗ fixed using the BIC. The observed

values are reported in Table (2), where the better rMSFEs for any forecasting horizon h are

denoted in bold.

For both output growth and inflation we see that only few static factors are needed to
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outperform the AR(p∗) model. Infact, we need just 2 factors to outperforme the AR(p∗) model

for any forecasting horizon. It confirms the findings of Stock and Watson (2002b) where their

DI model was found superior in MSFE than an autoregressive process.

With regard to output growth, there are considerable forecasting gains when we pass from

2 to 4 factors especially when the forecasting horizon increases. At 4 quarters ahead, the DI(4)

yields 15.1% higher rMSFE than DI(2), at 6 quarters ahead, the DI(4) yields 11.55% higher

rMSFE than DI(2), while at 12 quarters ahead the DI(4) yields 7.23% higher rMSFE than

DI(2).

With regard to inflation, there are considerable gains when we consider a larger number of

factors, 6 or 7, at least for the short and medium run. At 1 quarter ahead, the DI(7) yields

36.94% higher rMSFE than DI(1), and 6.97% higher rMSFE than DI(6). At 6 quarters

ahead, the DI(7) yields 25.79% higher rMSFE than DI(1), and 1.58% higher rMSFE than

DI(6). But at 12 quarter ahead, the DI(1) yields 4.38% higher rMSFE than DI(7), and 10.42%

higher rMSFE than DI(6).

Figure (3) plots the rMSFE of DSGE model respect to the VAR(p) model with alterna-

tive number of lags p. The observed values are reported in Table (3), where we have denoted in

italic the values of rMSFEs for which the underlying VAR(p) loses less respect to the regular

DSGE of Smets and Wouters (2007).

For both time series, the table shows that there are no cases where the the VAR(p) model

is able to produce lower MSFE than the the DSGE of Smets and Wouters (2007). This result

is in line with the findings of Del Negro and Schorfheide (2004), where a VAR(4) is used as the

benchmark. Here, we find that the DSGE model is able to outperform not only the VAR(4)

but all the VAR models considerared. For the output growth, the VAR(1) is the VAR model

that loses less respect to the DSGE at 1 quarter ahead, while in the long run is the VAR(5) the

model that minimize the loses respect to the regular DSGE. The results of inflation are quite

similar. The only difference is that now is the VAR(2) the model that loses less respect to the

regular DSGE.

Figure (4) plots the rMSFE of DI(r) model with alternative number of static factors r re-
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spect to the GDFM(r∗, q∗). The observed values are reported in Table (4), where we have

denoted in bold the cases where forecasting using a DI(r) is superior than forecasting with the

GDFM(r∗, p∗), and in italic the values of rMSFEs for which the underlying DI(r) loses less

respect to the GDFM(r∗, p∗).

Most of the values contained in the table are negative, meaning that there are few occasions

in which the DI model yield a lower MSFE. Regard to output growth, there are few cases

where the GDFM is outperformed by the DI, while for inflation these cases are increased. For

the output growth, the DI model with 5 and 4 factors tend to outperform the GDFM(r∗, q∗) in

both short term (up to 2 quarters ahead) and long term (from 10 to 12 quarters ahead). For

inflation, there are no cases where the DI model is able to produce informative forecasrs in the

short run, while in the medium run and in the long run the DI(7) and the DI(1) are able to

produce lower MSFEs respectively.

The Figure (5) plots the rMSFE of DSGE models respect to the GDFM(r∗, q∗). The ob-

served values are reported in Table (5), where we have denoted in bold the cases where a

DSGE model is able to aoutperform the GDFM(r∗, q∗) in term of rMSFE.

About the output growth, the GDFM yields lower MSFEs than the DSGE models for any

forecasting horizon. It confirms the results of Table (1) where the DSGE models was found to

generate higher rMSFEs than the GDFM.Differently, when we have to forecast inflation, we

find that DSGE models are able to produce lower MSFEs than the GDFM only in the long

run (from 7 to 12 quarters ahead).

The interesting result is the MSFE performance gap between the DSGE and the drDSGE.

This gap, as shown in Figure (5) increases when the forecasting horizon is increased as a pair

of open scissors. Regarding the output growth, at 1 quarter ahead, the drDSGE loses 6.01%

less (in absolute value) than the DSGE, at 6 quarters ahead, the drDSGE loses 44.49% less

than the DSGE, and at 12 quarters ahead, the drDSGE loses 103.09% less than the DSGE.

