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Abstract

The thesis is composed by two different parts, which are not related each
other.

The first part is devoted to study a class of optimal control problems,
where the state equation is an ordinary differential equation with delay in
the control variable. This class of problems arises in economic applications,
in particular in optimal advertising problems (see [36, 60, 66]). The control
problem is embedded in a suitable Hilbert space and the associated Hamilton-
Jacobi-Bellman (HJB) equation considered in this space. It is proved that
the value function is continuous with respect to a weak norm and that it
solves in the viscosity sense the associated HJB equation. The main result
is the proof of a directional C1-regularity result for the value function. This
result represents the starting point to define a feedback map in classical sense
going towards a verification theorem yielding optimal feedback controls for
the problem.

In the second part of the thesis, the techniques of the Malliavin Calculus
are applied to a stochastic differential equation whose coefficients depend on
a control process, in particular in the special case of Markovian controls. It
is calculated the stochastic derivative of the stochastic differential equation
and it is proved that the Malliavin matrix is strictly positive, assuring the
results of existence and regularity of densities for the controlled process.
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Introduction

The first part of the thesis is devoted to study of a class of optimal con-
trol problems with distributed delay in the control variable. The study
of problems with delays is motivated by economic applications (see, e.g.,
[1, 2, 3, 36, 60, 66, 41, 42, 12, 40]) and engineering applications (see, e.g.,
[51]). In this work we focus on the economic issues of our model.

There is a wide variety of models with memory structures considered by
the economic literature. We refer, for instance, to models where the memory
structure arises in the state variable, as growth models with time to build
in the production (see [1, 2, 3]) and as vintage capital model (see [12, 40]);
to models where the memory structure arises in the control variable, as in
advertising models (see [36, 60, 66, 41, 42]) or even in growth models with
time to build in the investment (see [52, 69]). Our model covers a class of
optimal advertising problems.

The analysis of advertising policies has always been occupying a front-
and-center place in the marketing research since the seminal paper by Nerlove
and Arrow [56]. Indeed, their model has paved the way for the development
of a number of models dealing with the optimal distribution of advertising ex-
penditure over time in both monopolistic and competitive settings. However,
apart from the fact that the optimal advertising policy in the Nerlove- Arrow
model is of the bang-bang type, their model has another rather unattractive
feature. Indeed, the dynamics of the goodwill assumes that there is no time
lag between advertising expenditures and the goodwill’s growth. Therefore,
attempts have been made to incorporate different distributions on the life-
time of each unit of goodwill into the dynamics of advertising capital. Indeed,
it has been advocated in the literature (see the survey [36] and references
therein) that a realistic dynamic model for the goodwill should allow for lags
in the effect of advertisement. First of all, it is natural to assume that there
will be a time lag between advertising expenditure and the corresponding
effect on the goodwill level. Moreover, the literature has also considered lag
structures allowing for a distribution of the forgetting time. The model by
Pawels [60] introduced a time lag between the rate of advertising and its
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effect on the rate of sales. This leads to a control problem where the dy-
namics is given by a differential equation with delay in the control variable.
In [60], Pawels approaches the optimal control problem by means of a maxi-
mum principle for this kind of problems provided by Sethi [66]. Instead, our
approach to the problem is based on the dynamic programming techniques
in infinite dimension.

From a mathematical point of view, our aim is to study the optimal
control of the differential equation{

y′(t) = ay(t) + b0u(t) +
∫ 0

−r
b1(ξ)u(t+ ξ)dξ;

y(0) = y0; u(s) = δ(s), s ∈ [−r, 0);
(0.1)

subject to the state constraint y(·) > 0 and to the control constraint u(·) ∈
U ⊂ R. The objective is to maximize a functional of the form∫ +∞

0

e−ρt

(
g0(y(t)) − h0(u(t))

)
dt,

where ρ > 0 is a discount factor and g0 : R+ → R and h0 : U → R are
respectively a utility and a cost function.

The presence of the delay in the state equation (0.1) renders not pos-
sible to apply the dynamic programming techniques to the problem in its
current form. A general way to tackle this problem consists in representing
the controlled system in a suitable infinite-dimensional space (see [11, Part
II, Chapter 1]). In this way the delay is absorbed by the infinite-dimensional
state. On the other hand, the price to pay is that the resulting system is
infinite-dimensional. By the way, once the delay has been absorbed by the
infinite-dimensional state, in principle we can apply the technique of Dy-
namic Programming in infinite dimension. In some cases this method can
lead to fully or partially satisfactory answers to the problem. Indeed some-
times explicit solutions are available (see e.g. [3, 40]), or, alternatively one
can hope to give at least a partial characterization of the optimal controls
(see e.g. [34, 35]). The core of the approach, as usual dealing with the Dy-
namic Programming, is the study of the Hamilton-Jacobi-Bellman (briefly,
HJB) equation, which is in this case an infinite-dimensional partial differen-
tial equation. Obviously, due to the infinite dimension, the study of the HJB
becomes much more problematic. However, the aspects to investigate are
the same as in the finite-dimensional case. In particular it is crucial to try to
show that the value function of the control problem solves in some sense the
HJB equation; possibly that it is the unique solution in this sense of the HJB
equation; that some regularity holds for the solutions of the HJB equation.
The last point is strictly connected to the possibility of giving a satisfactory
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answer to the control problem. This is due to the fact that, in order to
obtain an optimal strategy in feedback form, one needs the existence of an
appropriately defined gradient of the solution. It is possible to prove verifi-
cation theorems and representation of optimal feedbacks in the framework of
viscosity solutions, even if the gradient is not defined in classical sense (see
e.g. [9, 71]), but this is usually not satisfactory in applied problems since the
closed loop equation becomes very hard to treat in such cases.

The C1 regularity of solutions to HJB equations is particularly important
in infinite dimension since in this case verification theorems in the framework
of viscosity solutions are rather weak (see e.g [29, 53]). To the best of our
knowledge, C1 regularity for first order HJB equation was proved by method
of convex regularization introduced by Barbu and Da Prato [4] and then
developed by various authors (see e.g. [5, 6, 7, 8, 25, 26, 30, 38, 39]). All these
results do not cover problems originated by control problems with delays. In
the papers [16, 17, 32] a class of state constraints problems is treated using
the method of convex regularization, but the C1 regularity is not proved.

We follow an approach similar to the one used in [34], adapting it to
our specific case. Indeed, while in [34] the delay is in the state variable, in
our case the delay is in the control variable. This fact requires more care
in the representation in infinite dimensional representation. In particular, if
we want to get a directional regularity result for the solutions of the HJB
equation similar to the one obtained in [34], we need to embed the problem
in a more regular infinite-dimensional space. While in [34] the product space
R × L2 is used to represent the delay system, we need to use the product
space R×W 1,2. We observe that the theory of the infinite-dimensional repre-
sentation of delay systems has been developed mainly in spaces of continuous
function or in product space of type R×L2 (see [11]). Therefore we need to
put more care in our infinite-dimensional representation in R ×W 1,2 (even
if at the end it looks like in R × L2). We prove that the value function is
continuous in the interior of its domain with respect to a weak norm (Propo-
sition 3.4), that it solves in the viscosity sense the associated HJB equation
(Theorem 3.3) and that it has continuous classical derivative along a suitable
direction in the space H (Theorem 3.4). Exactly as in [34, 35], this regularity
result just allows to define the formal optimal feedback strategy in classical
sense. So, it represents the starting point to construct optimal feedbacks for
the problem as in [35].

In the second part of the thesis we wanted to study an alternative ap-
proach to control theory that takes into account probability densities.
Stochastic dynamic programming has been recognized as a very important
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tool for dealing with stochastic dynamic optimization problems. One of the
most important areas of application of this technique is related to portfolio
optimization. Various modeling approaches have been developed within this
framework both in the discrete and continuous-time setting.
One of the main approach relies on the concept of expected utility, where
the investor’s risk bearing attitude under uncertainty is modeled as a von
Neumann-Morgenstern (1947) utility function. The user needs to determine
the utility function and risk aversion attitude that represent his preferences
best. Following this direction, there has been considerable development of
multi-period stochastic models and, pioneered by the famous work by Mer-
ton [55], continuous-time models for portfolio management. Merton used
dynamic programming and partial differential equation theory to derive and
analyze the relevant Hamilton-Jacobi-Bellman (HJB) equation. From then
on, many variations of this problem have been investigated by this approach.
The book by Karatzas and Shreve [49] summarizes much of this continuous-
time portfolio management theory.

With regard to the object of the optimization, the literature has usually con-
sidered the cited Von Neumann-Morgestern criterion. It is clear that such
kind of optimization takes into account only very little information about the
law structure of the terminal wealth. On the other hand, the investor might
want to optimize also with respect to some other features, thus to take into
account also the structure of the law of the terminal wealth. In other terms,
the investor might want to also look at the density of the terminal wealth
(supposing that it exists). This is where the Malliavin Calculus comes into
play.
Malliavin Calculus is a very powerful tool to prove existence and regularity
of densities for solutions of SDE’s (e.g., see [58]), also providing a very inter-
esting link with the analytic theory of hypoelliptic operators (e.g., see [47]).

In this work, we have applied the techniques of the Malliavin Calculus
to a stochastic differential equation whose coefficients depend on a control
process. Consider the following example of a stochastic differential equation
in the canonical probability space (Ω,F ,P):

Xt = x0 +

∫ t

0

b(Xs, us) ds +
d∑

j=1

∫ t

0

σj(Xs, us) dW
j
s , (0.2)

where x0 ∈ Rm is a random variable F0-adapted, b : R+ × Rm × U −→ Rm

and σ : R+ × Rm × U −→ Rm× d are measurable functions satisfying
globally Lipschitz and boundness conditions, u is the control process belongs
to U ⊂ Rm such that u ∈ L1,∞ and W d is a d-dimensional Brownian motion
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W = {W j
t , t ∈ [0, T ], 1 ≤ j ≤ d} on a finite interval [0, T ].

In Chapter 5, we calculate the stochastic derivative of stochastic differential
equation (0.2). In Chapter 6 we focus our attention on the particular case of
Markovian controls, and we write the Malliavin matrix γt of the process Xt

in the following form

γt = eAt

(∫ t

0

(
eAs
)−1

σ(Xs, us)
((
eAs
)−1

σ(Xs, us)
)∗
ds

)(
eAt
)∗
,

where At is a m×m matrix whose elements are stochastic differential equa-
tions depending on the coefficients of (0.2).
Our objective for future research is to prove strict positiveness of the Mallia-
vin matrix γt, ensuring existence and regularity of densities for the controlled
process.
Once we obtain these results for controlled systems, we intend to reformu-
late the portfolio allocation problem accordingly. In both cases, this new
formulation should pass through another step, which is the characterization
of these densities.
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Part I

On optimal control problems
with DDE’S and delay in the

control





Chapter 1

Preliminary

1.1 Notations

For the first part of the work, we will use the following notations.
We denote by L(X) the space of the bounded linear operator from a Banach
space X to itself and by ∥L∥L(X) the norm of an operator L ∈ L(X), i.e,

∥L∥L(X) := sup
x∈X

∥Lx∥X .

Throughout paper we consider the Lebesgue space

L2
r := L2([−r, 0];R),

endowed with inner product

⟨f, g⟩L2
r

:=

∫ 0

−r

f(ξ)g(ξ)dξ,

which renders it a Hilbert space.
Also we consider the Sobolev spaces

W k,2
r := W k,2([−r, 0]; R), k = 1, 2, . . .

endowed with inner products

⟨f, g⟩Wk,2
r

:=
k∑

i=0

∫ 0

−r

f (i)(ξ)g(i)(ξ)dξ, k = 1, 2, . . . , (1.1)

which render them Hilbert spaces. The well-known Sobolev’s inclusions (see
[54]) imply that

W k,2([−r, 0];R) ↪→ Ck−1([−r, 0];R), k = 1, 2, . . .
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with continuous embedding. Throughout the paper we will confuse the
elements of W k,2

r , which are classes of equivalence of functions, with their
(unique) representatives in Ck−1([−r, 0];R), which are pointwise well defined
functions. Given that, we define the spaces

W k,2
r,0 := {f ∈ W k,2

r | f (i)(−r) = 0, ∀i = 0, 1, ..., k− 1} ⊂ W k,2
r , k = 1, 2, . . .

We notice that in our definition of W k,2
0 the boundary condition is only

required at −r. The spaces W k,2
0 are Hilbert spaces as closed subsets of the

Hilbert spaces W k,2. However, on these spaces we may consider the inner
products

⟨f, g⟩Wk,2
0

:=

∫ 0

−r

f (k)(ξ)g(k)(ξ)dξ, k = 1, 2, . . . (1.2)

It is easy to see that, due to the boundary condition in the definition of the
subspaces W k,2

0 , the inner products ⟨·, ·⟩Wk,2
r,0

are equivalent to the original

inner products ⟨·, ·⟩Wk,2 on W k,2
0 , in the sense that they induce equivalent

norms. Due to that, dealing with topological concepts, we will consider the
simpler inner products (1.2) on the spaces W k,2

0 .

We consider the Banach space

X := R× L2
r.

This is a Hilbert space when endowed with the inner product

⟨η, ζ⟩ := η0ζ0 + ⟨η1, ζ1⟩L2
r
,

where η = (η0, η1(·)) is the generic element of X. The norm on this space is
defined as

∥η∥2X = |η0|2 + ∥η1∥2L2
r
.

We consider the space H ⊂ X defined as

H := R × W 1,2
r,0 .

This is a Hilbert space when endowed with the inner product

⟨η, ζ⟩ := η0ζ0 + ⟨η1, ζ1⟩W 1,2
0
.

which induces the norm

∥η∥2 = |η0|2 +

∫ 0

−r

|η′1(ξ)|2dξ.

This will be the Hilbert spaces where our infinite-dimensional system will
live.



Chapter 2

Setup of the Control Problem
and infinite dimensional
differential equation

In this chapter we give the precise formulation of the optimal control problem
that we are going to study.

Given y0 ∈ (0,+∞) and δ ∈ L2
r, we consider the optimal control of the

following differential equation with delay in the control variable{
y′(t) = ay(t) + b0u(t) +

∫ 0

−r
b1(ξ)u(t+ ξ)dξ;

y(0) = y0; u(s) = δ(s), s ∈ [−r, 0);
(2.1)

with state constraint y(·) > 0 and with control constraint u(·) ∈ U ⊂ R.
The value y0 ∈ (0,+∞) in the state equation (2.1) represents the initial state
of the system, while the function δ represents the past of the control, which
is considered as given.

About U we assume the following

Hypothesis 2.1. U = [0, ū], where ū ∈ [0,+∞]. When ū = +∞, the set U
is intended as U = [u,+∞). 1

Moreover, with regard to the parameters appearing in (2.1) we assume the
following, that will be standing assumptions throughout the paper

1Actually the assumption that 0 ∈ U is not strictly necessary. However it is quite
natural in the application and makes simpler some proofs and the statements of the as-
sumptions on the parameters. The case 0 /∈ U can be treated as well, modifying accordingly
the assumptions on the other parameters and some proofs.
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Hypothesis 2.2.

(i) a, b0 ∈ R;

(ii) b1 ∈ W 1,2
r,0 , and b1 ̸= 0.

Given u(·) ∈ L2
loc([0,+∞);R), there is a unique locally absolutely continuous

solution of (2.1), provided explicitly by the variation of constants formula

y(t) = y0e
at +

∫ t

0

ea(t−s)f(s)ds, (2.2)

where

f(s) = b0u(s) +

∫ 0

−r

b1(ξ)u(s+ ξ)dξ; u(s) = δ(s), s ∈ [−r, 0].

We notice that f is well defined, as b1 is bounded and u(·) ∈ L2
loc([0,+∞),R).

We denote by y(t; y0, δ(·), u(·)) the solution to (2.2) with initial datum (y0, δ(·))
and under the control u(·) ∈ L2

loc. We notice that y(t; y0, δ(·), u(·)) solves the
delay differential equation (2.1) only for almost every t ≥ 0.
We define the class of the admissible controls for the problem with state
constraint y(·) > 0 as

U(y0, δ(·)) := {u(·) ∈ L2
loc([0,+∞);U) | y(·, y0, δ;u(·)) > 0}.

Setting y(t) := y(t; y0, δ(·), u(·)), we define the objective functional

J0(y0, δ(·);u(·)) =

∫ +∞

0

e−ρt

(
g0(y(t)) − h0(u(t))

)
dt, (2.3)

where ρ > 0 and g0 : (0,+∞) → R, h0 : U → R are measurable functions
satisfying

Hypothesis 2.3.

(i) The function g0 : (0,+∞) → R is continuous, concave, nondecreasing
and bounded from above.

(ii) The cost function h0 ∈ C1(U), is convex and bounded from below.
Without loss of generality we assume h0(0) = 0. Moreover

limu↓u h
′
0(u) ≥ 0; limu↑u h

′
0(u) = +∞. (2.4)

Finally in the case ū = +∞ we assume

∃ α > 0 : lim inf
u→∞

h0(u)

u1+α
> 0. (2.5)



2.1. Representation in infinite dimension 9

The optimization problem consists in the maximization of the objective
functional J0 over the set of all admissible strategies U(y0, δ(·)), i.e.

max
u(·)∈U(η)

J0(y0, δ(·);u(·)). (2.6)

Remark 2.1. We comment on the modeling features.

