

TESI

et/e

pour le grade de **DOCTEUR** de l'**Université de Paris 13**Discipline :**Mathématiques**

per il titolo di **DOTTORE DI RICERCA** dell' **Università LUISS GUIDO CARLI** Indirizzo : **Metodi Matematici per** l'Economia, l'Azienda, la Finanza e le Assicurazioni.

par

Cristina DI GIROLAMI

Infinite dimensional stochastic calculus via regularization with financial motivations

Francesco RUSSO Université de Paris 13 Direttore di Tesi Fausto G0ZZI LUISS Guido Carli Co-Direttore di Tesi

December 21, 2009

Title: Infinite dimensional calculus via regularization with financial motivations.

Abstract: This paper develops some aspects of stochastic calculus via regularization to Banach valued processes. An original concept of χ -quadratic variation is introduced, where χ is a subspace of the dual of a tensor product $B\otimes B$ where B is the value space of the process. Particular interest is devoted to the case when B is the space of real continuous functions defined on $[-\tau,0]$, $\tau>0$. Itô formulae and stability of finite χ -quadratic variation processes are established. Attention is devoted to a finite real quadratic variation (for instance Dirichlet, weak Dirichlet) process X. The $C([-\tau,0])$ -valued process $Y(\cdot)$ defined by $Y_t(y)=Y_{t+y}$ where $y\in [-\tau,0]$ is called window process. Let T>0. If Y is a finite quadratic variation process such that $[Y]_t=t$ and $h=F(Y_T(\cdot))$ where F is a $C^2(H)$ Fréchet function with $H=L^2([-T,0])$, it is possible to represent h as a sum of a real number H_0 plus a forward integral of type $\int_0^T \xi d^-Y$ where ξ will be explicitly given. This decomposition generalizes the Clark-Ocone formula which is true when Y is the standard Brownian motion W. The main motivation comes hedging theory of path dependent options without semimartingales in mathematical finance.