The same situation happens for inflation. At 1 quarter ahead, the drDSGE loses 2.02% less (in

absolute value) than the regular DSGE, at 6 quarters ahead, the drDSGE loses 3.09% less than

the regular DSGE, and at 12 quarters ahead, the drDSGE loses 40.06% less than the regular

DSGE. This result is in line with the findings of Boivin and Giannoni (2006), who show that
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more accurate estimates implies better forecasts at least one step ahead.

Concluding, the rMSFE analysis has pointed out that output growth is not forecasted in-

formatively by DSGE models, while factor models yield lower and informative MSFEs for

any forecasting horizon. Simmetrically, for the inflation, DSGE models tend to produce lower

MSFEs than factor models especially in the long run. We could take these results as definitive,

but since the MSFE analysis has not significance power, we have to work on forecasting infer-

ence implementing predictive ability tests. Among these tests, we interpreted the conditional

predictive ability test of Giacomini and White (2006).

4.2 Equal predictive ability results

Table (6) reports the test statistic of equal conditional predictive ability test for h = 1, 4, 8, 12

quarters ahead. These statistics have the following interpretation: plus signs indicate that the

forecating model in rows have lower mean squared forecasting errors than the corresponding

forecating model in columns, then the model in row outperforms significantly the model in col-

umn. Simmetrically, negative signs indicate that the forecating model in rows have higher

mean squared forecast errors than the corresponding forecasting model in columns, then the

model in column outperforms significantly the model in column. Entries denoted in bold are

significant at 5% level, while entries denoted in underlined bold are significant at 1% level.

Critical levels of test statistics are fixed as suggested by Giacomini and White (2006).

Regarding the output growth, the test reveals on one hand that the GDFM is able to

generate significantly better forecasts than DSGE models in both short and long run. On the

other side, the DI model is able to outperforms significantly the DSGE models only in the short

run. Therefore, is confirmed the superiority of the drDSGE in outperforming significantly the

regular DSGE in the short, medium and long run.

Regarding the inflation, we discovered the most important result of the dissertation: only the

drDSGE outperforms significantly all other competitive models in forecasting inflation in the

long run. In other words, in the long run significant forecasts can be obtained only by combining

a DSGE model with a static factor model. It means that exploiting more information on many
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macroeconomic time series, through the drDSGE, is important not only to obtain more accurate

estimates, but also to get significant better forecasts.

5 Conclusions

We conducted several out-of-sample forecasting experiments to assess the forecasting power

of factor models relatively to DSGE models. We found three main conclusions. First, DSGE

models are significantly outperformed by the GDFM in forecasting output growth in both short

and long run, while the static factor model outperforms significantly DSGE models only in the

short run. Second, the most surprising result of the paper, we discovered that only the drDSGE

outperforms significantly all other competitive models in forecasting inflation in the long run.

This evidence falls out with both Wang (2009) who found that the regular DSGE of Del Negro

and Schorfheide (2004) was able to generate significant better forecasts for inflation in the long

run, and Paccagnini (2011) where hybrid models are found to forecast poorly. Therefore, the

drDSGE outperforms significantly the regular DSGE in forecasting both output growth and

inflation, confirming that exploiting more information on many macroeconomic time series,

through the drDSGE, is important not only to obtain more accurate estimates, but also to

get significant better forecasts. Third, in most cases, the unrestricted VAR represents the

worse forecasting model, suggesting that this model should not be used as benchmark model

in forecasting comparisons.

Given the wide variety of DSGE models in the literature, this paper should not be un-

derstood as a final research into the relative predictive ability of DSGE models relatively to

factor models, but it should encourage further research in this topic. Our results raise several

issues for future research. In our view four issues are preminent. First, we have shown that

forecasting results vary according to the type of DSGE considered, then future research should

consider a wider range of DSGE models with alternative structural restrictions. Second, being

the drDSGE a static model, it would be useful to generalize its representation allowing state

variables to be loaded with leads and lags. It might raise further forecasting gains. Third,

we have estimated factor models assuming linearity but linearity is often not prevalent in the

data-set. Then, it would be useful to introduce nonlinear dynamic factor models. Fourth,
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throughout the paper we assumed weakly stationarity time series. Although data-set differen-

tiation and standardization achieve stationary in most cases, this is a strong assumption that