(i) We consider the optimal control problem imposing the strict constraint
y(·) > 0 on the state variable. The case of large state constraint y(·) ≥
0 can be treated as well.

(ii) The assumption that g0 is bounded from above (Hypothesis 2.3-(i)) is
quite unpleasant, if we think about the applications. However we stress
that this assumption is taken here just for convenience and can be re-
placed with a suitable assumption on the growth of g0, relating it to the
requirement of a large enough discount factor ρ.

(iii) The conditions required for the cost function h0 ensure that the Legendre
transform h0 is strictly convex (0,+∞), see Lemma . This is easy in
the case ū < +∞, less standard in the case ū = +∞.

(iv) We consider a delay r belonging to (−∞, 0]. However one can obtain
the same results even allowing r = −∞ as in [60], suitably redefining
the boundary conditions as limits. In the definition of the Sobolev spaces
W k,2

r,0 , the boundary conditions required become

W k,2
r,0 :=

{
f ∈ W k,2 | lim

r→−∞
f (i)(r) = 0, ∀i = 0, 1, ..., k − 1

}
⊂ W k,2

r .

�

2.1 Representation in infinite dimension

In this section we restate the delay differential equation (2.1) as an abstract
evolution equation in infinite dimension. The infinite-dimensional setting
will be represented by the Hilbert space H = R ×W 1,2

r,0 . We use the Semi-
groups Theory, for which we refer to [28]. The following argument is just a
suitable rewriting in H of the method illustrated in [11] in the framework of
the product space R× L2.

Let A be the unbounded linear operator on D(A) ⊂ H, defined as

A : D(A) ⊂ H → H, (η0, η1(·)) 7→ (aη0 + η1(0),−η′1(·)), (2.7)
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where a is the constant appearing in (2.1), defined on

D(A) = R×W 2,2
r,0 .

It is possible to show by direct computations that A is a (densely defined)
closed operator and generates a C0-semigroup (SA(t)t)t≥0 in H. However,
we provide the proof of that in the following subsection 2.1.1 by using some
known facts from the Semigroups Theory.

The explicit expression of SA(t) is

SA(t)η =

(
η0e

at +

∫ 0

(−t)∨(−r)

η1(ξ)e
a(ξ+t)dξ, η1(· − t)1[−r,0](· − t)

)
,

η = (η0, η1(·)) ∈ H.

(2.8)

By Chapter 2, Proposition 4.7 in [53], there exist M > 0, ω ∈ R such that

∥SA(t)∥ ≤ Meωt, t ≥ 0, (2.9)

where M and ω depend on a and r. For the exactly calculations of (2.8) and
(2.9), we refer the reader to the Appendix 2.1.1.

In the space H we set

b := (b0, b1(·)) and b̂ := b/∥b∥

and consider the bounded linear operator B defined as

B : U → H, u 7→ bu. (2.10)

Often we will identify the operator B with b.

Given u(·) ∈ L2
loc([0,+∞),R) and η ∈ H, we consider the abstract pro-

blem in the Hilbert space H,{
Y ′(t) = AY (t) + Bu(t),

Y (0) = η.
(2.11)

We will use two concepts of solution to (2.11), that in our case coincide each
other. For details we refer to [53, Chapter 2, Section 5].

In the definitions below the integral in dt is intended in Bochner sense in
the Hilbert space H.
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Definition 2.1.

(i) We call mild solution of (2.11) the function Y ∈ C([0,+∞), H) de-
fined as

Y (t) = SA(t)η +

∫ t

0

SA(t− τ)Bu(τ)dτ, t ≥ 0. (2.12)

(ii) We call weak solution of (2.11) a function Y ∈ C([0,+∞), H) such
that, for any ϕ ∈ D(A∗),

⟨Y (t), ϕ⟩ = ⟨η, ϕ⟩ +

∫ t

0

⟨Y (τ), A∗ϕ⟩dτ +

∫ t

0

⟨Bu(τ), ϕ⟩dτ, ∀t ≥ 0.

(2.13)

From now on we denote by Y (·; η, u(·)) the mild solution of (2.11). We notice
that the definition of mild solution is the infinite-dimensional version of the
variation of constants formula. By a well-known result (see [53, Chapter 2,
Proposition 5.2]), the mild solution is also the (unique) weak solution.

2.1.1 The semigroup SA(t) on H

Hereafter, given f ∈ L2, with a slight abuse of notation we shall intend it
extended on [−r,+∞) setting f ≡ 0 on (0,+∞).
Consider the space X = R× L2 endowed with the inner product

⟨·, ·⟩X = ⟨·, ·⟩R + ⟨·, ·⟩L2 ,

which makes it a Hilbert space. On this space consider the unbounded ope-
rator

Ā∗ : D(Ā∗) ⊂ X −→ X, (η0, η1(·)) 7−→ (aη0, η
′
1(·)) (2.14)

defined on the domain

D(Ā∗) =
{
η = (η0, η1(·)) | η1 ∈ W 1,2, η1(0) = η0

}
.

It is well known (see [28]) that Ā∗ is a closed operator which generates a C0-
semigroup (SĀ∗(t))t≥0 on X. More precisely the explicit expression of SĀ∗(t)
acting on ψ = (ψ0, ψ1(·)) ∈ X is

SĀ∗(t)ψ =
(
eatψ0,1[−r,0](t+ ξ)ψ1(t+ ξ) + 1[0,+∞)(t+ ξ)ea(t+ξ)ψ0

∣∣
ξ∈[−r,0]

)
.

(2.15)
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On the other hand it is possible to show (see e.g. [34]) that Ā∗ is the adjoint
of the Ā on X defined by

Ā : D(Ā) ⊂ X −→ X
(η0, η1(·)) 7−→ (aη0 + η1(0),−η′1(·)),

where
D(Ā) = R×W 1,2

0 = H.

It follows (see [28]) that Ā generates on X the C0-semigroup (SĀ(t))t≥0 where

SĀ(t) = SĀ∗(t)∗, ∀t ≥ 0.

We can compute the explicit expression of the semigroup SĀ(t) through the
relation

⟨SĀ(t)ϕ, ψ⟩ = ⟨ϕ, SĀ∗(t)ψ⟩, ∀ϕ = (ϕ0, ϕ1(·)) ∈ X, ∀ψ = (ψ0, ψ1(·)) ∈ X.

By (2.15), we calculate

⟨S̄Ā(t)ϕ, ψ⟩ = ϕ0e
atψ +

∫ (−t)∨(−r)

−r

ϕ1(ξ)ψ1(t+ ξ)dξ

+

∫ 0

−(t)∨(−r)

ϕ1(ξ)ψ0e
a(t+ξ)dξ = ϕ0e

atψ0 +

∫ 0

(−r+t)∧0
ϕ1(ξ − t)ψ1(ξ)dξ

+

∫ 0

(−t)∨(−r)

ϕ1(ξ)e
a(ξ+t)ψ0dξ.

(2.16)
So we can write the explicit form of the semigroup S̄(t) as

SĀ(t)ϕ =

(
ϕ0e

at +

∫ 0

(−t)∨(−r)

ϕ1(ξ)e
a(ξ+t)dξ, T (t)ϕ1

)
, ϕ = (ϕ0, ϕ1(·)) ∈ X,

(2.17)
where (T (t))t≥ 0 is the semigroup of truncated right shifts on L2 defined as

[T (t)f ](ξ) =

{
f(ξ − t), −r ≤ ξ − t,
0, otherwise,

(2.18)

for f ∈ L2. So, we may rewrite the above expression as

SĀ(t)ϕ =

(
ϕ0e

at +

∫ 0

(−t)∨(−r)

ϕ1(ξ)e
a(ξ+t)dξ, ϕ1(· − t)1[−r,0](· − t)

)
,

ϕ = (ϕ0, ϕ1(·)) ∈ X.

(2.19)
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Equation (2.19) defines the explicit form of the semigroup (S̄(t))t≥ 0.

We have defined the semigroup SĀ(t) and its infinitesimal generator (Ā,D(Ā))
in the space X. Therefore, by well-known results (see [28, chapter II, pag
124]), we get that Ā|D(Ā2) is the generator of a C0-semigroup on (D(Ā), ∥ ·
∥D(Ā)), which is nothing but the restriction of SĀ to this subspace. Now we
notice that

D(Ā) = H, ∥ · ∥D(Ā) ∼ ∥ · ∥, D(Ā2) = W 2,2
0 = D(A), Ā|W 2,2

0
= A,

where A is the operator defined in (2.7). Hence, we conclude that A generates
a C0-semigroup on H, whose expression is the same given in (2.17). We
denote such semigroup by SA(t).
Moreover we recall that if S(t) is a C0 semigroup on a Banach space H, then
there exist constants M ≥ 1 and ω ∈ R, such that

∥S(t)∥ ≤ Meωt, t ≥ 0. (2.20)

[53, Chapter 2, Proposition 4.7]. Then, in this case, using Holder’s inequality
and taking into account that ϕ1(−r) = 0 we compute for every t ≥ 0∣∣∣∣ϕ0e

at +

∫ 0

(−t)∨(−r)

ϕ1(ξ)e
a(ξ+t)dξ

∣∣∣∣2 ≤ 2e2at|ϕ0|2 + 2e2at
(∫ 0

−r

|ϕ1(ξ)|dξ
)2

≤ 2e−at|ϕ0|2 + 2e2atr

(∫ 0

−r

|ϕ1(ξ)|2dξ
)

≤ 2e2at|ϕ0|2 + 2e2atr

(∫ 0

−r

∣∣∣∣∫ ξ

−r

ϕ′
1(s)ds

∣∣∣∣2 dξ
)

≤ 2e2at|ϕ0|2

+ 2e2atr

(∫ 0

−r

(r + ξ)

(∫ ξ

−r

|ϕ′
1(s)|2ds

)
dξ

)
≤ 2e2at|ϕ0|2 + e2atr3∥ϕ1∥2W 1,2

r,0
.

Moreover

∥T (t)∥L(W 1,2
r,0 )

≤ 1, ∀t ∈ [0, r]; ∥T (t)∥L(W 1,2
r,0 )

= 0, ∀t > r.

The computations above show that

∥etA∥L(H) ≤ (2 + r3)1/2eat, ∀t ≥ 0. (2.21)

So, setting
ω = a and M = (2 + r3)1/2, (2.22)

(2.20) is verified.
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2.1.2 Equivalence with the original problem

In order to state equivalence results between the DDE (2.1) and the abstract
evolution equation (2.11) when A and B are defined by (2.10) and (2.7),
respectively, we need to link the canonical R-valued integration with the
W 1,2

r,0 -valued integration. This is provided by the following lemma, whose
proof for L2

r-valued processes can be found in [33, Chapter 2]. A similar
argument holds for W 1,2

r,0 -valued processes (this is even easier, as the functions

of W 1,2
r,0 are pointwise well defined), and the proof is provided in the Appendix

(see B).

Lemma 2.1. Let 0 ≤ a < b and f ∈ L2
(
[a, b];W 1,2

0

)
. Then(∫ b

a

f(t)dt

)
(ξ) =

∫ b

a

f(t)(ξ)dt, ∀ξ ∈ [−r, 0],

where the integral in dt in the left handside is intended as Bochner integral
in the space W 1,2

0 . �

Also we need to study the adjoint operator A∗ in order to use the concept of
weak solution of (2.11).

Proposition 2.1. We have

D(A∗) =
{
ϕ = (ϕ0, ϕ1(·)) ∈ H | ϕ1 ∈ W 2,2

r , ϕ′
1(0) = 0

}
and

A∗ϕ =

(
aϕ0, ξ 7→ ϕ′

1(ξ) + ϕ0(ξ + r) +

∫ 0

−r

ϕ′′
1(s)ds

)
, ϕ ∈ D(A∗). (2.23)

Proof. Let

D :=
{
ϕ = (ϕ0, ϕ1(·)) ∈ H | ϕ1 ∈ W 2,2

r , ϕ′
1(0) = 0

}
.

First of all we notice that, defining A∗ϕ on D as in (2.23), we have A∗ϕ ∈ H.
Now notice that

ψ′
1(−r) = 0, ψ1(0) =

∫ 0

−r

ψ′
1(ξ)dξ, ∀ψ ∈ D(A). (2.24)

Therefore, taking into account (2.24), we have for every ψ ∈ D(A) and every
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ϕ ∈ D

⟨Aψ, ϕ⟩ = aψ0ϕ0 + ψ1(0)ϕ0 −
∫ 0

−r

ψ′′
1(ξ)ϕ′

1(ξ)dξ

= aψ0ϕ0 +

(∫ 0

−r

ψ′
1(ξ)dξ

)
ϕ0 − ψ′

1(0)ϕ′
1(0) + ψ′

1(−r)ϕ′
1(−r)

+

∫ 0

−r

ψ′
1(ξ)ϕ

′′
1(ξ)dξ

= aψ0ϕ0 +

∫ 0

−r

ψ′
1(ξ) (ϕ0 + ϕ′′

1(ξ)) dξ.

(2.25)

The equality above shows that D ⊂ D(A∗) and that A∗ acts as claimed
in (2.23) on the elements of D.

Now we have to show that D = D(A∗). For sake of brevity we only sketch
the proof of this fact here2, as a complete proof would require a study of the
adjoint semigroup etA

∗
. We observe that D is dense in H. Moreover an ex-

plicit computation of the adjoint semigroup etA
∗

would show that etA
∗D ⊂ D

for any t ≥ 0. Hence, by [24, Th.1.9, p.8], D is dense in D (A∗) endowed with
the graph norm. Finally, using (2.23) it is easy to show that D is closed in
the graph norm of A∗ and therefore D (A∗) = D. �

Let v ∈ L2
r and consider the function

(v ∗ b1)(ξ) =

∫ ξ

−r

b1(τ)v(τ − ξ)dτ, ξ ∈ [−r, 0].

First of all we notice that (v ∗ b1)(−r) = 0. Extend b1 to a W 1,2
r (R) function

on R equal to 0 in (−∞,−r) (recall that b1(−r) = 0) and extend v to an
L2(R;R) function simply defining it equal to 0 out of [−r, 0]. Then the
function above can be rewritten as

(v ∗ b1)(ξ) =

∫
R
b1(τ)v(τ − ξ)1(−∞,0](τ − ξ)dτ, ξ ∈ [−r, 0].

Since v1(−∞,0] ∈ L2(R;R) and b1 ∈ W 1,2(R;R), [14, Lemma VIII.4] yields

v ∗ b1 ∈ W 1,2
r,0 and

(v ∗ b1)′(ξ) =

∫ ξ

−r

b′1(τ)v(τ − ξ)dτ. (2.26)

2To this regard we observe that we will use in the following only the fact D ⊂ D(A∗)
and that (2.23) holds true on the elements of D, which has been proven rigorously. More
precisely we will use the fact that (1, 0) ∈ D ⊂ D(A∗) in the proof of Theorem 2.4.
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Consider still v extended to 0 out of [−r, 0] and set vξ(τ) := v(τ − ξ), τ ∈
[−r, 0] for ξ ∈ [−r, 0]. Of course vξ ∈ L2

r and ∥vξ∥L2
r
≤ ∥v∥L2

r
for every

ξ ∈ [−r, 0]. Then, due to (2.26) and by Holder’s inequality we have

∥v ∗ b1∥2W 1,2
r,0

=

∫ 0

−r

∣∣∣∣∫ ξ

−r

b′1(τ)v(τ − ξ)dτ

∣∣∣∣2 dξ =

∫ 0

−r

∣∣∣∣∫ ξ

−r

b′1(τ)vξ(τ)dτ

∣∣∣∣2 dξ
≤
∫ 0

−r

(∫ 0

−r

|b′1(τ)vξ(τ)|dτ
)2

dξ ≤
∫ 0

−r

(
∥b′1∥2L2

r
∥vξ∥2L2

r

)
dξ ≤ r∥b′1∥2L2

r
∥v∥2L2

r
.

(2.27)

Let us introduce the continuous linear map M :

M : R × L2([−r, 0];R) −→ H

(z, v) 7−→ (z, v ∗ b1) =
(
z,
∫ ·
−r
b1(τ)v(τ − ·)dτ

)
.