should be relaxed.
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Tables

rMSFE of models versus the unconditional mean
Output Growth

AR(p∗) DI(r∗) VAR(p∗) DSGE GDFM(r∗,q∗) drDSGE
h = 1 -0.0320 0.3037 -0.6299 -0.3653 0.2226 -0.3553
h = 2 -0.0496 0.3694 -0.9077 -0.3223 0.3634 -0.3011
h = 3 -0.0718 0.3718 -1.1813 -0.3192 0.3594 -0.3002
h = 4 -0.0494 0.2700 -1.4518 -0.3386 0.3984 -0.3156
h = 5 -0.0580 0.0801 -1.6694 -0.3409 0.3854 -0.2811
h = 6 -0.0469 0.2318 -1.8954 -0.3166 0.3843 -0.3011
h = 7 -0.0234 0.2512 -2.1720 -0.3473 0.3863 -0.3173
h = 8 -0.0034 0.0762 -2.4567 -0.4047 0.3897 -0.3247
h = 9 -0.0061 0.1225 -2.9116 -0.5428 0.3472 -0.3328
h = 10 0.0015 0.2055 -3.5283 -0.7684 0.2474 -0.3384
h = 11 -0.0028 0.1399 -4.2084 -1.0366 0.2258 -0.3401
h = 12 -0.0158 0.0304 -5.1195 -1.3826 0.1580 -0.3446

Inflation
h = 1 0.3940 0.5637 0.3876 0.4020 0.6738 0.4195
h = 2 0.4558 0.5388 0.4094 0.4564 0.6653 0.4694
h = 3 0.4350 0.5225 0.3514 0.4763 0.7058 0.4998
h = 4 0.3819 0.4906 0.2620 0.4854 0.5956 0.5094
h = 5 0.3448 0.4899 0.2015 0.5001 0.5907 0.5321
h = 6 0.3068 0.3882 0.1590 0.5255 0.5401 0.5615
h = 7 0.2659 0.4245 0.1077 0.5443 0.4861 0.5943
h = 8 0.2360 0.3953 0.0533 0.5699 0.3673 0.6196
h = 9 0.2008 0.3998 0.0082 0.5939 0.2992 0.6459
h = 10 0.1725 0.4098 -0.0287 0.6108 0.2427 0.6608
h = 11 0.1334 0.4104 -0.0618 0.6258 0.1377 0.6958
h = 12 -0.0623 0.3863 -0.0913 0.6456 -0.0042 0.7096

Table 1: The entries in the table are the rMSFEs of alternative forecasting models relatively to the
time series unconditional mean. A positive entry indicates model informative forecasts. A negative
entry indicates noninformative model forecasts. The entries in bold indicate the most informative
model forecasts for any forecasting horizon h. For example, for output growth at one step ahead, the
most informative forecasts are produced by the DI model with r∗=3 static factors, while the AR(p∗),
the VAR(p∗), the DSGE and the drDSGE yield noninformative forecasts that are outperformed by the
unconditional mean of the series.
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rMSFE of DI(r) with r = BIC, 1, 2, . . . , 7 versus AR(p∗)
Output Growth

DI(BIC) DI(1) DI(2) DI(3) DI(4) DI(5) DI(6) DI(7)
h = 1 0.3253 0.1936 0.3313 0.2950 0.2588 0.2773 0.3258 0.3181
h = 2 0.3992 0.0895 0.4150 0.3906 0.3869 0.4171 0.4131 0.4093
h = 3 0.4138 0.0774 0.3727 0.3685 0.4108 0.4232 0.3623 0.3785
h = 4 0.3043 0.0462 0.2391 0.3312 0.3901 0.3538 0.3223 0.3436
h = 5 0.1305 0.0043 0.1185 0.2928 0.3188 0.3874 0.3349 0.3527
h = 6 0.2662 0.0016 0.2499 0.3430 0.3654 0.3576 0.3191 0.3171
h = 7 0.2684 -0.0934 0.2534 0.3289 0.3748 0.2443 0.2804 0.3095
h = 8 0.0793 -0.1250 0.2714 0.2843 0.3395 0.0351 0.1949 0.2662
h = 9 0.1278 -0.0303 0.2565 0.2461 0.3267 0.0493 0.1002 0.2052
h = 10 0.2043 -0.0390 0.2162 0.2182 0.2732 0.1217 0.1468 0.1341
h = 11 0.1423 -0.0319 0.2467 0.2486 0.3122 0.1593 0.1325 0.1761
h = 12 0.0454 -0.0948 0.2354 0.2422 0.3077 0.0820 0.0599 0.1173

Inflation
h = 1 0.2801 0.0342 0.3882 0.2882 0.2736 0.3903 0.3339 0.4036
h = 2 0.1525 -0.0400 0.2362 0.1276 0.0659 0.2611 0.3557 0.3691
h = 3 0.1549 -0.0304 0.2723 0.2169 0.1616 0.1729 0.3634 0.4275
h = 4 0.1758 0.0463 0.2602 0.1270 0.2031 0.0936 0.3006 0.4248
h = 5 0.2215 0.1014 0.1706 0.1015 0.2194 0.1008 0.2826 0.3728
h = 6 0.1174 0.1647 0.2509 0.2991 0.2522 0.1686 0.4068 0.4226
h = 7 0.2160 0.2336 0.1077 0.1929 0.2917 0.1485 0.3864 0.4372
h = 8 0.2085 0.2723 0.2289 0.0921 0.2356 0.2148 0.4084 0.4577
h = 9 0.2491 0.3044 0.0892 0.0129 0.2073 0.1974 0.4005 0.3624
h = 10 0.2868 0.3375 0.0526 -0.0504 0.2020 0.1767 0.3795 0.3711
h = 11 0.3197 0.3602 0.1173 -0.0077 0.2374 0.1362 0.2382 0.3576
h = 12 0.4223 0.4321 0.2312 0.1315 0.3115 0.1961 0.3279 0.3883

Table 2: The entries in the table are the rMSFEs of diffusion index (DI(r)) models with an alternative
number of static factors r = BIC, 1, 2, . . . , 7 relatively to the autoregressive model (AR(p)) with the
lag p fixed using the BIC. A positive entry indicates DI informative forecasts, while a negative entry
indicates DI noninformative forecasts. The entries in bold indicate the most informative forecasts for
any forecasting horizon h. For example, for output growth at one step ahead, the most informative
forecasts are produced by the DI model with two static factors.
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rMSFE of DSGE versus V AR(p) with p = BIC, 1, 2, . . . , 5
Output Growth

VAR(BIC) VAR(1) VAR(2) VAR(3) VAR(4) VAR(5)
h = 1 0.2602 0.2602 0.3210 0.3158 0.4055 0.4592
h = 2 0.2840 0.2840 0.3525 0.2656 0.3219 0.4187
h = 3 0.3430 0.3430 0.3849 0.2430 0.2895 0.4129
h = 4 0.3923 0.3923 0.4191 0.2833 0.3126 0.4003
h = 5 0.4357 0.4357 0.4434 0.3419 0.3643 0.4433
h = 6 0.4833 0.4833 0.4725 0.4088 0.4157 0.4728
h = 7 0.5141 0.5141 0.4851 0.4557 0.4461 0.4951
h = 8 0.5310 0.5310 0.4902 0.4887 0.4593 0.4843
h = 9 0.5423 0.5423 0.4924 0.5147 0.4622 0.4806
h = 10 0.5451 0.5451 0.4889 0.5347 0.4686 0.4701
h = 11 0.5426 0.5426 0.4815 0.5487 0.4755 0.4701
h = 12 0.5431 0.5431 0.4798 0.5632 0.4823 0.4623

Inflation
h = 1 0.0399 0.0399 0.0013 0.1074 0.1603 0.1856
h = 2 0.1227 0.1227 0.0886 0.2087 0.2496 0.2726
h = 3 0.2271 0.2271 0.1857 0.2765 0.3246 0.3607
h = 4 0.3230 0.3230 0.2705 0.3477 0.3770 0.3992
h = 5 0.3947 0.3947 0.3251 0.4161 0.4250 0.4379
h = 6 0.4529 0.4529 0.3688 0.4745 0.4697 0.4806
h = 7 0.5048 0.5048 0.4147 0.5241 0.5103 0.5182
h = 8 0.5614 0.5614 0.4726 0.5816 0.5611 0.5568
h = 9 0.6068 0.6068 0.5232 0.6311 0.6039 0.5907
h = 10 0.6395 0.6395 0.5623 0.6706 0.6384 0.6192
h = 11 0.6673 0.6673 0.5961 0.7047 0.6699 0.6489
h = 12 0.6961 0.6961 0.6311 0.7391 0.7031 0.6827

Table 3: The entries in the table are the rMSFEs of the dynamic stochastic general equilibrium
(DSGE) model of Smets and Wouters (2007) relatively to the vector autoregressive model (VAR(p))
with an alternative number of lags p = BIC, 1, 2, . . . , 5. A positive entry indicates DSGE informative
forecasts, while a negative entry indicates a noninformative DSGE forecasts. The entries in italic
indicate the VAR model that loses less respect to the regular DSGE.
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rMSFE of DI(r) versus GDFM(r∗,q∗) with r = BIC, 1, 2, . . . , 7
Output Growth