(2.28)
Due to (2.27), M is bounded. Call

M := Im(M). (2.29)

Remark 2.2. Of course M is a linear subspace of H. It should be possible
using [10] that is not closed. �

Theorem 2.4. Let y0 ∈ R, δ ∈ L2
r, u(·) ∈ L2([0,+∞),R). Set

η := M(y0, δ(·)) ∈ M; u(s) := δ(s), s ∈ [−r, 0); Y (t) := Y (t; η, u(·)), t ≥ 0.
(2.30)

Then
Y (t) = M(Y0(t), u(t+ ·)), ∀t ≥ 0. (2.31)

Moreover, let y(·) := y(·; y0, δ, u(·)) be the unique solution to (2.1). Then

y(t) = Y0(t), ∀t ≥ 0. (2.32)

Proof. Let Y be the mild solution defined by (2.12) with initial condition
η given by (2.30). On the second component it reads

Y1(t) = T (t)η1 +

∫ t

0

[T (t− s)b1]u(s)ds

= 1[−r,0](· − t)η1(· − t) +

∫ t

0

1[−r,0](· − t+ s)b1(· − t+ s)u(s)ds

(2.33)
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where (T (t))t≥0 is the semigroup of truncated right shifts onW 1,2
0 just defined,

that is

[T (t)ϕ](ξ) = 1[−r,0](ξ − t)ϕ(ξ − t), ξ ∈ [−r, 0].

We recall that by hypothesis η = M(y0, δ(·)), so we write the second com-
ponent of the initial datum

η1(ξ) =

∫ ξ

−r

b1(α)δ(α− ξ)dα.

Then, by (2.33) and due to Lemma B.3, the second component evaluated at
ξ is

Y1(t)(ξ) = 1[−r,0](ξ−t)
∫ ξ−t

−r

b1(α)u(α−ξ+t)dα +

∫ t

0

1[−r,0](ξ−t+s)b1(ξ−t+s)u(s)ds.

(2.34)
Taking into account that 0 ≤ s ≤ t, we have ξ − t ≤ ξ − t+ s ≤ ξ, so that,
setting α = ξ − t + s in the second part of the right handside of (2.34), it
becomes

Y1(t)(ξ) = 1[−r,0](ξ − t)

∫ ξ−t

−r

b1(α)u(α− ξ + t)dα +

∫ ξ

ξ−t

1[−r,0](α)b1(α)u(α− ξ + t)dα

=

∫ (ξ−t)∨(−r)

−r

b1(α)u(α− ξ + t)dα +

∫ ξ

(ξ−t)∨(−r)

b1(α)u(α− ξ + t)dα.

=

∫ ξ

−r

b1(α)u(α + t− ξ)dα.

(2.35)
Therefore, due to the (2.28), (2.31) is proved.
It follows immediately, setting ξ = 0 in (2.35), that

Y1(t)(0) =

∫ 0

−r

b1(α)u(t+ α)dα. (2.36)

Let us show (2.32). We use the fact that Y (·) is also a weak solution of
(2.11).
From Proposition 2.1 we know that

(1, 0) ∈ D(A∗), A∗(1, 0) = (a, ξ 7→ ξ + r) . (2.37)

Therefore taking into account (2.37) and (2.36) and Definition 2.1-(i), we
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have for every t ≥ 0

Y ′
0(t) =

d

dt
⟨Y (t), (1, 0)⟩ = ⟨Y (t), A∗(1, 0)⟩ + ⟨Bu(t), (1, 0)⟩

= aY0(t) +

∫ 0

−r

Y1(t)
′(ξ)dξ + b0u(t)

= aY0(t) + Y1(t)(0) − Y1(t)(−r) + b0u(t)

= aY0(t) +

∫ 0

−r

b1(ξ)u(t+ ξ)dξ + b0u(t).

(2.38)

Therefore Y0(t) solves (2.1), with initial data (y0, δ(·)), so it must coincide
with y(t). �

We use the above result to reformulate the optimization problem (2.3) in H.
Let η ∈ H and define the (possibly empty) set

U(η) := {u(·) ∈ L2([0,+∞);U) | Y0(·; η, u(·)) > 0, ∀ t ≥ 0}.

Given u(·) ∈ U(η) define

J(η;u(·)) =

∫ +∞

0

e−ρt

(
g(Y (t; η, u(·))) + h(u(t))

)
dt. (2.39)

where

h : U → R, h := −h0; g : H → R, g(η) := g0(η0). (2.40)

Due to (2.32), if η = M(y0, δ(·)) then

U(η) = U(y0, δ(·))

and
J(η;u(·)) = J0(y0, δ(·);u(·)), (2.41)

where J0 is the objective functional defined in (2.3). Therefore, we have
reduced the original problem (2.6) to

max
u(·)∈U(y0,δ(·))

J(η; u(·)), η = M(y0, δ(·)) ∈ M. (2.42)

Although we are interested to solve the problem for initial data η ∈ M, as
these are the initial data coming from the real original problem, we enlarge
the problem to data η ∈ H and consider the functional (2.39) defined also
for these data. So the problem is

max
u(·)∈U(η)

J(η; u(·)), η ∈ H. (2.43)
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2.1.3 Continuous dependence on initial data

In this subsection we introduce a weaker norm and we study the continuous
dependence on initial data of the mild solution (2.12) with respect to this
norm. We introduce the following assumption

Hypothesis 2.5. a ̸= 0.

From now on we assume Hypothesis 2.5.

Remark 2.3. First of all we notice that Hypothesis 2.5 is not restrictive
for the applications, as the a = 0 can be treated translating the problem as
follows. Take a = 0. The state equation in infinite dimension is (2.11) with

A : (ϕ0, ϕ1(·)) 7→
(
ϕ1(0),−ϕ′

1(·)
)
.

However, we can rewrite it as

Y ′(t) = ÃY (t) − P0Y (t) + Bu(t),

where

P0 : H 7→ H, P0ϕ = (ϕ0, 0); Ã = A+ P0.

Then everything we will do can be suitably replaced dealing with this translated
equation. �

Due to Hypothesis 2.5, the inverse operator of A is well defined. This is a
bounded operator H → D(A) whose explicit expression is

A−1 : (H, ∥ · ∥H) −→ (D(A), ∥ · ∥H),

η 7→

(
η0 +

∫ 0

−r
η1(s)ds

−a
,−
∫ ξ

−r

η1(s)ds

)
.

We define on H the norm ∥ · ∥−1 as

∥η∥−1 := ∥A−1η∥, (2.44)

so

∥η∥2−1 =

∣∣∣∣∣η0 +
∫ 0

−r
η1(s)ds

a

∣∣∣∣∣
2

+

∫ 0

−r

|η1(s)|2ds. (2.45)

Lemma 2.2. The norms ∥ · ∥−1 and ∥ · ∥X are equivalent in H.
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Proof. Let η = (η0, η1) ∈ H. Taking into account (2.45) and by Hölder’s
inequality, we have

∥η∥2X = |η0|2 +

∫ 0

−r

|η1(ξ)|2dξ

=

∣∣∣∣η0 +

∫ 0

−r

η1(ξ)dξ −
∫ 0

−r

η1(ξ)dξ

∣∣∣∣2 +

∫ 0

−r

|η1(ξ)|2dξ

≤ 2

∣∣∣∣η0 +

∫ 0

−r

η1(ξ)dξ

∣∣∣∣2 + 2

∣∣∣∣∫ 0

−r

η1(ξ)dξ

∣∣∣∣2 +

∫ 0

−r

|η1(ξ)|2dξ

≤ 2

∣∣∣∣η0 +

∫ 0

−r

η1(ξ)dξ

∣∣∣∣2 + 2

(∫ 0

−r

|η1(ξ)|dξ
)2

+

∫ 0

−r

|η1(ξ)|2dξ

≤ 2a2

∣∣∣∣∣η0 +
∫ 0

−r
η1(ξ)dξ

a

∣∣∣∣∣
2

+ 2r2
∫ 0

−r

|η1(ξ)|2dξ +

∫ 0

−r

|η1(ξ)|2dξ

≤ C2∥η∥2−1,

where C2 = max{2a2, 2r2 + 1}.
On the other hand, still using (2.45) and Hölder’s inequality, we have

∥η∥2−1 =

∣∣∣∣∣η0 +
∫ 0

−r
η1(s)ds

a

∣∣∣∣∣
2

+

∫ 0

−r

|η1(s)|2ds

≤ 2

a2
|η0|2 +

∫ 0

−r

|η1(s)|2ds

≤ N2∥η∥2X ,

where N2 = max

{
2

a2
, 1

}
. The claim is proved. �

From Lemma 2.2 we get the following

Corollary 2.1. There exists a constant Ca,r > 0 such that

|η0| ≤ Ca,r∥η∥−1, ∀η ∈ H. (2.46)
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Proof. We have, taking into account the Hölder inequality,

|η0|2 =

∣∣∣∣η0 +

∫ 0

−r

η1(ξ)dξ −
∫ 0

−r

η1(ξ)dξ

∣∣∣∣2
≤ 2

∣∣∣∣η0 +

∫ 0

−r

η1(ξ)dξ

∣∣∣∣2 + 2

∣∣∣∣∫ 0

−r

η1(ξ)dξ

∣∣∣∣2
≤ 2

∣∣∣∣η0 +

∫ 0

−r

η1(ξ)dξ

∣∣∣∣2 + 2

(∫ 0

−r

|η1(ξ)|dξ
)2

≤ 2a2

∣∣∣∣∣η0 +
∫ 0

−r
η1(ξ)dξ

a

∣∣∣∣∣
2

+ 2r2
∫ 0

−r

|η1(ξ)|2dξ

≤ (2a2 + 2r2)∥η∥2−1. �

Remark 2.4. Corollary 2.1 represents a crucial issue and motivates our
choice of working in the product space R ×W 1,2

0 in place of the more usual
product space R×L2. Indeed, embedding the problem in R×L2 and defining
everything in the same way in this bigger space, we would not be able to
control |η0| by ∥η∥−1. But this estimate is necessary to prove the continuity
of the value function with respect to ∥ · ∥−1, since in this way g is Lipschitz
continuous in (H, ∥ · ∥−1) (see Proposition 3.4). And, on the other hand, the
continuity of V with respect to ∥ · ∥−1 is necessary to have a suitable property
for the superdifferential of V (see Proposition 3.5), allowing to handle the
unbounded linear term in the HJB equation. �

Lemma 2.3. We denote

Ct := (2 + r3)
1
2 eat and C̃t := Ca,re

at, (2.47)

where Ca,r is the constant appearing in (2.46).
Let Y (·), Y (·) be the mild solutions to (2.11) starting respectively from η, η̄ ∈
H. Then

∥Y (t) − Y (t)∥−1 ≤ Ct∥η − η̄∥−1, ∀t ≥ 0. (2.48)

In particular, by (2.46),

|Y0(t) − Y 0(t)| ≤ C̃t∥η − η̄∥−1, ∀t ≥ 0. (2.49)

Proof. By Definition 2.1-(i), for all t ≥ 0, we can write

Y (t) − Y (t) = SA(t)(η − η̄).

Then we have

A−1
(
Y (t) − Y (t)

)
= SA(t)A−1(η − η̄)



22
2. Setup of the Control Problem and infinite dimensional differential

equation

and by (2.44), (2.47) and (2.21), it holds

∥Y (t) − Y (t)∥−1 ≤ Ct∥η − η̄∥−1

whit Ct is above defined and it depends on semigroup SA(·) through (2.21).
By (2.44) and (2.32) we have

|Y0(t) − Y 0(t)| = |y(t) − ȳ(t)| = |eat(η0 − η̄0)| ≤ C̃t∥η − η̄∥−1

and the second claim is proved. �



Chapter 3

The value function in the space
H

In this section we study some qualitative properties of the value function V
associated to the optimization problem (2.43) in the space H. Then we use
such properties to investigate the nature of the superdifferential.

For η ∈ H the value function of our problem is the function V : H −→ R

V (η) := sup
u(·)∈U(η)

J(η, u(·)) (3.1)

with the convention
sup ∅ = −∞.

We notice that the value function is bounded from above due to the Hy-
potheses 2.3 on the functions h and g.

The domain of the value function V is defined as

D(V ) := {η ∈ H | V (η) > −∞}.

Since g and h are bounded from below, we have

D(V ) := {η ∈ H | U(η) ̸= ∅} (3.2)

and V is bounded from below in D(V ).

We define the space
H+ := (0,+∞) ×W 1,2

r,0 .

Of course if η /∈ H+, we have U(η) = ∅, so that η /∈ D(V ). This means that

D(V ) ⊂ H+.
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.

Definition 3.1. Let η ∈ D(V ).

(i) An admissible control u∗(·) ∈ U(η) is said to be optimal for the initial
state η if J(η;u∗(·)) = V (η).

(ii) Let ε > 0. An admissible control uε(·) ∈ U(η) is said ε-optimal for the
initial state η if J(η;uε(·)) > V (η) − ε.

Proposition 3.1. The value function V is finite from below.

Proof. The boundness from below is a direct consequence of the bound-
ness of g. �

Proposition 3.2. The set D(V ) is convex and the value function V is con-
cave on D(V ).

Proof. Let η, η̄ ∈ D(V ) and set, for λ ∈ [0, 1], ηλ := λη+ (1− λ)η̄. For
ε > 0, let uε(·) ∈ U(η) and ūε(·) ∈ U(η̄) be two controls ε-optimal for the
initial states η, η̄ respectively. Set

y(·) := y(·; η, uε(·)), ȳ(·) := ȳ(·; η̄, ūε(·)), uλ(·) := λuε(·) + (1 − λ)ūε(·).

Finally set yλ(·) := λy(·) + (1 − λ)ȳ(·).
The function h is concave so one has

h(uλ(t)) ≥ λh(uε(t)) + (1 − λ)h(ūε(t)), t ≥ 0. (3.3)

Moreover, by linearity of the state equation, we have

Y (t; ηλ, uλ(·)) := λY (y; η, uε(·)) + (1 − λ)Y (t; η̄, ūε(·)).

Hence, by concavity of g we have

g(Y (t; ηλ, uλ(·))) ≥ λg(Y (t; η, uε(·))) + (1−λ)g(Y (t; η̄, ūε(·))), t ≥ 0. (3.4)

So, we have

V (ηλ) ≥ J(ηλ, u
λ(·)) =

∫ +∞

0

e−ρt
(
g(Y (t; ηλ, uλ)) + h(uλ(t))

)
dt

≥
∫ +∞

0

e−ρt

(
λg(Y (t; η, uε)) + (1 − λ)g(Y (t; η̄, ūε)) + λh(uε(t))

+ (1 − λ)h(ūε(t))

)
dt

= λJ(η, uε) + (1 − λ)J(η̄, ūε) > λV (η) + (1 − λ)V (η̄) − ε
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Since ε is arbitrary, this shows both the claims.

We introduce the following assumptions.

Hypothesis 3.1.

(i) g0 is strictly increasing.

(ii) b0 ≥ 0, b1(·) ≥ 0 almost everywhere.

Proposition 3.3.

(i) Let Hypothesis 3.1-(ii) hold. Then the value function V is nondecrea-
sing along the direction b̂ in D(V ).

(ii) Let Hypotheses 3.1-(i)-(ii) hold. Then the value function V is strictly
increasing along the direction b̂ in D(V ).

Proof. (i) Given η, ζ ∈ H we say that η ≥ ζ if

η0 ≥ ζ0 and η1(ξ) ≥ ζ1(ξ), ∀ ξ ∈ [−r, 0].

Let η ∈ D(V ) and α1, α2 ∈ R such that α1 ≤ α2. We notice that SA(t) is
positive preserving, which means that

η ≥ 0 =⇒ SA(t)η ≥ 0.

Let u(·) ∈ U(η + α1b̂) and consider Y (·; η + α1b̂, u(·)). We have

Y (·; η + α2b̂, u(·)) − Y (·; η + α1b̂, u(·)) = SA(t)
(

(α2 − α1)b̂
)
≥ 0. (3.5)

Therefore in particular

Y0(t; η + α2b, u(·)) ≥ Y0(t; η + α1b, u(·)). (3.6)

This shows that u(·) ∈ U(η + α2b̂). Hypothesis 3.1-(i) implies that g is
nondecreasing with respect to the order relation defined above.
Set

β(t) :=

∫ t

0

SA(t− τ)Bu(τ)dτ.

Then, also taking into account (3.5)

J(η + α2b̂;u(·)) − J(η + α1b̂;u(·))

=

∫ +∞

0

e−ρt
(
g(Y (t; η + α2b̂, u(·)) − g(Y (t; η + α1b̂, u(·)))

)
dt

=

∫ +∞

0

e−ρt
(
g(SA(t)(η + α2b̂) + β(t)) − g(SA(t)(η + α1b̂) + β(t))

)
dt.
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So also
V (η + α2b̂) ≥ V (η + α1b̂)

and the claim is proved.

(ii) We consider η ∈ D(V ) and α1, α2 ∈ R such that α1 ≤ α2. By
item (i) follows the monotonicity of the value function V. Then assuming by
contradiction that it is not strictly increasing on D(V ), it follows that it must
be constant ᾱ1 such that V (η + α1b̂) is constant on the half line [ᾱ1,+∞).
In this case we have

V (η + α2b) = V (η + α1b). (3.7)

Let uε(·) ∈ U(η + α1b̂) a ε-optimal control for initial state η + α1b̂ such that

J(η + α1b̂) = V (η + α1b̂) − ε. (3.8)

By (3.6), uε(·) ∈ U(η + α1b̂) and it is an admissible control for initial state
η + α2b̂.
Taking into account Hypotheses 2.40, Hypothesis 3.1-(i) we can write

J(η + α2b̂, u
ϵ(·)) > J(η + α1b̂, u

ϵ(·)),

so we have

J(η+α2b̂, u
ε(·)) > J(η+α1b̂, u

ε(·))+ε = V (η+α1b̂) = V (η+α2b̂) ≥ J(η+α2b̂).