DI(BIC) DI(1) DI(2) DI(3) DI(4) DI(5) DI(6) DI(7)
h = 1 0.1044 -0.0705 0.1123 0.0641 0.0160 0.0406 0.1050 0.0947
h = 2 0.0095 -0.5011 0.0355 -0.0046 -0.0108 0.0390 0.0325 0.0261
h = 3 0.0193 -0.5435 -0.0495 -0.0565 0.0142 0.0350 -0.0668 -0.0398
h = 4 -0.2134 -0.6637 -0.3273 -0.1665 -0.0639 -0.1272 -0.1821 -0.1450
h = 5 -0.4967 -0.7139 -0.5174 -0.2173 -0.1727 -0.0545 -0.1449 -0.1142
h = 6 -0.2477 -0.6976 0.5925 -0.1172 -0.0790 -0.0923 -0.1577 -0.1612
h = 7 -0.2200 -0.8233 -0.2449 -0.1190 -0.0425 -0.2601 -0.1999 -0.1515
h = 8 -0.5137 -0.8496 -0.1979 -0.1767 -0.0859 -0.5864 -0.3237 -0.2065
h = 9 -0.3442 -0.5880 -0.1460 -0.1620 -0.0377 -0.4653 -0.3867 -0.2250
h = 10 -0.0557 -0.3785 -0.0400 -0.0373 0.0357 -0.1652 -0.1320 -0.1489
h = 11 -0.1110 -0.3366 0.0242 0.0268 0.1092 -0.0890 -0.1236 -0.0672
h = 12 -0.1516 -0.3208 0.0775 0.0858 0.1648 -0.1075 -0.1342 -0.0649

Inflation
h = 1 -0.3373 -0.7942 -0.1365 -0.3223 -0.3495 -0.1327 -0.2374 -0.1080
h = 2 -0.3779 -0.6909 -0.2419 -0.4184 -0.5187 -0.2014 -0.0475 -0.0258
h = 3 -0.6231 -0.9789 -0.3976 -0.5038 -0.6102 -0.5884 -0.2226 -0.0995
h = 4 -0.2596 -0.4576 -0.1307 -0.3342 -0.2179 -0.3853 -0.0689 0.1209
h = 5 -0.2462 -0.4384 -0.3278 -0.4383 -0.2495 -0.4395 -0.1484 -0.0041
h = 6 -0.3303 -0.2590 -0.1718 -0.0564 -0.1272 -0.2532 0.1059 0.1297
h = 7 -0.1198 -0.0946 -0.0699 -0.1528 -0.0117 -0.2162 0.1236 0.1961
h = 8 0.0443 0.1214 0.0689 -0.0963 0.0771 0.0519 0.2857 0.3452
h = 9 0.1436 0.2067 -0.0387 -0.1257 0.0960 0.0847 0.3164 0.2729
h = 10 0.2207 0.2761 -0.0352 -0.1478 0.1280 0.1004 0.3220 0.3129
h = 11 0.3162 0.3569 0.1129 -0.0128 0.2336 0.1318 0.2343 0.3544
h = 12 0.3889 0.3992 0.1867 0.0812 0.2716 0.1495 0.2890 0.3529

Table 4: The entries in the table are the rMSFEs of the diffusion index model (DI(r)) with an
alternative number of static factors r = BIC, 1, 2, . . . , 7 relatively to the generalized dynamic factor
model (GDFM(r, q)) with the number of static factors r fixed using Alessi et al. (2007) criterion
and the number of dynamic factors q fixed using the Hallin and Liška (2007) criterion. We found
r∗ = 5 e q∗ = 3. A positive entry indicates DI informative forecasts, while a negative entry indicates
noninformative DI forecasts. The entries in italic indicate the DI model that loses less respect to the
GDFM. The entries in bold indicate the most informative forecasts for any forecasting horizion h. For
example, for inflation at one step ahead, there are no cases in which a DI yields informative forecasts
and the DI(7) is the model that loses less, while at four step ahead the DI(7) is able to produce
informative forecasts.
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rMSFE of DSGE models versus GDFM(r∗, q∗)
Output Growth Inflation
DSGE drDSGE DSGE drDSGE

h = 1 -0.7573 -0.6963 -0.8331 -0.8129
h = 2 -1.0791 -0.8770 -0.6239 -0.5754
h = 3 -1.0595 -0.8643 -0.7801 -0.6705
h = 4 -1.2252 -0.6249 -0.2724 -0.1309
h = 5 -1.1810 -0.7016 -0.2213 -0.0215
h = 6 -1.1334 -0.6885 -0.0328 -0.0019
h = 7 -1.1926 -0.6752 0.1142 0.3131
h = 8 -1.3087 -0.5316 0.3287 0.6204
h = 9 -1.3632 -0.5034 0.4203 0.6396
h = 10 -1.3477 -0.4597 0.4849 0.8861
h = 11 -1.6358 -0.5606 0.5658 0.9660
h = 12 -1.8296 -0.7987 0.6465 1.0471

Table 5: The entries in the table are the rMSFEs of the dynamic stochastic general equilibrium
models relatively to the generalized dynamic factor model (GDFM(r, q)) with r∗ = 5 e q∗ = 3. A
positive entry indicates DSGE informative forecasts, while a negative entry indicates noninformative
DSGE forecasts. The entries in bold indicate the most informative DSGE forecasts. For example, for
output growth there are no cases in which DSGE models yield informative forecasts, while for inflation
at eight step ahead both DSGE and drDSGE produce informative forecasts but the drDSGE forecasts
are more informative.
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Test of equal conditional predictive ability (GW test)

Output Growth Inflation

If h = 1: If h = 1:
Mean AR(p∗) DI(r∗) VAR(p∗)DSGEGDFM(r*,q*) Mean AR(p∗) DI(r∗)VAR(p∗)DSGEGDFM(r*,q*)

AR(p∗) 8.2512 0 0 0 0 0 15.7459 0 0 0 0 0
DI(p∗) 5.1260 5.0767 0 0 0 0 9.5378 0.7863 0 0 0 0
VAR(p∗) 3.7613 3.2106-7.5801 0 0 0 12.0002 5.8369 0.7711 0 0 0
DSGE 2.1322 1.5354-8.2113 5.2770 0 0 13.8996 4.3562 0.5602 5.8350 0 0
GDFM(r*,q*)1.6440 1.8884 0.6445 8.60589.2396 0 21.6968 4.6374 3.0911 4.9811 4.0713 0
drDSGE 2.1523 1.6877-8.19218.59678.1265-7.9321 12.25706.0129 0.6032 4.8701 5.8033 -3.9034

If h = 4: If h = 4:
AR(p∗) 0.5407 0 0 0 0 0 2.9308 0 0 0 0 0
DI(p∗) 2.3150 2.8183 0 0 0 0 8.0435 1.4455 0 0 0 0
VAR(p∗) 3.2082 2.5118 -4.0286 0 0 0 4.8213 1.7167 1.0193 0 0 0
DSGE 2.9597 2.2769 -2.6651 3.4087 0 0 4.8167 2.4049 0.9501 1.5464 0 0
GDFM(r*,q*)3.2138 3.3985 1.9478 4.2912 3.0909 0 20.9087 2.0743 1.1859 1.2578 3.6244 0
drDSGE 3.2021 2.5847 -2.4217 4.2517 6.0154 -2.9321 6.2033 7.4279 4.5611 6.60376.5534 5.9851

If h = 8: If h = 8:
AR(p∗) 2.6710 0 0 0 0 0 15.3335 0 0 0 0 0
DI(p∗) 1.3636 1.3212 0 0 0 0 13.55527.1261 0 0 0 0
VAR(p∗) 3.6685 4.1270 -3.6573 0 0 0 3.5745 0.2973 2.3745 0 0 0
DSGE 3.1501 3.4670 -3.8994 2.1355 0 0 7.4830 3.5709 2.7996 1.2484 0 0
GDFM(r*,q*)0.6531 0.4712 2.1853 2.3374 3.7045 0 23.4710 4.4193 1.3812 2.3919 2.1791 0
drDSGE 5.2544 4.8821 -5.8621 6.90636.4113 -4.9321 9.7838 8.17725.991811.54467.9253 8.7679

If h = 12: If h = 12:
AR(p∗) 5.2311 0 0 0 0 0 10.0696 0 0 0 0 0
DI(p∗) 3.9721 1.7715 0 0 0 0 11.70567.8748 0 0 0 0
VAR(p∗)8.93859.3304-8.3023 0 0 0 15.190511.95032.1421 0 0 0
DSGE 6.06615.9044 -5.7588 7.4603 0 0 11.5110 5.6169 0.8479 1.2841 0 0
GDFM(r*,q*)0.3319 1.4539 1.2591 8.36596.2057 0 8.0811 1.0432 1.8838 1.8486 4.2154 0
drDSGE6.49235.9872-6.58216.05678.3445-6.9355 18.89019.03327.010520.30448.221111.6031