�

3.0.4 ∥ · ∥−1-continuity of the value function

In this subsection we prove a continuity property of the value function which
is the key to treat the unbounded term in the HJB equation. From now on
we assume that Hypothesis 3.1 holds true. In order to proceed we introduce
the sets

F :=

{
η ∈ H+

∣∣∣ ∫ 0

−ξ

η1(s)e
asds ≥ 0 ∀ ξ ∈ [−r, 0]

}
and

H++ := (0,+∞) × {η1(·) ∈ W 1,2
r,0 | η1(·) > 0 a.e.}.

We note that
H++ ⊂ F ⊂ H+.
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Proposition 3.4.

(i) ∀ η ∈ F , we have 0 ∈ U(η). In particular, by (3.2) F ⊂ D(V ).

(ii) Let Hypothesis 3.1-(ii) hold. Then the set D(V ) is open in the space
(H, ∥ · ∥−1).

(iii) Let Hypothesis 3.1-(ii) hold. Then the value function V is continuous
with respect to ∥ · ∥−1 in D(V ).

Proof. (i) Let η ∈ F and set Y (·) := Y (·; η, 0). Due to Definition 2.1-(i)
and to the definition of the set F ,

Y0(t) = [SA(t)η]0 = η0e
at +

∫ 0

(−t)∨(−r)

ea(t+ξ)η1(ξ)dξ,

= eat
(
η0 +

∫ 0

(−t)∨(−r)

eaξη1(ξ)dξ

)
> 0, ∀ t ≥ 0.

(ii) Let η̄ ∈ D(V ). Then in particular U(η̄) ̸= ∅, so there exists a control
u(·) ∈ U(η̄) such that Y0(t; η̄, u(·)) > 0 for every t ≥ 0. Given ε > 0 define

B−1(η̄, ε) := {η ∈ H+ | ∥η − η̄∥−1 < ε} .

Due to (3.2) we have to prove that

∃ ε > 0, s. t. U(η) ̸= ∅ ∀ η ∈ B−1(η̄, ε). (3.9)

Let η ∈ B−1(η̄, ε). By Lemma 2.3, we know that

|Y0(t; η, u(·)) − Y0(t; η̄, u(·))| ≤ aCt∥η − η̄∥−1, ∀ t ∈ [0, r].

Since Y0(t; η̄, u(·)) > 0 in [0, r],

∃ ε > 0 s. t. Y (t; η, u(·)) > 0, ∀ t ∈ [0, r]. (3.10)

Define the control

ũ(·) =


u(·), if t ∈ [0, s],

0, if t > s.
(3.11)

We have

Y0(t; η, ũ(·)) = Y0(t; η, u(·)) > 0, ∀ t ∈ [0, r].
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By the semigroup properties of the mild solution of (2.11) (see [28, Chapter
II]), setting t̃ = t− r we have

η̃ := Y (t; η, ũ(·)) = Y (t− r;Y (s; η, u(·)), ũ(· + r)) = Y (t̃, η̃, 0), ∀ t > r.
(3.12)

By (2.31) we have Y1(r, η, u(·))(ξ) =
∫ ξ

−r
b1(α)u(r+α−ξ)dα that is nonnega-

tive, since by Hypothesis 2.1 u(·) ≥ 0 and by Hypotheses 3.1-(ii) b1(·) ≥ 0.
This means that η̃ ∈ H++ ⊂ F , so that by (i)

Y (t̃, η̃, 0)) > 0 ∀ t̃ ≥ 0.

Thus, by (4.5), we have that Y (t; η, ũ(·)) > 0 for every t ≥ 0, so (3.9) is
proved with ε > 0 realizing (4.6).
(iii) The function V is concave and bounded from below in the ∥ · ∥−1 open
set D(V ). Therefore the claim follows by a result of Convex Analysis ([27,
Chapter 1, Corollary 2.4]) �

Remark 3.1. D(V ) is open also with respect to ∥ · ∥. �

3.0.5 Superdifferential of concave ∥·∥−1-continuous func-
tion

Motivated by Proposition 3.2 and Proposition 3.4, in this subsection we focus
on the properties of the superdifferential of concave and ∥ · ∥−1-continuous
functions. This will be useful to prove the regularity result in the next section.
We recall first some definitions and basic results from non-smooth analysis
concerning the generalized differentials. For rigorous details we remind the
reader to [53].

Let v be a concave continuous function defined on some open set A of H. We
have the following

Definition 3.2. For each η ∈ A the set

D−v(η) :=

{
p ∈ H | lim inf

ζ→ η

v(ζ) − v(η) − ⟨ζ − η, p⟩H
∥ζ − η∥

≥ 0

}
,

D+v(η) :=

{
p ∈ H | lim sup

ζ→ η

v(ζ) − v(η) − ⟨ζ − η, p⟩H
∥ζ − η∥

≤ 0

}
.

are called, respectively the (Fréchet) subdifferential and superdifferential of v
at η. They are convex and closed sets.
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Remark 3.2. If D+v(η)
∩
D−v(η) ̸= ∅, then D+v(η)

∩
D−v(η) = {p}, v is

differentiable at η and ∇v(η) = p.

The set of the reachable gradients at η ∈ A is defined as

D∗v(η) := {p ∈ H | ∃ ηn −→ η, ηn ∈ A, such that ∃∇v(ηn) and∇v(ηn) −→ p} .

We suppose that the function v is concave and continuous; then, in this case,
due to the [61, Chapter 1, Proposition 1.11], we can assert that D+v is non
empty at every point of A, bounded, weakly closed and it holds

D+v(η) = {p ∈ H | v(ζ) − v(η) ≤ ⟨ζ − η, p⟩H , ∀ ζ ∈ A} .

As known (see [61, Chapter 1, Proposition 1.11])D∗v(η) is a closed convex
not empty subset of H. Moreover the set-valued map A −→ P(H), η 7→
D∗v(η) is locally bounded (see again [61, Chapter 1, Proposition 1.11]).
Also we have the representation (see [62, pp. 319-320])

D+v(η) = co(D∗v(η)), η ∈ A. (3.13)

Given p ∈ H we denote

pb̂ := ⟨p, b̂⟩. (3.14)

We introduce the directional superdifferential of v at η along the direction b̂

D+

b̂
v(η) :=

{
α ∈ R | v(η + γb̂) − v(η) ≤ γα, ∀ γ ∈ R

}
. (3.15)

We have that this set is a nonempty closed and bounded interval [a, c] ⊂ R.
More precisely, since v(η) is concave, we have

a = v+
b̂

(η), c = v−
b̂

(η),

where v+
b̂

(η), v−
b̂

(η) denote respectively the right and the left derivatives of

the function v(η) at the point b̂. By definition of D+v(η), the projection of
D+v(η) on b̂ must be contained in D+

b̂
v(η), that is

D+
b v(η) ⊃

{
pb̂ | p ∈ D+v(η)

}
. (3.16)

On the other hand, Proposition 2.24 in [61], Chapter 1, states that

a = inf{⟨p, b̂⟩ | p ∈ D+v(η)} c = sup{⟨q, b̂⟩, | q ∈ D+v(η)},
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and the sup and inf above are attained. This means that there exist p, q ∈
D+v(η) such that

a = ⟨p, b̂⟩, c = ⟨q, b̂⟩.

Since D+v(η) is convex, we see that also the converse inclusion of (3.16) is
true. Therefore

D+

b̂
v(η) =

{
pb̂ | p ∈ D+v(η)

}
. (3.17)

Lemma 3.1. The following statements hold:

1. A−1(D(V )) is a convex open set of (D(A), ∥ · ∥H).

2. O := Int(H,∥·∥H)(Clos(H,∥·∥H)(A
−1(D(V )))) is a convex open of (H, ∥ ·

∥H).

3. O ⊃ A−1(D(V )) and D(V ) = O ∩ D(A).

Proof. For the proof see [33, Chapter 3, Lemma 3.2.11]. �

Proposition 3.5. Let v : D(V ) −→ R be a concave function continuous
with respect to ∥ · ∥−1. Then

1. v = u ◦ A−1, where u : O ⊂ H → R is a concave ∥ · ∥H-continuous
function.

2. D+v(η) ⊂ D(A∗) for any η ∈ D(V ).

3. D+u(A−1η) = A∗D+v(η), for any η ∈ D(V ). In particular, since A∗

is injective, v is differentiable at η if and only if u is differentiable at
A−1η.

4. If p ∈ D∗v(η), then there exists a sequence ηn → η such that

∃∇v(ηn), ∀n ∈ N, and ∇v(ηn) ⇀ p, A∗∇v(ηn) ⇀ A∗p.

Proof. Observe first that, since A−1 is one-to-one, there is a one-to-one
correspondence between the elements η ∈ D(V ) and p ∈ A−1(D(V )).

1. Let us define the function u0 : A−1(D(V )) → R by

u0(p) := v(Ap).

Thanks to the assumptions on v, we see that u0 is a concave continuous
function on (A−1(D(V )), ∥ · ∥H). By the third statement of the Lemma 3.1-
3., A−1(D(V )) is ∥ · ∥H dense in O. Since v is concave and locally Lipschitz
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continuous, u0 can be extended to a concave ∥ · ∥H continuous function u
defined on O. This function satisfies the claim by construction.

2. Let η ∈ D(V ), α ∈ D+v(η). Then

v(ζ) − v(η) ≤ ⟨ζ − η, α⟩, ∀ η ∈ D(V ).

So, setting p = A−1η, q = A−1ζ,

u(q) − u(p) ≤ ⟨A(q − p), α⟩ ≤ ∀ q ∈ A−1D(V ).

Hence, the function (D(A), ∥ · ∥) →,R, q 7→ ⟨Aq, α⟩ is lower semicontinuous
at p. It is also linear and therefore it is continuous on (D(A), ∥ · ∥). So, we
conclude that α ∈ D(A∗).

3. Again we consider let η ∈ D(V ), α ∈ D+v(η). Then

v(ζ) − v(η) ≤ ⟨ζ − η, α⟩, ∀ η ∈ D(V ).

So, setting p = A−1η, q = A−1ζ,

u(q) − u(p) ≤ ⟨A(q − p), α⟩ = ⟨q − p,A∗α⟩, ∀ q ∈ A−1D(V ).

So, A∗α ∈ D+u(p). This proves the inclusion D+u(A−1η) ⊃ A∗D+v(η).
Conversely let p ∈ A−1(D(V )) and ω ∈ D+u(p). Then

u(q) − u(p) ≤ ⟨q − p, ω⟩, ∀ q ∈ A−1D(V ).

Thus, setting η = Ap, ζ = Aq,

v(ζ) − v(η) ≤ ⟨A−1(ζ − η), ω⟩ = ⟨(ζ − η), (A−1)∗ω⟩ ∀ ζ ∈ D(V ).

Since A(−1)∗ = (A∗)−1, we get (A∗)−1ω ∈ D+v(η̄). This proves the inclusion
D+u(A−1η) ⊂ A∗D+v(η).

4. Let η ∈ D(V ) and α ∈ D∗v(η). By definition of D∗v(η), we can find
a sequence (ηn) ⊂ D(V ) such that ηn → η, ∇v(ηn) exists for any n ∈ N
and ∇v(ηn) ⇀ α. Setting pn = A−1ηn, thanks to claim 3 also ∇u(pn)
exists and ∇u(pn) = A∗∇v(ηn). Since u is concave, the set-valued map
p 7→ D+u(p) is locally bounded. Hence the sequence ∇u(pn) is bounded.
Therefore from any subsequence we can extract a sub-subsequence conver-
ging to some element j ∈ H. The operator A∗ is closed, so that the graph
of A∗ is closed in (H × H, ∥ · ∥H × ∥ · ∥H). Therefore we can say that
α ∈ D(A∗) and j = A∗α. Since this holds for any subsequence, we con-
clude that A∇v(ηn) = ∇u(pn) ⇀ A∗α. �
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3.1 Dynamic Programming

Theorem 3.2. Dynamic Programming Principle
For any η ∈ H and for any τ ≥ 0,

V (η) = sup
u(·)∈U

[∫ τ

0

e−ρt
(
g
(
Y η,u(·)(t)

)
+ h(u(t))

)
dt+ e−ρτV

(
Y η,u(·)(τ)

)]
,

where Y η,u(·)(·) := Y (·).
Proof. See e.g. [53], Theorem 1.1 in Chapter 6. �

The differential version of the Dynamic Programming Principle is the HJB
equation, which formally in our case reads as

ρv(η) = ⟨Aη,∇v(η)⟩ + g(η) + sup
u∈U

{⟨Bu,∇v(η)⟩ + h(u)} , η ∈ D(V ).

(3.18)
We have

sup
u∈U

{⟨Bu, p⟩ + h(u)} = sup
u∈U

{⟨u,B∗p⟩ + h(u)} .

Therefore, defining the Legendre transform of h

h∗(r) := sup
u∈U

{ur + h(u)},

and taking into account that

B∗p = ⟨b̂, p⟩,

(3.18) can be rewritten as

ρv(η) = ⟨η, A∗∇v(η)⟩ + g(η) + h∗(⟨∇v(η), b̂⟩), η ∈ D(V ). (3.19)

We note that the nonlinear term in (3.19) can be defined without requiring
the full regularity of v, but only the C1-smoothness of v with respect to the
direction b̂. Indeed, denoting coherently with (3.17) by vb̂ the directional

derivative of v with respect to b̂, we can intend the nonlinear term in (3.19)
as

h∗(⟨∇v(η), b̂⟩) = H(vb̂(η)),

where
H(r) = h∗(∥b∥r), r ∈ (0,+∞).

So we write (3.19) as

ρv(η) = ⟨η,A∗∇v(η)⟩ + g(η) + H(vb̂(η)), η ∈ D(V ). (3.20)

Due to Hypothesis 2.3-(ii), the function H is finite on (0,+∞) and strictly
convex and increasing therein (see [64, Corollary 26.4.1]).
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3.1.1 The HJB equation: viscosity solutions

In this subsection we are going to prove that the value function V is a visco-
sity solution of the HJB equation (3.20). We will make use of the Yoshida
approximations An of the unbounded operator A; for further details on that
we refer to [11, section 2.4].

Next we give with an approximation result (Lemma 3.2) that we need to
prove a chain’s rule in infinite dimension for suitable regular functions (pro-
vided in Lemma 3.3 below).

Lemma 3.2.

(i) Let An, n ∈ N, be the (bounded) Yosida approximations of the (un-
bounded) operator A and let SAn, n ∈ N be the associated uniformly
continuous semigroups. Let

Yn(t) = SAn(t)η +

∫ t

0

SAn(t− τ)Bu(τ)dτ. (3.21)

Then, for each n ∈ N, we have Yn ∈ C1([0,+∞);H) and moreover Yn
solves the differential equation

Y ′
n(t) = AnYn(t)dt + Bu(t)dt,

Yn(0) = η,
(3.22)

(ii) Let Y be the mild solution to (2.11) as in Definition 2.1-(i) and let Yn,
n ∈ N, be the functions defined by (3.21).

Then, for each T ≥ 0,

Yn(t) → Y (t), in L2([0, T ];H). (3.23)

Proof. For details of the proof we remind the reader to [53, Chapter 2,
Proposition 5.4].
Let SAn be the uniformly continuous semigroups on H generated by the
bounded operators An and SA the C0-semigroup generated by the unbounded
operator A. We know that there exist ω,M, M̃ R-valued constants such that

∥SAn(t)∥ ≤ Meωt, (3.24)

and
∥SA(t)∥ ≤ M̃eωt, (3.25)
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for each t ≥ 0, (see [53, Chapter 2, Proposition 4.7]). So, for any t ≥ 0 and
η ∈ H we have the convergence, for n→ ∞,

∥SAn(t)η − SA(t)η∥H → 0. (3.26)

The proof of the existence and uniqueness for the solution to (3.22) follows
[11, Part II, Section 3.1] and by a consequence of the boundness of An.
As for equation (2.11), we write the mild solution to (3.22)

Yn(t) = SAn(t)η +

∫ t

0

SAn(t− τ)Bu(τ)dτ. (3.27)

Therefore we can write

∥Yn(t)−Y (t)∥H ≤ ∥SAn(t)η−SA(t)η∥H +

∫ t

0

∥ (SAn(t− τ) − SA(t− τ))Bu(τ)∥Hdτ.

(3.28)
The first term of the right-handside of (3.28) can be dominated in L2([0, T ];R)
thanks to (3.24) and (3.25). The second one can be dominated thanks to
(3.24), (3.25) and by Hölder’s inequality.
Moreover, the right-handside of (3.28) converges pointwise to 0, when n →
∞, thanks to (3.26). Therefore (3.23) follows by dominated convergence from
(3.28), letting n→ ∞. �

Now we need to define a suitable set of regular test functions. This is the set
This is the set

T :=
{
φ ∈ C1(H) | ∇φ(·) ∈ D(A∗), A∗∇φ : H → H is continuous

}
.