Table 6: This table contains the results of pairwise tests of equal conditional predictive accuracy of
alternative forecasting models using a quadratic loss function. The entries in the table are the test-
statistic of equal conditional predictive ability for the methods in the corresponding row and column. A
positive (negative) entry indicates that the model in row is able to produce a significant lower (higher)
mean squared forecast error than the corresponding model in column. The entries in bold indicate
test-statistics that are significant at 5% level. The entries in underlined bold indicate test-statistics
that are significant at 1% level. For example, for inflation at one step ahead, the drDSGE forecasts
outperforms significantly the AR(p∗) forecasts.
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Figures

Figure 1: The figure plots the rMSFEs of forecasting models relatively to the time series uncondi-
tional mean. The corresponding values are reported in Table (1).
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Figure 2: The figure plots the rMSFEs of diffusion index models with an alternative number of static
factors r = BIC, 1, 2, . . . , 7 relatively to the autoregressive model (AR) with the lag p fixed using the
BIC. The corresponding values are reported in Table (2).

Figure 3: The figure plots the rMSFEs of the dynamic stochastic general equilibrium (DSGE) model
of Smets and Wouters (2007) relatively to the vector autoregressive model (VAR) with an alternative
number of lags p = BIC, 1, 2, . . . , 5. The corresponding values are reported in Table (3).
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Figure 4: The figure plots the rMSFEs of the diffusion index model (DI(r)) with an alternative
number of static factors r = BIC, 1, 2, . . . , 7 relatively to the generalized dynamic factor model
(GDFM(p, q)) with the number of static factors r fixed using Alessi et al. (2007) criterion and the
number of dynamic factors q fixed using the Hallin and Liška (2007) criterion. The corresponding
values are reported in Table (4).

Figure 5: The figure plots the rMSFEs of the dynamic stochastic general equilibrium models rela-
tively to the generalized dynamic factor model (GDFM(r, q)) with r∗ = 5 e q∗ = 3. The corresponding
values are reported in Table (5).

37



Sintesi della tesi di dottorato in Econometrics, di Gabriele Palmegiani, discussa presso l’Università LUISS Guido Carli, in data 20 Marzo 2012.

Soggetta a copyright c©. Sono comunque fatti salvi i diritti dell’Università LUISS Guido Carli di riproduzione per scopi di ricerca e didattici, con

citazione della fonte.

Appendix A

This appendix gives an overview of the dataset used to construct the factors. The data are

presented in the following ordering: series number, series mnemonic, series description and

transformation code. The transformation codes are 1 = no transformation, 2 = first difference,

3 = first difference of logs, 4 = second difference of logs. All price series are obtained from

Moody’s Economy and all other series are obtained from Datastream. The series mnemonics

and descriptions are taken directly from the associated sources. The interest rate spreads

are calculated using the average federal funds rate obtained from Moody’s Economy. The

abbreviations appearing in the series descriptions are sa/sadj = seasonally adjusted, cura =

current prices, seasonally adjusted, vola = volumn index, seasonally adjusted.

Table 7: The data-set used

Mnemonic Description Transformation

Prices
1 cpiuaa_us cpi: urban consumer apparel, (1982-84=100, sa) 4
2 cpiuac_us cpi: urban consumer commodities, (1982-84=100, sa) 4
3 cpiuad_us cpi: urban consumer durables, (1982-84=100, sa) 4
4 cpiuam_us cpi: urban consumer medical care, (1982-84=100, sa) 4
5 cpiuas_us cpi: urban consumer services, (1982-84=100, sa) 4
6 cpiuat_us cpi: urban consumer transportation, (1982-84=100, sa) 4
7 cpiul1_us cpi: urban consumer all items less food, (1982-84=100, sa) 4
8 cpiul2_us cpi: urban consumer all items less shelter, (1982-84=100, sa) 4
9 cpiul5_us cpi: urban consumer all items less medical care, (1982-84=100, sa) 4
10ppisp1000_usppi: stage of processing crude materials, (index 1982=100, sa) 4
11ppisp2000_usppi: stage of processing intermediate materials, (index 1982=100, sa) 4
12ppisp3000_usppi: stage of processing finished goods, (index 1982=100, sa) 4
13ppisp3100_usppi: stage of processing finished consumer goods, (index 1982=100, sa) 4