(3.29)
Let us define, for u ≥ 0, the operator Lu on T by

[Luφ](η) := −ρφ(η) + ⟨η,A∗∇φ(η)⟩H + u⟨∇φ(η), b̂⟩.

Lemma 3.3. Let η ∈ H, φ ∈ T , u(·) ∈ L2
loc([0,+∞);R) and set Y (t) :=

Y (t; η, u(·)). Then the following chain’s rule holds

e−ρtφ(Y (t)) − φ(η) =

∫ t

0

e−ρs[Lu(s)φ](Y (s))ds ∀ t ≥ 0.

Proof. For details of the proof we remind the reader to [53, Chapter 2,
Proposition 5.5].
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We consider the functions Yn(t) of Lemma 3.2-(i) and calculate the derivatives
of the functions e−ρtφ(Yn(t)). Due to (3.22), we have

d

dt

[
e−ρtφ(Yn(t))

]
= −ρeρtφ(Yn(t)) + e−ρt⟨∇φ(Yn(t)), Y ′

n(t)⟩

= e−ρt [−ρφ(Yn(t) + ⟨∇φ(Yn(t)), AnYn(t) +Bu(t)⟩]
= e−ρt

[
− ρφ(Yn(t)) + ⟨A∗

n∇φ(Yn(t)), Yn(t)⟩
+ ⟨∇φ(Yn(t)), Bu(t)⟩

]
.

(3.30)
Therefore

e−ρtφ(Yn(t)) − φ(η)

=

∫ t

0

e−ρs [−ρφ(Yn(s)) + ⟨A∗
n∇φ(Yn(t)), Yn(t)⟩ + ⟨∇φ(Yn(t)), Bu(t)⟩] ds.

(3.31)

We want to get the claim letting n → ∞ and taking into account Lemma
3.2 and the continuity properties of φ and its derivatives.
Due to (3.23) we have Yn → Y in L2([0, T ];H) for each t ≥ 0 such that, for
the left-handside of the above equation we can write the following

e−ρtφ(Yn(t)) − φ(η) −→ e−ρtφ(Y (t)) − φ(η), (3.32)

letting n→ ∞.
Consider now the right handside of (3.31). We recall that the operator
A∗∇φ : H −→ H is continuous, so that, taking into account the regularity
properties of φ, of its derivatives, and the hypotheses of B and u, we can
state that, letting n→ ∞ we have

−ρφ(Yn(s)) + ⟨A∗
n∇φ(Yn(t)),Yn(t)⟩ + ⟨∇φ(Yn(t)), Bu(t)⟩ −→

− ρφ(Y (s)) + ⟨A∗φ′(Y (s)), Y (s)⟩ + u⟨φ′(Y (s)), b̂⟩.
(3.33)

By (3.32) and (3.33) we can conclude that it holds

e−ρtφ(Y (t)) − φ(η)

=

∫ t

0

e−ρs
(
−ρφ(Y (s)) + ⟨A∗φ′(Y (s)), Y (s)⟩ + u⟨φ′(Y (s)), b̂⟩

)
ds

=

∫ t

0

e−ρs[Lu(s)φ](Y (s))ds

which proves the claim. �

Next we give the definition of viscosity solution to (3.20).
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Definition 3.3.

(i) A continuous function v : D(V ) → R is called a viscosity subsolution
of (3.20) if, for each couple (ηM , φ) ∈ D(V ) × T such that v − φ has
a local maximum at ηM , we have

ρv(ηM) ≤ ⟨ηM , A∗∇φ(ηM)⟩ + g(ηM) + H (φb̂(ηM)) .

(ii) A continuous function v : D(V ) → R is called a viscosity supersolution
of (3.20) if, for each couple (ηm, φ) ∈ D(V ) × T such that v − φ has
a local minimum at ηm, we have

ρv(ηm) ≥ ⟨ηm, A∗∇φ(ηm)⟩ + g(ηm) + H (φb̂(ηM)) .

(iii) A continuous function v : D(V ) → R is called a viscosity solution of
(3.20) if it is both a viscosity sub and supersolution of (3.20).

We need the following technical Lemma 3.4 to prove that V is a viscosity
solution.

Lemma 3.4. For every 1-optimal control u(·) ∈ U(η) we have∫ 1

0

|u(s)|1+αds ≤ M

where α is the constant appearing in (2.5).

Proof. The proof of the lemma follows directly by Hypotheses 2.3. �

Theorem 3.3. The value function V is a viscosity solution of (3.20).

Proof. Subsolution property. Let (ηM , φ) ∈ D(V ) × T be such that
V −φ has a local maximum at ηM . Without loss of generality we can suppose
V (ηM) = φ(ηM).

Let us suppose, by contradiction, that there exists ν > 0 such that

2ν ≤ ρV (ηM) − (⟨ηM , A∗∇φ(ηM)⟩ + g(ηM) + H (φb̂(ηM))) .

Let us define the function

φ̃(η) := V (ηM) + ⟨∇φ(ηM), η − ηM⟩, η ∈ H. (3.34)



3.1. Dynamic Programming 37

We have
∇φ̃(η) = ∇φ(ηM), ∀ η ∈ H.

Thus φ̃ is also test function and we have as well

2ν ≤ ρV (ηM) − (⟨ηM , A∗∇φ̃(ηM)⟩ + g(η) + H (φ̃b̂(ηM))) .

Now, we know that V is a concave function and that V − φ has a local
maximum at ηM , so that

V (η) ≤ V (ηM) + ⟨∇φ(ηM), η − ηM⟩. (3.35)

Thus, by (3.34) and (3.35)

φ̃(ηM) = V (ηM) φ̃(η) ≥ V (η), ∀ η ∈ D(V ). (3.36)

Let Bε := B(H,∥·∥)(ηM , ε). Due to the properties of the functions belonging
to T , we can find ε > 0 such that

ν ≤ ρV (η) − (⟨η,A∗∇φ̃(η)⟩ + g(η) + H (φ̃b̂(ηM))) , ∀η ∈ Bε. (3.37)

Take a sequence δn > 0 such that δn → 0. For each n ∈ N, take a δn-optimal
control un(·) ∈ U(η) and set Y n(·) := Y (·; ηM , un(·)). Define

tn := inf {t ≥ 0 | ∥Y n(t) − ηM∥ = ε} ∧ 1 (3.38)

with the agrement that inf ∅ = +∞. Of course tn is well defined and belongs
to (0, 1]. Moreover, by continuity of t 7→ Y n(t), we have Y n(t) ∈ Bε, for
t ∈ [0, tn).
By definition of δn-optimal control, we have as consequence of the Dynamic
Programming Principle

δn ≥ −
∫ tn

0

e−ρt [g(Y n(t)) + h(un(t))] dt−
(
e−ρtnV (Y (tn)) − V (ηM)

)
.

(3.39)
Therefore, by (3.36) and (3.39),

δn ≥ −
∫ tn

0

[g(Y n(t)) + h(un(t))] dt−
(
e−ρtn (φ̃(Y n(tn))) − φ̃(ηM)

)
=

∫ tn

0

e−ρt
[
g(Y n(t)) + h(un(t)) + [Lun(t)φ̃](Y n(t))

]
dt

≥ −
∫ tn

0

e−ρt

[
g(Y n(t)) − ρφ̃(Y n(t)) + ⟨A∗∇φ̃(Y n(t)), Y n(t)⟩

+ H(φ̃b̂(Y
n(t)))

]
dt

≥ tnν.



38 3. The value function in the space H

Since δn −→ 0 we also have tn −→ 0. Now we want to prove that the
following convergence holds true

∥Y n(tn) − ηM∥ −→ 0. (3.40)

We use the definition of mild solution (2.1) of Y n(tn), so we have

∥Y n(tn) − ηM∥ =

∥∥∥∥SA(tn)ηM +

∫ tn

0

SA(tn − τ)Bun(τ)dτ − ηM

∥∥∥∥
≤ ∥(SA(tn) − I) ηM∥ +

∥∥∥∥∫ tn

0

SA(tn − τ)Bun(τ)dτ

∥∥∥∥
≤ ∥(SA(tn) − I) ηM∥ +

∫ tn

0

∥SA(tn − τ)∥L(H)∥B∥|un(τ)|dτ.

By properties of semigroup SA(·), to prove that the right side of above in-
equality converges to 0, it suffices to prove that∫ tn

0

|un(s)|ds→ 0. (3.41)

Set β > 1 and 1/β+1/α = 1, so that α = β/(β−1). By Hölder’s inequality∫ tn

0

|un(s)|ds ≤
(∫ tn

0

|un(τ)|βdτ
) 1

β

t
β−1
β

n .

Since by Lemma 3.4 we know that
(∫ tn

0
|un(τ)|βdτ

) 1
β

is bounded and since

tn → 0, we have (3.41) and the convergence (3.40) is true. But (3.40) con-
tradicts the definition of tn, so the claim is proved.

Supersolution property. The proof that V is a viscosity supersolution is more

standard. We refer to [53, Chapter 6, Theorem 3.2]. �

3.1.2 Smoothness of viscosity solutions

In this subsection we are going to show a C1-directional regularity result for
the value function. To this aim we need the following.

Lemma 3.5. Let v : D(V ) −→ R be a concave ∥ · ∥−1-continuous function
and suppose that η ∈ D(V ) is a differentiability point for v and that ∇v(η) =
α. Then

1. There exists a test function φ such that v − φ has a local maximum at
η and ∇φ(η) = α.
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2. There exists a test function φ such that v − φ has a local minimum at
η and ∇φ(η) = α.

Proof. Thanks to Proposition 3.5-(2) and to the concavity of v, the first
statement is clearly satisfied by the function ⟨·, α⟩. We prove now the second
statement, which is more delicate.
Let u be defined as in Proposition 3.5-(1). The first and third claim of
Proposition 3.12 yield that α ∈ D(A∗), u is differentiable at p := A−1η and
∇u(p) = A∗α. This yields

u(q) − u(p) − ⟨q − p,A∗α⟩ ≥ −∥q − p∥ · ϵ (∥q − p∥) , ∀q ∈ A−1D(V ),

for some ϵ : [0,+∞) −→ [0,+∞) increasing and such that ϵ(r) −→ 0, when
r −→ 0. The previous inequality can be rewritten as

u(q) − u(p) − ⟨A (q − p) , α⟩ ≥ −∥q − p∥ · ϵ (∥q − p∥) , ∀q ∈ A−1D(V ).

Therefore, defining ζ = Aq for q ∈ A−1D(V ) and recalling that A is one-to-
one from A−1D(V ) to D(V ),

v(ζ) − v(η) − ⟨ζ − η, α⟩ ≥ −∥ζ − η∥−1ϵ (∥ζ − η∥−1) , ∀ ζ ∈ D(V ). (3.42)

We look for a test function of this form:

φ(ζ) := v(η) + ⟨ζ − η, α⟩ − g(∥ζ − η∥−1), ζ ∈ D(V ),

where g : [0,∞) −→ [0,+∞) is a suitable increasing C1 function such that
g(0) = g′(0) = 0. Notice that, since g(0) = 0, we have φ(η) = v(η). So, in
order to prove that v − φ has a local minimum at η, we have to prove that
φ ≤ v in a neighborhood of η. Let us define the function

g(r) :=

∫ 2r

0

ϵ(s)ds.

We see that g(0) = g′(0) = 0 and

g(r) ≥
∫ 2r

r

ϵ(s)ds ≥ rϵ(r).

By (3.42),

φ(ζ) = v(η) + ⟨ζ − η, α⟩ − g(∥ζ − η∥−1)

= v(η) + ⟨ζ − η, α⟩ − ∥ζ − η∥−1 · ϵ(∥ζ − η∥−1) ≤ v(ζ), ∀ ζ ∈ D(V ).
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Moreover, recalling that (A−1)∗ = (A∗)−1,

∇φ(ζ) =


α− (A∗)−1g′(∥ζ − η∥−1)

A−1(ζ − η)

∥A−1(ζ − η)∥
, if ζ ̸= η;

α, if ζ = η.

This expression of ∇φ shows that ζ 7→ A∗∇φ(ζ) is continuous. Therefore,
φ is a test function. Finally, ∇φ(η) = α and the proof is complete. �

Now we can state and prove the main result.

Theorem 3.4. Let v be a concave ∥ · ∥−1-continuous viscosity solution of
(3.20) on D(V ), which is strictly increasing along the direction b̂. Then v is
differentiable along b̂ at any point η ∈ D(V ) and the function η 7→ vb̂(η) is
continuous in D(V ).

Proof. Let η ∈ D(V ) and p, q ∈ D∗v(η). Thanks to Proposition 3.5,
there exist sequences (ηn), (η̃n) ⊂ D(V ) such that:

• ηn → η, η̃n → η;

• ∇v(ηn) and ∇v(η̃n) exist for all n ∈ N and ∇v(ηn) ⇀ p, ∇v(η̃n) ⇀ q;

• A∗∇v(ηn) ⇀ A∗p and A∗∇v(η̃n) ⇀ A∗q.

Recall that, given η ∈ H, we have defined

ηb̂ := ⟨η, b̂⟩.

Thanks to Lemma 3.5 and Theorem 3.3 we can write, for any n ∈ N,

ρv(ηn) = ⟨ηn, A∗∇v(ηn)⟩H + g(ηn) + H(vb̂(ηn))

ρv(η̃n) = ⟨ηn, A∗∇v(η̃n)⟩ + g(η̃n) + H(vb̂(η̃n)).

So, passing to the limit, we get

⟨η, A∗p⟩ + g(η) + H(pb̂) = ρv(η) = ⟨η, A∗q⟩ + g(η) + H(qb̂). (3.43)

On the other hand λp + (1 − λ)q ∈ D+v(η) for any λ ∈ (0, 1), so that we
have the subsolution inequality

ρv(η) ≤ ⟨η, A∗[λp+ (1 − λ)q]⟩ + g(η) + H(λpb̂ + (1 − λ)qb̂), ∀λ ∈ (0, 1).
(3.44)



3.1. Dynamic Programming 41

Combining (3.43) and (3.44) we get

H(λpb̂ + (1 − λ)qb̂) ≥ λH(pb̂) + (1 − λ)H(qb̂). (3.45)

Notice that, since p, q ∈ D∗v(η), we have also p, q ∈ D+v(η). Since v is
strictly increasing along b̂ we must have pb̂, qb̂ ∈ (0,+∞). Since H is strictly
convex on (0,+∞), (3.45) yields pb̂ = qb̂. Due to (3.17) we have that pb̂, qb̂ ∈
D+

b̂
v(η). With this argument we have shown that the projection of D∗v(η)

onto b̂ is a singleton. Due to (3.13), this implies that also the projection of
D+v(η) onto b̂ is a singleton. Due to (3.17) we have thatD+

b̂
v(η) is a singleton

too. Since v is concave, this is enough to conclude that it is differentiable
along the direction b̂ at η.

Now we prove the second claim of the Theorem, that is that the map η 7→
vb(η) is continuous in D(V ). To this aim we take η ∈ D(V ) and a sequence
(ηn) ⊂ D(V ) such that ηn → η. We have to prove that vb̂(η

n) → vb̂(η).
Being v concave, by definition of superdifferential (3.17) for every n ∈ N,
there exists pn ∈ D+v(ηn) such that ⟨pn, b̂⟩ = vb̂(ηn) ∈ D+

b̂
(ηn).

Since v is concave, it is also locally Lipschitz continuous, so that the super-
differential is a locally bounded multi-function (see [61, Chapter 1, Propo-
sition 2.5]). Therefore, from each subsequence (pnk

) we can extract a sub-
subsequence (pnkh

) such that

pnkh
−→ p ∈ D(V )

for some limit point p. Due to concavity of v, this limit point must belong
to D+v(η). We have shown in the first part of the proof that the projection
of D+v(η) onto b̂ is the singleton vb̂(η), so that it must be

⟨p, b̂⟩ = vb̂(η).

With this argument we have shown that, from each subsequence (vb̂(η
nk)) ,

we can extract a sub-subsequence (vb̂(η
nkh )) such that

vb̂(η
nkh ) = ⟨pnkh

, b̂⟩ → ⟨p, b̂⟩ = vb̂(η).

The claim follows by the usual argument on subsequences. �

Remark 3.3. Notice that in the assumption of Theorem 3.4 we do not require
that v is the value function, but only that it is a concave ∥ · ∥−1-continuous
viscosity solution of (3.20) strictly increasing along b̂.
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Chapter 4

Verification Theorem

In this chapter we draw a simple consequence on the infinite horizon op-
timal problem from the results on the associated Hamilton-Jacobi-Bellman
equation of the previous section, that is, we want to prove the Verification
Theorem. To this aim we will recall some definitions and propositions which
will be needed in the proof of the theorem. For details we remind the reader
to [9, Chapter III, Section 2].