Consumption
14uscdtan_b pce durables, new autos (ar) cura 3
15uscondurb personal consumption expenditures durables (ar) cura 3
16usconndrb personal consumption expenditures nondurables (ar) cura 3
17usconsrvb personal consumption expenditures services (ar) cura 3
18usperconb personal consumption expenditures (ar) cura 3

Employment
19usem21_o employed mining vola 3
20usem23_o employed construction vola 3
21usem42_o employed wholesale trade vola 3
22usem81_o employed otherservices vola 3
23usemig_o employed government vola 3
24usemimd_o employed durable goods vola 3
25usemip_o employed totalprivate vola 3

... continued on next page
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Table 7 ... continued from previous page
Mnemonic Description Transformation

26usemir_o employed retail trade vola 3
27usemit_o employed trade, transportation, utilities vola 3
28usempallo employed nonfarm industries total (payroll survey) vola 3
29usempg_o employed goodsproducing vola 3
30usempmano employed manufacturing vola 3
31usemps_o employed serviceproviding vola 3
32usemptoto total civilian employment vola 3
33ushlpwadq help wanted proportion of labor markets w/rising wantad vola 1
34usun_totq unemployment rate sadj 2
35usundurne average durationof unemployment (weeks) vola 1
36usunw14_q unemployed distribution 5 to 14 weeks sadj 1
37usunw15_q unemployed distribution 15 weeks over sadj 1
38usunw26_q unemployed distribution 15 to 26 weeks over sadj 1
39usunw5_q unemployed distribution less than 5 weeks sadj 1
40usvactoto index of help wanted advertising vola 3

Housing
41ushbrm_o housing started midwest (ar) vola 3
42ushbrn_o housing started northeast (ar) vola 3
43ushbrs_o housing started south (ar) vola 3
44ushbrw_o housing started west (ar) vola 3
45ushous_o new private housing units started (ar) vola 3

Hours and Earnings
46ushkim_o avg wkly hours manufacturing vola 3
47ushxpmano avg overtime hours manufacturing vola 3
48uswr23_b avg hrly earn construction cura 4
49uswrim_b avg hrly earn manufacturing cura 4

Output and Income
50usipmbuqg indl prod business equipment vola 3
51usipmcogg indl prod consumer goods vola 3
52usipmducg indl prod durable consumer goods vola 3
53usipmfgsg industrial production manufacturing (sic) vola 3
54usipmfing indl prod final products, total vola 3
55usipmmatg indl prod materials, total vola 3
56usipmnocg indl prod nondurable consumer goods vola 3
57usipmprog indl prod final products nonindustrial supplies vola 3
58usiptot_g industrial production total index vola 3
59usiumfgsq indl utilizationmanufacturing (sic) sadj 1
60uspdispib disposable personal income (ar) cura 3
61uspersinb personal income (ar) cura 3

Interest Rates
62uscrbbaa corporate bond yield moody’s baa, seasoned issues 2
63uscrbyld corporate bond yield moody’s aaa, seasoned issues 2
64ustrb3av treasury bill secondary market rate on discount basis 3 month 2
65ustrcn10 treasury yield adjusted to constant maturity 10 year 2
66ustrcn1_ treasury yield adjusted to constant maturity 1 year 2
67ustrcn5_ treasury yield adjusted to constant maturity 5 year 2
68usytb6sm treasury bill secondary market rate on discount basis 6 month 2

... continued on next page
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Table 7 ... continued from previous page
Mnemonic Description Transformation

69ussfycrbyld spread uscrbyld federal funds 1
70ussfycrbbaa spread uscrbbaa federal funds 1
71ussfytrb3av spread ustrb3av federal funds 1
72ussfyytb6sm spread usytb6sm federal funds 1
73ussfytrcn1_ spread ustrcn1_ federal funds 1
74ussfytrcn10 spread ustrcn10 federal funds 1
75ussfytrcn5_ spread ustrcn5_ federal funds 1

Other Time Series
76usm0_b monetary base cura 4
77usnbrrsab nonborrowed reserves of depository institutions cura 3
78uspmchin chicago purchasingmanager diffusion indexinventories(sa) 1
79uspmchlt chicago purchasingmanager diffusion indexdeliveries(sa) 1
80uspmchp_ chicago purchasingmanager diffusion indexprodn. (sa) sadj 1
81ustotrsab total reserves of depository institutions cura 3
82usexpgdsb exports f.a.s. cura 3
83uscnfbusq ism purchasing managers index (mfg survey) sadj 1
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