The characterization of optimal closed loop controls provides a method con-
structing an optimal pair control-trajectory for every initial condition.
The first step is to find a map G : Rn −→ A, with the property that

G(z) ∈ argmaxu∈A {−f(z, u)Dv(z) − l(z, u)} ,

for z ∈ Rn; if v is known, this is a static, finite dimensional, mathematical
programming problem. Such a map G is called an optimal feedback map.
The second step is solving{

y′ = f(y,G(y)), t > 0,
y(0) = x

(4.1)

and a solution y∗(t) generates a control α∗(t) := G(y∗(t)), which is optimal
for the initial state x.
Finally the use of viscosity subsolutions as verification functions gives verifi-
cation theorems as a very easy consequence of the comparison principle.
The applicability of this method requires the regularity of the value function
for the characterization of optimal controls and some regularity of the feed-
back map G for the solvability of (4.1).

In our case, to prove the Verification Theorem, we will follow the pro-
cedure used by Federico (see [33, Chapter 3, Section 3.3.3].
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Thanks to the regularity result of the previous section (Theorem 3.4), we can
define a feedback map on D(V ) for our problem in classical form, that is:

G(η) := argmaxu∈U {h(u) + uVb̂(η)∥b∥} , η ∈ D(V ).

This map is well-defined: since V is concave and strictly increasing along b̂,
so that by Theorem 3.4

∃ Vb̂(η) ∈ (0,+∞), ∀η ∈ D(V ); (4.2)

therefore existence and uniqueness of the argmax follow from Hypothesis 2.3-
(ii).
Moreover, since Vb̂ is continuous on D(V ), then also G is continuous on D(V ).
Thus, for η ∈ D(V ), the closed-loop delay state equation associated with this
map is defined as 

Y ′(t) = AY (t) +BG(Y (t))

Y (0) = η.
(4.3)

We recall that we are considering the infinite dimensional case, so this means
that

G(Y (t)) = G
(
Y0(t), Y1(t)(ξ) |ξ∈[−r,0]

)
= G

(
y(t),

∫ ξ

−r

b1(α)u(α + t− ξ) |ξ∈[−r,0] dα

)
.

Given u(·) ∈ U and recalling the Hypothesis 2.1 on U, we write the explicit
form of the mild solution Y ∈ C([0,+∞), H) of (4.3) defined as

Y (t) = SA(t)η +

∫ t

0

SA(t− τ)BG(Y (τ))dτ, t ≥ 0. (4.4)

With Verification theorem, we want to prove that if the closed-loop equa-
tion (4.3) has a strictly positive solution Y ∗(·) defined by (4.4), (so that
(Y ∗

0 (t), Y ∗
1 (·)(ξ) |ξ∈[−r,0]) belongs to D(V ) for all t ≥ 0 and the term

G
(
(Y ∗

0 (t), Y ∗
1 (·)(ξ) |ξ∈[−r,0])

)
is well-defined for all t ≥ 0), then the feedback

strategy defined as

u∗(t) := G(Y ∗(t)) = G
(
Y ∗
0 (t), Y ∗

1 (t)(ξ) |ξ∈[−r,0]

)
(4.5)

is optimal. We remark that, if u∗(·) is admissible and it is defined as in (4.5),
then, setting Y ∗(t) := Y (t; η, u∗(·)), we have

Y ∗(t) = (Y ∗
0 (t), Y1(t)(ξ)|ξ∈[−r,0]) ∈ D(V ), ∀ t ≥ 0.
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Remark 4.1. We have to remark that in this case, the feedback strategy u∗(·)
above defined, depends on the Y ∗

0 (·) defined in (4.4), and on the Y ∗
1 (·)(ξ)

for ξ ∈ [−r, 0) that represents the past-value of the control u(· + ξ), for
ξ ∈ [−r, 0). �

The proof of the Verification Theorem, in the classical case, is done by
computing the derivative

t 7→ d

dt
[e−ρtV (Y ∗(t))] (4.6)

and then using the HJB equation and integrating the resulting equality.
We cannot proceed with the classical proof since we cannot compute the
derivative (4.6). So we proceed considering the fact that V is a viscosity
solution (as in [71, Chapter 5, Theorem 3.9] and in [53, Chapter 6, Theorem
5.4, 5.5]). But we have to overcome two main difficulties (see [35, pag 40]).

• The function
t 7→ e−ρtV (Y ∗(t)) (4.7)

is not Lipschitz continuous so it may not have almost everywhere
derivative. Indeed we do not require the initial datum η ∈ D(A) and
the operator A works as a shift operator on the infinite-dimensional
component. Then we do not have the condition Y ∗(t) ∈ D(A) for al-
most t ≥ 0 that would give the required Lipschitz regularity for the
function (4.7): only continuity is insuring so we cannot apply the Fun-
damental Theorem of Calculus (see [53, Chapter 6, Theorem 5.4, 5.5]).

• Consequently we had to deal with the concept of Dini derivatives of the
function (4.7), and, since we want to integrate them, we need something
like a Fundamental Theorem of Calculus in inequality form relating the
function and the integral of its derivatives. We will use the so called
SaKs Theorem, that need stronger assumptions and that is based on
the theory of Dini derivatives.

Recall first that, if g is a continuous function on some interval [α, β] ⊂ R,
the right Dini derivatives of g are defined by

D+g(t) = lim sup
h↓0

g(t+ h) − g(t)

h
, D+g(t) = lim inf

h↓0

g(t+ h) − g(t)

h
, t ∈ [α, β),

and the left Dini derivatives by

D−g(t) = lim sup
h↑0

g(t+ h) − g(t)

h
, D−g(t) = lim inf

h↑0

g(t+ h) − g(t)

h
, t ∈ [α, β).
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For details we refer the reader to [18].

Proposition 4.1. If g is a continuous real function on [α, β], then the bounds
of each Dini’s derivative are equal to the bounds of the set of the difference
quotients {

g(t) − g(s)

t− s

∣∣∣ t, s ∈ [α, β]

}
.

Proof. See [15, Chapter 4, Theorem 1.2]. �

An immediate consequence of the above Proposition is the following

Proposition 4.2. (Monotonicity result). Let g ∈ C([α, β];R) be such
that

D+g(t) ≥ 0, ∀ t ∈ [α, β).

Then g is nondecreasing on [α, β].

The following Lemma is a special case of the Saks Theorem (see [65,
Chapter 6, Theorem 7.3]). We give the proof in a special case using the
Monotonicity result above.

Lemma 4.1. Let g ∈ C([0,+∞);R). Suppose that there exists µ ∈ L1([0,+∞);R)
such that

D−g(t) ≥ µ(t), for a.e. t ∈ (0,+∞) (4.8)

and
D−g(t) > −∞ ∀ t ∈ (0,+∞) (4.9)

except at most for those of a countable set.
Then, for every 0 ≤ α ≤ β < +∞,

g(β) − g(α) ≥
∫ β

α

µ(t)dt. (4.10)

Proof. We give the proof in the special case when µ is continuous and
(4.8) holds for every t ∈ (0,+∞)1. Since D−g(t) ≥ µ(t) for every t ∈
(0,+∞), we have

D−

[
g(t) −

∫ t

0

µ(s)ds

]
≥ 0, ∀ t ∈ (0,+∞).

1We will use this Lemma in the Verification Theorem, and these conditions will be
satisfied
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Thanks to Proposition 4.1 we have also

D+

[
g(t) −

∫ t

0

µ′(s)ds

]
≥ 0, ∀ t ∈ [0,+∞).

Therefore, due to Proposition 4.2, the function

t 7→ g(t) −
∫ t

0

µ(s)ds

is nondecreasing, getting the claim. �

Remark 4.2. We give some remarks on Lemma 4.1.

• If µ is continuous and condition (4.8) holds for all t > 0, then (4.9) is
verified and so the claim of Lemma 4.1 holds without assuming it.

• We cannot avoid to assume (4.8): without it, then (4.9) is no longer
true. One could substitute the assumption (4.8) with the following:
there exists µ ∈ L1([0,+∞);R) such that, for some h0 > 0, we have
g(t+ h) − g(t)

h
≥ µ(t), for h0 < h ≤ 0, for a.e. t > 0 (see [72,

Lemma 2.3]). However this assumption is more difficult to check in
our case than the one of our Lemma 4.1.

�

Theorem 4.1. Verification. Let η ∈ H+ and let y∗(·) be a solution of
(4.3) such that y∗(·) > 0. Let u∗(·) be the strategy defined by (4.5). Then
u∗(·) is admissible and optimal for the problem.

Proof. The fact that u∗(·) is admissible is a direct consequence of the
assumption y∗(·) > 0 and of the definition of u∗(·).
Set Y ∗(·) := Y (·; η, u∗(·)) and let s ≥ 0. Let ς1(s) ∈ W 1,2

r,0 be such that,
taking into account (4.2), it holds true that

(Vb(Y
∗(s)), ς1(s)) ∈ D+V (Y ∗(s)).

Let

φ(ζ) := V (Y ∗(s)) + ⟨(Vb(Y ∗(s)), ς1(s)) , ζ − Y ∗(s)⟩H , ζ ∈ H,

so that
φ(Y ∗(s)) = V (Y ∗(s)), φ(ζ) ≥ V (ζ), ζ ∈ H.
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From Proposition 3.5 we know that φ ∈ T , so, thanks to Lemma 3.5, we
have

lim inf
h↑0

e−ρ(s+h)V (Y ∗(s+ h)) − e−ρsV (Y ∗(s))

h

≥ lim inf
h↑0

e−ρ(s+h)φ(Y ∗(s+ h)) − e−ρsV (Y ∗(s))

h

= e−ρs[Lu∗(s)φ](Y ∗(s))

= e−ρs

[
− ρV (Y ∗(s)) + ⟨Y (s), A∗ (Vb(Y

∗(s)), ς1(s))⟩H + u∗(s)⟨V (Y ∗(s)), b⟩
]
.

(4.11)
Recalling the definition of u∗(·), due to (D.2) and by above equation, we
calculate

lim inf
h↑0

e−ρ(s+h)V (Y ∗(s+ h)) − e−ρsV (Y ∗(s))

h
+ e−ρs (h(u∗(s)) + g(Y ∗(s)))

≥ e−ρs

[
− ρV (Y ∗(s)) + ⟨Y (s), A∗ (Vb(Y

∗(s)), ς1(s))⟩H + u∗(s)⟨V (Y ∗(s)), b⟩
]

+ e−ρs (h(u∗(s)) + g(Y ∗(s)))

≥ e−ρs

[
− ρV (Y ∗(s)) + ⟨Y (s), A∗ (Vb(Y

∗(s)), ς1(s))⟩H + H(Vb(Y
∗(s))) + g(Y ∗(s))

]
.

(4.12)
So, due to the subsolution property of V we get

lim inf
h↑0

e−ρ(s+h)V (Y ∗(s+ h)) − e−ρsV (Y ∗(s))

h

+ e−ρs (h(u∗(s) + g(Y ∗(s)))) ≥ 0.

(4.13)

We know that the function s 7→ e−ρsV (Y ∗(s)) and the function s 7→
e−ρs (h(u∗(s) + g(Y ∗(s)))) are continuous; therefore we can apply Lemma
4.1 on [0, N ], N > 0, getting

e−ρNV (Y ∗(N)) +

∫ N

0

e−ρs (h(u∗(s) + g(Y ∗(s)))) ds ≥ V (η).

Now we take the lim sup for N → +∞. Recalling that the functions V, h, g
are bounded from above, we get by Fatou’s Lemma

J(η; u∗(·)) =

∫ +∞

0

e−ρs (h(u∗(s) + g(Y ∗(s)))) ds ≥ V (η),

and the claim is proved. �
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Remark 4.3. We give some remarks on Theorem 4.1.

• Observe that no continuity or measurability property of ς1(s) with re-
spect to s is needed in the proof of the theorem above.

• In the Theorem 4.1 we have given a sufficient condition of optimality.
A natural question arising is whether such a condition is also necessary
for the optimality, i.e. if, given an optimal strategy, it can be written
as feedback of the associated optimal state.
For what concerns the finite-dimensional case, it is possible to find an
answer to this problem in the so called BACKWARD DYNAMIC PRO-
GRAMMING PRINCIPLE, (see [9, Chapter 3, Proposition 2.25]). But
this topic is not standard in the infinite-dimension case unless the ope-
rator A is the generator of a strongly continuous group which is not our
case, so, the investigation on this left for future research.

�
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Malliavin Calculus in the
Control theory
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4.1 Notations

In this second part of the work, we will use the classical notations of num-
bering definitions, theorems, formulas, etc...
We write a.s. for almost surely, a.e. for almost everywhere, and a.a for al-
most all.
Rn denotes the real euclidean n-dimensional space, with elements x = (x1, . . . , xn).
We write

⟨x, y ⟩ =
n∑

i=1

xiyi.

L2([0, T ]) denotes the space of function f such that
∫ T

0
|f(s)|2ds < ∞. We

write

⟨ f, g ⟩L2([0,T ]) =

∫ T

0

f(s)g(s)ds =

∫ T

0

f(s)g(s)ds.

The last equality holds if f and g are R-valued.
Given a function f : Rm × Rν −→ Rn, we denote

∂kf
i
X(x, u) =

∂f i

∂Xk

(x, u)

∂kf
i
u(x, u) =

∂f i

∂uk
(x, u)

for all i = 1, ...,m.
Let σi

h : Rm × Rν −→ Rn i = 1, ...,m.
Let σi

h(·, ·), i = 1, ...,m, h = 1, ..., d be the element of a matrix (m × d). We
denote

∂kσ
i
h,X =

∂σi
h

∂Xk

∂kσ
i
h,u =

∂σi
h

∂uk

for all i = 1, ...,m, h = 1, ..., d.
Let Y a metric space.
A function f is called polynomially growing if there exist constants K, m, ≥
0 such that

|f(x)| ≤ K(1 + |x|m), ∀x ∈ Y.
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For an open set O ⊂ Rn, and a positive integer k,

Ck(O) = {all k-times continuously differentiable functions on O}
Ck

b (O) = {f ∈ Ck(O) : all partial derivatives of f of orders ≤ k are

bounded}
Ck

p (O) = {f ∈ Ck(O) : all partial derivatives of f of orders ≤ k are

polynomially growing}.

In this chapter we will give some basilar definitions about the well known
stochastic control problems. Moreover we will recall some well-known results
which we will use to prove our main aim.

4.2 Stochastic control problems

We will indicate with (Ω, F , P) the probability space with filtration F =
{Ft, t ≥ 0} satisfying the usual conditions, i.e.,

• all the set P -negligible belong to F0,

• Ft is right-continuous, i.e. Ft+ := ∩s>tFs = Ft.

Let W = {W 1
t , W

2
t , . . . W

d
t , t ≥ 0} be a (Ft) d -dimensional standard

brownian motion, defined on (Ω, F , P).

Definition 4.1. A processes (Xt)t≥0 is said progressively measurable with
respect to Ft if for all t ≥ 0, the application

(ω, s) 7→ Xs(ω) of (Ω × [ 0, t ],F ⊗ B( [ 0, t ] ))

is measurable.

Let the control space U be a subset of Rn. We denote by U0 the set of
all progressively measurable processes ν = {νt, t ≥ 0} valued in U . The
elements of U0 are called control processes.
We are interested to feedback controls, which will also be called Markovian
controls, i.e., to processes u ∈ U which can written in the form us =
ũ(s,Xs) for some measurable map ũ from [0, T ] × Rn into U . This means
that the control us is chosen based on knowing not only time s but also the
state Xs, where s ∈ [0, T ].
Let

b : (t,Xt, ut) ∈ R+ × Rn × U −→ b(t,Xt, ut) ∈ Rn
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and

σ : (t,Xt, ut) ∈ R+× Rn × U −→ σ(t,Xt, ut) ∈ Rn×d (set of matrix n× d)

be two borelian functions such that b(t,Xt, ut) = (b1(t,Xt, ut), ... b
n(t,Xt, ut))

and σ(t,Xt, ut) = (σij(t,Xt, ut)) 1≤ i≤n, 1≤ j≤ d.
The vector function b = (b1t , .., b

n
t ) is called the local drift coefficient and the

matrix-valued function σ(t,Xt, ut) the local covariance matrix, or diffusion
coefficient.
For each control process ν ∈ U we consider the state stochastic differential
equation

dXt = b(t,Xt, νt)dt +
d∑

j=1

σj(t,Xt, νt) dW
j
t . (4.14)

The differential form of the above equation is

Xt = Z +

∫ t

0

b (s,Xs, νs), ds +
d∑

j=1

∫ t

0

σj (s,Xs, νs) dW
j
s

where Z = (Z1, Z2, ..., Zn) is a F0 random variable Rn-valued.
If the (4.14) has a unique solution X, for a given initial data, then the process
X is called the controlled process, as his dynamics is driven by the action
of the control process ν.
Let T > 0 be some given time horizon. We shall denote by U the subset of
all control processes ν ∈ U0 which satisfy the additional requirement:

E
∫ T

0

(
|b(t,X, νt)| + |σ(t,X, νt)|2

)
dt < ∞ for X ∈ Rn. (4.15)

This condition guarantees the existence of a controlled process for each given
initial condition and control.
In the following we will state a theorem (Theorem 4.4)that guarantees the
existence and the uniqueness of the solution of (4.14).
In order to proceed, we will give some definition about optimal control theory.
The reason is to understand what must changed.
Let

f, k : [0, T ] × Rn × U −→ R and g : Rn −→ R
be given continuous functions, f is called running cost function, g ter-
minal cost function and k is a discount factor.
We assume that ∥k−∥∞ < ∞ and f and g satisfy the quadratic growth
condition:

|f(t, x, u)|+ |g(x)| ≤ C(1+|x|2) for some constant C independent of (t, u).
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We define the cost function J on [0, T ] × Rn × U by:

J(t, x; ν) := Et,x

[∫ T

t

β(t, s)f(s,Xs, νs) ds + β(t, T )g(XT )

]
with

β(t, s) := e−
∫ s
t k(r,Xr,νr)dr.

The problem is to choose ν(·) to minimize J .
Here Et,x is the expectation operator conditional on Xt = x, and Xt is the
solution of (4.14) with control ν and initial condition Xt = x.
The quadratic growth condition on f an g together with the bound on k−

ensure that J(t, x; ν) is well defined for all admissible control ν ∈ U (Theo-
rem 4.4).
We have to study the minimization problem

V (t, x) := inf
ν ∈U

J(t, x; ν) for (t, x) ∈ [0, T ) × Rn.

This is called the stochastic control problem and V is called the value
function.

4.3 Malliavin calculus

We first provide several useful results concerning Malliavin Calculus. In the
following, the same results will be slightly modified at some points to obtain
our main result.

4.3.1 The derivative operator

Suppose that H is a real separable Hilbert space with scalar product denoted
by ⟨·, ·⟩H . The norm of an element h ∈ H will be denoted by ∥h∥H .
Let W = {W (h), h ∈ H } denote an isonormal Gaussian process associated
with the Hilbert space H, by definition E.2.
We assume that W is defined on a complete probability space (Ω,F ,P), and
F is generated by W .
We want to introduce the derivative DF of a square integrable random vari-
able F : Ω −→ R. This means that we want to differentiate F with respect
to the chance parameter ω ∈ Ω.
Denote by C∞

p (Rn) the set of all infinitely continuously differentiable func-
tions f : Rn −→ R such that f and all of its partial derivatives have
polynomial growth.
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Let S denote the class of smooth random variable such that F ∈ S has the
form

F = f(W (h1), W (h2), ..., W (hn)), (4.16)

where f belongs to C∞
p (Rn), h1, h2, ..., hn are in H, and n ≥ 1.

Definition 4.2. The derivative of a smooth random variable F of the form
(4.16) is the H-valued random variable given by

DF =
n∑

i=1

∂i f(W (h1), W (h2), ..., W (hn))hi. (4.17)

The operator D is closable from Lp(Ω) to Lp(Ω;H) for any p ≥ 1.
For any p ≥ 1 we will denote the domain of D in Lp(Ω) by D1,p, meaning
that D1,p is the closure of the class of smooth random variables S with respect
to the norm

∥F ∥1,p = [E( |F |p ) + E( ∥DF ∥pH ) ]
1
p .

We can define the iteration of the operator D in such a way that for a smooth
random variable F , the iterated derivative DkF is a random variable with
values in H⊗k. Then for every p ≥ 1 and any natural number k ≥ 1 we
introduce the seminorm on S defined by

∥F ∥k,p =
[
E( |F |p ) +

k∑
j=1

E( ∥DjF ∥p
H⊗j )

] 1
p
. (4.18)

We will denote by Dk,p the completion of the family of smooth random vari-
ables S with respect to the norm ∥ · ∥k,p.
In the following we state some propositions and Lemma that we will use to
prove our results. For the proofs see in order [58, Chapter 1, Proposition
1.2.3, Lemma 1.2.3, Proposition 1.2.4].

Proposition 4.3. Chain Rule. Let φ : Rm −→ R be a continuously dif-
ferentiable function with bounded partial derivatives, and fix p ≥ 1. Suppose
that F = (F 1, F 2, ..., Fm) is a random vector whose components belong to
the space D1,p. Then φ(F ) ∈ D1,p, and

D(φ(F )) =
m∑
i=1

∂iφ(F )DF i. (4.19)

Lemma 4.2. Let {Fn, n ≥ 1} be a sequence of random variables in D1,2

that converges to F in L2(Ω) and such that

sup
n

E
(
∥DFn∥2H

)
< +∞.
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Then F belongs to D1,2, and the sequence of derivatives {DFn, n ≥ 1 }
converges to DF in the weak topology of L2(Ω; H).

Proposition 4.4. Let φ : Rm −→ R be a function such that

|φ(x) − φ(y) | ≤ K|x − y |

for any x and y ∈ Rm. Suppose that F = (F 1, F 2, ..., Fm) is a random
vector whose components belong to the space D1,2. Then φ(F ) ∈ D1,2, and
there exists a random vector G = (G1, G2, ..., Gm) bounded by K such that

D(φ(F )) =
m∑
i=1

GiDF
i. (4.20)

For the proof see [58, pag 29].

Remark 4.4. Proposition 4.4 and Lemma 4.2 still hold if we replace D1,2

by D1,p for any p > 1. This follows from [58, Lemma 1.53 pag 79] and the
duality relationship between D and δ.

Now let H = L2([0, T ],B, µ), where µ is a σ-finite atomless measure on
a measurable space ([0, T ],B).
The derivative of a random variable F ∈ D1,2 will be a stochastic process
denoted by {DtF, t ∈ [0, T ] } due to the identification between the Hilbert
spaces L2(Ω;H) and L2([0, T ] × Ω). Notice that DtF is defined almost ev-
erywhere with respect to the measure µ × P. More generally, if k ≥ 2, the
derivative DkF = {Dk

t1,t2,...,tk
F, ti ∈ [0, T ] }, is a measurable function on the

product space [0, T ]k × Ω, which is defined everywhere with respect to the
measure µk × P.

4.3.2 The divergence operator

The divergence operator is defined as the adjoint of the derivative operator.
Let the underlying space H be of the form L2([0, T ],B, µ.)

Definition 4.3. We denote by δ the adjoint of the operator D. That is, δ is
an unbounded operator on L2(Ω;H) with values in L2(Ω) such that:
( i ) the domain of δ, denoted by Dom δ, is the set of H-valued square inte-
grable random variables u ∈ L2(Ω;H) such that

|E( ⟨DF, u ⟩H ) | ≤ c∥F ∥2, (4.21)
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for all F ∈ D1,2, where c is some constant depending on u.
( ii ) If u belongs to Dom δ, then δ(u) is the element of L2(Ω) characterized
by

E(Fδ(u)) = E(⟨DF, u ⟩H) (4.22)

for any F ∈ D1,2.

The operator δ is called the divergence operator and is closed as the
adjoint of an unbounded and densely defined operator.
We denote by SH the class of smooth elementary elements of the form

u =
n∑

j=1

Fjhj, (4.23)

where the Fj are smooth random variables, and hj are elements of H.
The space D1,2(H) is included in the domain of δ. In fact, if u ∈ D1,2(H),
there exists a sequence un ∈ SH such that un converges to u in L2(Ω) and
Dun converges to Du in L2(Ω;H ⊗ H). Therefore, δ(un) converges in L2(Ω)
and its limit is δ(u).

4.3.3 The Skorohod integral

Let H = L2([0, T ],B, µ) where µ is the Lebesgue measure.
In this case the elements of Dom δ ⊂ L2([0, T ] × Ω) are square integrable
processes, and the divergence δ(u) is called the Skorohod stochastic integral
of the process u. We will use the following notation:

δ(u) =

∫ T

0

ut dWt.

Definition 4.4. The space D1,2(L2([0, T ])), denoted by L1,2, coincides with
the class of processes u ∈ L2([0, T ] × Ω) such that ut ∈ D1,2 for almost all
t, and there exists a measurable version of the two parameter process Dsut
verifying E

∫ T

0

∫ T

0
(Dsut)

2 dsdt < ∞.

The space D1,2(L2([0, T ])) is included in Dom δ.
L1,2 is a Hilbert space with the norm

∥u ∥21,2,L2([0,T ]) = ∥u ∥2L2([0,T ]×Ω) + ∥Du ∥2L2([0,T ]2 ×Ω).

Note that L1,2 is isomorphic to L2([0, T ];D1,2).
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Definition 4.5. Let L1,p be the class of the processes u ∈ Lp([0, T ] × Ω) such
that ut ∈ D1,p for almost all t, and there exists a measurable version of the

two-parameter process Dsut such that ∥Dsut ∥pL2([0,T ]2) =
( ∫ T

0

∫ T

0
|Dsut|2 dsdt

) p
2

has finite P-expectation.
In L1,p we define the norm

∥u∥1,p =
(
∥u∥pLp(Ω× [0,T ]) + E

[
∥Du∥pL2([0,T ]2)

] ) 1
p
. (4.24)

If u and v are two processes in the space L1,2, then we have

E (δ(u)δ(v)) =

∫ T

0

E (utvt) dt +

∫ T

0

∫ T

0

E (DsutDtvs)µ(ds)µ(dt). (4.25)

Suppose that T = [0, ∞). Then, if both processes are adapted to the filtra-
tion generated by the Brownian motion, we have that Dsut = 0 for almost
(s, t) such that s > t, since Ft = F[0,t]. Consequently, the second summand
in 4.25 is equal to zero, and we recover the usual isometry property of the
Itô integral.

Proposition 4.5. Suppose that u ∈ L1,2. Assume that for almost all t the
process {Dtus, s ∈ [0, T ] } is Skorohod integrable, and there is a version

of the process {
∫ T

0
Dtus dWs, t ∈ [0, T ] } which is in L2([0, T ] × Ω). Then

δ(u) ∈ D1,2, and we have

Dt(δ(u)) = ut +

∫ T

0

Dtus dWs. (4.26)

Proof. For the proof see [58, pag 43]. �

Lemma 4.3. Let W = {W (t), t ∈ [0, 1] } be a one-dimensional Brownian
motion. Consider a square integrable adapted process u = {ut, t ∈ [0, 1] },
and set Xt =

∫ t

0
us dWs. Then the process u belongs to the space L1,2 if and

only if X1 belongs to D1,2. In this case the process X belongs to L1,2, and we
have∫ t

0

E (|DsXt|2) ds =

∫ t

0

E (u2s) ds +

∫ t

0

∫ s

0

E (|Drus|2) drds, (4.27)

for all t ∈ [0, 1].

Proof. For the proof see [58, pag 51]. �
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4.4 Regularity of probability laws

We need to study the regularity of the probability law of a random vector
defined on a probability space.
In particular, the random vector will be the solution of a stochastic differen-
tial equation.
To begin with, we define a new space.
Let V be a real Hilbert space. We consider the family SV of V -valued smooth
random variables of the form

F =
n∑

j=1

Fjvj, vj ∈ V, Fj ∈ S.

Define DkF =
∑n

j=1 D
kFj ⊗ vj, k ≥ 1. Then Dk is a closable operator from

SV ⊂ Lp(Ω;V ) into Lp(Ω;H⊗k ⊗ V ) for any p ≥ 1. For any integer k ≥ 1
and any real number p ≥ 1 we can define the seminorm on SV

∥F ∥k,p,V =

[
E (∥F ∥pV ) +

k∑
j=1

E (∥DjF ∥p
H⊗j ⊗V

)

] 1
p

. (4.28)

We define the space Dk,p(V ) as the completion of SV with respect to the
norm ∥ · ∥k,p,V .
Consider the intersection

D∞(V ) = ∩p≥ 1 ∩k≥ 1 Dk,p(V ).

Then D∞(V ) is a complete, countably normed, metric space. We will write
D∞(R) = D∞. If F and G are random variables in D∞, then the scalar
product ⟨DF, DG ⟩H is also in D∞.

Proposition 4.6. Suppose that F = (F 1, F 2, ..., Fm) is a random vector
whose components belong to D∞. Let φ ∈ C∞

p (Rm). Then φ(F ) ∈ D∞, and
we have

D(φ(F )) =
m∑
i=1

∂iφ(F )DF i.

Proof. For the proof see [58, pag ]. �

Proposition 4.7. Let F be a random variable in Dk,α with α > 1. Suppose
that DiF belongs to Lp(Ω;H⊗i) for i = 0, 1, ..., k and for some p > α. Then
F ∈ Dk,p, and there exists a sequence Gn ∈ P that converges to F in the
norm ∥ · ∥k,p.
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Proof. For the proof see [58, pag 76]. �

Remark 4.5. P is the class of the random variables of the form
p(W (h1), W (h2), ...,W (hn)) where hi ∈ H and p is a polynomial. Moreover
P is dense in Lr(Ω) for all r ≥ 1.
The class P is also dense in Dk,p ∀ p ≥ 1 e k ≥ 1. �

Proposition 4.8. Let u be an element of D1,p(H), p > 1. Then we have

∥ δ(u) ∥p ≤ cp
(
∥E (u) ∥H + ∥Du ∥Lp(Ω;H ⊗H)

)
.

Proof. For the proof [58, pag 80]. �

We need some general criteria to study the probability law, the regular-
ity of the density of a vector. We will apply these criteria to the solutions of
stochastic differential equation.
We need some criteria to the solutions of stochastic differential equations.
Let W = {W (h), h ∈ H } be a process associated to a Hilbert space H
and defined on complete probability space (Ω,F ,P). Assume also that F is
generated by W .

Proposition 4.9. Let F a random variable in the space D1,2. Suppose that
DF

∥DF ∥2H
belongs to the domain of the operator δ in L2(Ω). Then the law of F

has a continuous and bounded density given by

p(x) = E
[
1{F >x} δ

(
DF

∥DF ∥2H

)]
. (4.29)

Proof. For the proof [58, pag 86]. �

Suppose that F = (F 1, F 2, ..., Fm) is a random vector whose components
belong to the space D1,1

loc. We associate to F the following random symmetric
nonnegative definite matrix:

γF = ( ⟨DF i, DF j ⟩H )1≤ i, j≤m.

This is the so called Malliavin matrix of a random vector F . Thus, we state
the following principal theorem which has the proof on [58, pag 92]:

Theorem 4.2. Let F = (F 1, F 2, ..., Fm) be a random vector verifying the
following conditions:
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(i) F i ∈ D2,p
loc for all i = 1, 2, ...,m, for some p > 1.

(ii) The matrix γF is invertible a.s.

Then the law of F is absolutely continuous with respect to the Lebesgue mea-
sure on Rm.

4.4.1 Stochastic differential equation

We have stated the criteria to insure that a random vector has a law abso-
lutely continuous.
Now we want to find a similar criteria for a stochastic process that is the
solution of a stochastic differential equation, SDE.
In particular our SDE has the coefficient that also depend on a control pro-
cess.
We see in details.

Suppose that (Ω,F ,P) is the canonical probability space associated with
a d-dimensional Brownian motion W = {W i

t , t ∈ [0, T ], 1 ≤ i ≤ d} on a
finite interval [0, T ].
This means that Ω = C0([0, T ];Rd), P is the Wiener measure, F is the com-
pletion of the Borel σ-field of Ω with respect to P and Ft is the filtration on
(Ω,F) generated by W satisfying the usual conditions.
The underlying Hilbert space here is H = L2([0, T ];Rd).
Let U ⊂ Rm be the set of all possible processes, and U0 the set all progres-
sively measurable processes u = {ut, t ≥ 0 } U -valued.
We give the following Hypotheses on the coefficient and on the control pro-
cesses.

Hypothesis 4.3.

(A1) Let b : R+ × Rm × U −→ Rm, σ : R+ × Rm × U −→ Rm× d

be measurable functions satisfying the following globally Lipschitz and
boundness conditions:
|σ(t, x, u) − σ(t, y, v) | + | b(t, x, u) − b(t, y, v) |
≤ K |x − y | + H |u − v| for any x, y ∈ Rm, u, v ∈ U , t ∈ [0, T ];

(A2) ∃ ū such that ū ∈ U and
t −→ σ(t, 0, ū) and t −→ b(t, 0, ū) have linear growth (i.e., |σ(t, 0, ū)|+
|b(t, 0, ū)| ≤ K(1 + |t|))
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(Au) the process u = {ut, t ∈ [0, T ] } ∈ U ⊂ U0 is such that ut is a control
process progressively measurable with respect to (Ft)t≥0 and admissible,
i.e.,

E
(∫ t

0

|us |p ds
)
< +∞ for p = 1, 2, . . . . (4.30)

where U ⊂ U0 is the set of the control processes ut such that satisfies

E
(∫ T

0

| b(t, x, ut) | + |σ(t, x, ut) |2 dt
)
< +∞ forx ∈ Rm.

(4.31)
�

Remark 4.6. The condition (4.31) guarantees the existence of a controlled
process for each given initial condition and control. �

We denote by X = {Xt, t ∈ [0, T ]} the solution of the following stochas-
tic differential equation:

Xt = x0 +

∫ t

0

b(s,Xs, us) ds +

∫ t

0

σ(s,Xs, us) dWs, (4.32)

written componentwise as

X i
t = xi0 +

∫ t

0

bi(s,Xs, us) ds +
d∑

j=1

∫ t

0

σij(s,Xs, us) dW
j
s , (4.33)

for 1 ≤ i ≤ m, where x0 ∈ Rm is a random variable F0-adapted.
So we state the following theorem:

Theorem 4.4. Let σ and b be Lipshitz in the x variable uniformly in (t, u) ∈
[0, T ] × U, and ν ∈ U and have linear growth. Then, for all F0 random
variable ξ ∈ L2(Ω), there exists a unique Ft-adapted process X = {Xt, t ∈
[0, T ]} satisfying (4.32) together with the initial condition x0 = ξ. Moreover,

E
(

sup
0≤t≤T

|Xt|p
)
< +∞.

Proof. For the proof to see [58, chapter 2, section 2]. �
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Definition 4.6. A strong solution of the stochastic differential equation
(4.33), on the given probability space (Ω, F , P) and with respect to the fixed
Brownian motion W and condition initial ξ where ξ is a random vector tak-
ing values in Rm, is a process X = {Xt, t ∈ [0, T ] } with continuous sample
path and with the following properties:

(i) X is adapted to the filtration {Ft},

(ii) P[X0 = ξ] = 1,

(iii) P
[∫ t

0

{
|bi(s,Xs, us)| + |σ2

ij(s,Xs, us)|
}
ds < +∞

]
= 1 holds for every

1 ≤ i ≤ m, 1 ≤ j ≤ d, and t ∈ [0, T ].

Definition 4.7. Let b(t,Xt, ut) and σ(t,Xt, ut) be given. Suppose that,
whenever W is an d-dimensional Brownian motion on some (Ω, F , P), ξ
is an independent, m-dimensional random vector, (Ft)t≥ 0 is the filtration
on (Ω,F) generated by W satisfying the usual conditions, and X, X̃ are
two strong solutions of (4.32) relative to W with initial condition ξ, then

P
[
Xt = X̃t; t ∈ [0, T ]

]
= 1. Under these conditions, we say that strong

uniqueness holds for the pair (b, σ).

We have seen (Theorem 4.4) the conditions which assure the strong
uniqueness of the solution to (4.32), such that Xt belongs to the space D1,p

for all p ≥ 2.
Now, we want to find the criteria to assure that the process Xt has a proba-
bility law.
The idea is to use Theorem 4.2, and to prove that the conditions of the The-
orem are satisfied so that we can guarantee the absolute continuity of the
law of Xt, where Xt = (X1

t , X
2
t , ..., X

m
t ).

First of all we have to calculate the stochastic derivative of the process Xt

so we need to recall the following useful well-known theorem.
We relegate the proof to [58, pag 119].

Theorem 4.5. Let X = {Xt, t ∈ [0, T ] } be the solution of the

Xt = x0 +
d∑

j=1

∫ t

0

σj(s,Xs) dW
j
s +

∫ t

0

b(s,Xs) ds (4.34)

where the coefficients are supposed to be globally Lipschitz functions with
linear growth and x0 ∈ Rm is the initial value of the process X. Then X i

t
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belongs to D1,∞ for any t ∈ [0, T ] and i = 1, 2, ...,m. Moreover,

sup
0≤ r≤ t

E
(

sup
r≤ s≤T

|Dj
rX

i
s |p
)
< +∞, (4.35)

and the derivative Dj
rXt satisfies the following linear equation:

DjXt = σj(r,Xr) +

∫ t

r

σ̄k,α(s)Dj
rX

k
s dW

α
s

+

∫ t

r

b̄k(s)Dj
rX

k
s ds

(4.36)

for r ≤ t a.e., and
Dj

rXt = 0

for r > t a.e., where σ̄k,α(s) and b̄k(s) are uniformly bounded and adapted
m-dimensional processes.



Chapter 5

Malliavin calculus with control
processes

The coefficients of (4.34) do not depend on the control processes, thus we
have to modify Theorem 4.5 to suit our needs.

5.1 Malliavin derivative of the solution of SDE

In the following we assert that the set U is the closure of an open set of
Rm. Moreover, we recall that we consider the control processes satisfying
Hypothesis 4.3-(Au).
We finally can state the following

Theorem 5.1. Let b : [0, T ] × Rm × U −→ Rm,
σ : [0, T ] × Rm × U −→ Rm×d be measurable functions, satisfying Hypothe-
ses 4.3 of the subsection (4.4.1).
Let u ∈ U such that u ∈ L1,∞ and ut satisfies Hypotheses 4.3-(Au).
Let X = {Xt, t ∈ [0, T ] } be the solution of the

Xt = x0 +

∫ t

0

b(s,Xs, us) ds +
d∑

j=1

∫ t

0

σj(s,Xs, us) dW
j
s (5.1)

and x0 ∈ Rm is the initial value of the process X.
Then X i

t belongs to D1,∞ for any t ∈ [0, T ] and i = 1, ...,m.
Moreover,

sup
0≤ s≤ t

E

[(∫ s

0

|Dj
rX

i
s|2dr

) p
2

]
< +∞ (5.2)
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for j = 1, ..., d, and the derivative Dj
rX

i
t satisfies the following linear equa-

tion:

Dj
rX

i
t = σi

j(r,Xr, ur) +

∫ t

r

σ̄k,α,X(s)Dj
rX

k
s dW

α
s +

∫ t

r

σ̄k,α,u(s)Dj
ru

k
s dW

α
s

+

∫ t

r

b̄k,X(s)Dj
rX

k
s ds +

∫ t

r

b̄k,u(s)Dj
ru

k
s ds

(5.3)
for r ≤ t a.e., and

Dj
rXt = 0

for r > t a.e., where σ̄k,α,X(s), σ̄k,α,u(s), and b̄k,X(s), b̄k,u(s) are uniformly
bounded and (Ft)t≥0-adapted m-dimensional processes.

Remark 5.1. If the coefficients of the equation (5.1) are continuously dif-
ferentiable, then we can write

σ̄i
k,X(s) = ( ∂kσ

i
l,X )(s,Xs, us),

σ̄i
k,u(s) = ( ∂kσ

i
l,u )(s,Xs, us),

b̄k,X(s) = ( ∂kb
i
X )(s,Xs, us)

and

b̄k,u(s) = ( ∂kb
i
u )(s,Xs, us)

�

Remark 5.2. The (5.2) implies that X i
t belongs to L1,p for any p ≥ 1,

t ∈ [0, T ] and i = 1, ...,m. This follows directly from Jensen’s inequality,
that is

E

[(∫ T

0

∫ s

0

(DrXs)
2dsdr

) p
2

]
≤ c

T

∫ T

0

E

[(∫ s

0

(DrXs)
2dr

) p
2

]
ds < +∞

by (5.2). �

For the sake to simplify the proof of the theorem, we first will prove it
in the 1-dimensional case, so, in order, we rewrite the environment of the
problem.
Let H = L2([0, T ];R) and (Wt)t≥0 be a (Ft)t≥0 1-dimensional standard Brow-
nian motion.
We rewrite new hypotheses on the coefficients.

Hypothesis 5.2.
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(A1’) The diffusion coefficient is defined as

σ : [0, T ] × R × U −→ R,

and is such that |σ(t, y, u) − σ(t, y′, u′) | ≤ K (| y′ − y | + |u′ − u |)
for any t ∈ [0, T ], y, y′ ∈ R, u, u′ ∈ U ;

(A2’) the drift coefficient is defined as

b : [0, T ] × R × U −→ R

and is such that | b(t, y, u) − b(t, y′, u′) | ≤ K (| y′ − y | + |u′ − u |)
for any t ∈ [0, T ], y, y′ ∈ R, u, u′ ∈ U ;

(A3’) ∃ ū such that ū ∈ U and
t −→ σ(t, 0, ū) and t −→ b(t, 0, ū) have linear growth (i.e., |σ(t, 0, ū)|+
|b(t, 0, ū)| ≤ K(1 + |t|). �

for a positive constant K.

Proof of the Theorem 5.1. Consider the Picard approximation given
by

X0
t = x0,

Xn+1
t = x0 +

∫ t

0

σ(s,Xn
s , us) dWs +

∫ t

0

b(s,Xn
s , us) ds (5.4)

if n ≥ 0, n integer and t ∈ [0, T ]. For details see [21, chapter 1] We will
prove the following property by induction on n:
(∗) Xn

t ∈ D1,∞ for n ≥ 0 and t ∈ [0, T ]; furthermore, for all p > 1 we have

fn(t) := sup
0≤ s≤ t

E

[(∫ s

0

|DrX
n
s |2dr

) p
2

]
< +∞ (5.5)

and

fn+1(t) ≤ c1 + c2

∫ t

0

fn(s) ds, (5.6)

for some positive constants c1 and c2.

Clearly, (∗) holds for n = 0. Suppose it is true for n.
Applying the Remark 4.4 to the random vector (Xn

s , us) whose components
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belong to the space D1,p and to the functions σ and b, we can deduce that the
random variables σ(s,Xn

s , us) and b(s,Xn
s , us) belong to D1,p ∀ s ∈ [0, T ] and

that there exist adapted processes σ̄X(s), b̄X(s), and σ̄u(s), b̄u(s), uniformly
bounded respectively by KX and Ku, such that

Drσ(s,Xn
s , us) = σ̄X(s)DrX

n
s 1r≤s + σ̄u(s)Drus1r≤s, (5.7)

and

Drb(s,X
n
s , us) = b̄X(s)DrX

n
s 1r≤s + b̄u(s)Drus1r≤s. (5.8)

From Proposition 4.7 we deduce that the random variables σ(s,Xn
s , us) and

b(s,Xn
s , us) belong to D1,∞.

Thus, the processes {Drσ(s,Xn
s , us) }s and {Drb(s,X

n
s , us) }s are square in-

tegrable and adapted ∀ r.
From (5.7) and (5.8) we get the following inequalities:

|Drσ(s,Xn
s , us)| ≤ KX |DrX

n
s | + Ku |Drus|, (5.9)

|Drb(s,X
n
s , us)| ≤ KX |DrX

n
s | + Ku |Drus|. (5.10)

Now, to differentiate the integral
∫ (·)
0

σ(s,Xn
s , us) dWs, it suffices that the

process {σ(s,Xn
s , us)}s belongs to L1,2, so we have to verify this property.

By Definition 4.4, we have to prove that for almost all t

E
[ ∫ T

0

|σ(t,Xn
t , ut) |2 dt

]
< +∞ (5.11)

and

E
[ ∫ T

0

∫ T

0

|Drσ(s,Xn
s , us) |2 dr ds

]
< +∞. (5.12)

By Hypotheses 5.2 we have

E
[ ∫ T

0

|σ(t,Xn
t , ut) |2 dt

]
≤ C2

(
E
[ ∫ T

0

|σ(t,Xn
t , ut) − σ(t, 0, ū)|2 dt

+ E
∫ T

0

|σ(t, 0, ū) |2 dt
])

≤ C ′
2

(
E
∫ T

0

K2(|Xn
t |2 + |ut − ū|2) dt + E

∫ T

0

K2|t|2 dt
)

≤ C ′′
2

(
E
∫ T

0

K2(|Xn
t |2 + |ut|2 + |ū|2) dt + E

∫ T

0

K2|t|2 dt
)

≤ C̃

(
E
∫ T

0

|Xn
t |2 dt + E

∫ T

0

|ut|2 dt
)
< +∞

(5.13)
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because Xn
t ∈ D1,∞ by induction on n and u ∈ L1,2. C̃ depend on K, T

and on ū.
Now we have to prove (5.12).
By (5.9) we have

E
[ ∫ T

0

∫ T

0

|Drσ(s,Xn
s , us) |2 dr ds

]
≤ K2

X E
[ ∫ T

0

∫ T

0

|DrX
n
s |2 dr ds

]
+ K2

u E
[ ∫ T

0

∫ T

0

|Drus |2 dr ds
]
,

(5.14)
so (5.12) holds by induction hypothesis on n and by the fact that u ∈ L1,2.

Lemma 4.3 implies that
∫ (·)
0

σ(s,Xn
s , us)dWs belongs to D1,2 and, by Hy-

potheses 5.2, and by Proposition 4.5, for any r ≤ t, we have

Dr

(∫ t

0

σ(s,Xn
s , us) dWs

)
= σ(r,Xn

r , ur) +

∫ t

r

Drσ(s,Xn
s , us) dWs

= σ(r,Xn
r , ur) +

∫ t

r

σ̄X(s)DrX
n
s dWs

+

∫ t

r

σ̄u(s)Drus dWs.

(5.15)
By a similar argument we can prove that

∫ t

0
b(s,Xn

s , us)ds ∈ D1,2, and for
any r ≤ t, it holds

Dr

(∫ t

0

b(s,Xn
s , us) ds

)
=

∫ t

r

Drb(s,X
n
s , us) ds

=

∫ t

r

b̄X(s)DrX
n
s ds +

∫ t

r

b̄u(s)Drus ds.

(5.16)

From these equalities and equation (5.4), we deduce that Xn+1
t ∈ D1,2 ∀ t ∈

[0, T ].
By invoking Proposition 4.7, in order to prove that Xn+1

t ∈ D1,p with p > 2,
we have to prove that DXn+1

t ∈ Lp(Ω; H), that is,

E

[[∫ T

0

|DrX
n+1
t |2 dr

] p
2

]
< +∞. (5.17)
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By (5.9), (5.10), (5.15) and (5.16) we have

E
[[ ∫ T

0

|DrX
n+1
t |2 dr

] p
2
]

≤ Cp,2

{
E
[( ∫ T

0

|σ(r,Xn
r , ur)|2 dr

) p
2
]

+ E
[( ∫ T

0

∫ t

r

K2
X |DrX

n
s |2 ds dr

) p
2
]

+ E
[( ∫ T

0

∫ t

r

Ku|Drus|2 ds dr
) p

2
]

+ E
[( ∫ T

0

∫ t

r

K2
X |DrX

n
s |2 ds dr

) p
2
]

+ E
[( ∫ T

0

∫ t

r

K2
u|Drus|2 ds dr

) p
2
]}

≤ C̃
{
E
[( ∫ T

0

|σ(r,Xn
r , ur)|2 dr

) p
2
]

+ E
[( ∫ T

0

∫ t

r

|DrX
n
s |2 ds dr

)] p
2

+ E
[( ∫ T

0

∫ t

r

|Drus|2 ds dr
)] p

2
}
.

(5.18)
Now, we have to show that the first expectation on the right hand-side of the
last inequality is finite, so applying conditions Hypotheses 5.2-(A1’)-(A3’),
we have

E
[ ( ∫ T

0

|σ(r,Xn
r , ur)|2 dr

) p
2
]

≤ E

[(∫ T

0

Kp ( 1 + |Xn
r | + |ur − ū| + |r|)2 dr

) p
2

]

≤ K̃p

[
Ct,p + E

(∫ T

0

|Xn
r |2 dr

) p
2

+ E
(∫ T

0

|ur |2 dr
) p

2

]
< +∞

(5.19)
because Xn

t ∈ D1,∞ and by Hölder

E
(∫ T

0

|ur |2 dr
) p

2

≤ E
(∫ T

0

|ur |p dr
)

≤ ||u ||pL1,p (5.20)

and ut ∈ L1,∞.
K̃ is a constant depending on K, p, and t and Ct,p is a constant depending
on t and p.
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The second expectation is finite, in fact we have

E
[ ( ∫ T

0

∫ t

r

|DrX
n
s |2 dsdr

) p
2
]

= E

[(∫ T

0

∫ s

0

|DrX
n
s |2 drds

) p
2

]

≤ cE

(∫ T

0

(∫ s

0

|DrX
n
s |2 dr

)p′

ds

) 1
p′

p
2


= cE

[∫ t

0

[∫ s

0

|DrX
n
s |2 dr

] p
2

ds

]
(5.21)

where we have applied Hölder for p′ =
p

2
, p > 2 so p′ > 1. So, by induction

on n the expectation is finite.
The third expectation is finite by Definition 4.5.
So, it follows that (5.17) is true, consequently Xn+1

t ∈ D1,p with p ≥ 2.
Moreover by Hölder inequality it follows that Xn+1

t ∈ D1,p, p < 2, this
finally implies that Xn+1

t ∈ D1,∞.
Finally we have to show that Xn

t converges to the process X.
Now, let

βp = sup
n

E

[(∫ t

0

|σ(r,Xn
r , ur)|2 dr

) p
2

]
. (5.22)

Because the equation (5.19) yields for each n, it implies that βp < ∞.
Now, applying Corollary E.1 we obtain

fn+1(t) = sup
0≤ s≤ t

E

[(∫ s

0

|DrX
n+1
s |2 dr

) p
2

]

≤ kp,t

{
βp + cp E

[(∫ t

0

∫ t

r

|DrX
n
s |2 dsdr

) p
2

]

+ c′p E

[(∫ t

0

∫ t

r

|Drus|2 dsdr
) p

2

] }
≤ c1 + K̃ ′ E

[(∫ t

0

∫ t

r

|DrX
n
s |2 dsdr

) p
2

]
(5.23)
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because ut ∈ L1,∞ and by Definition 4.5 we have

ηp = E

[(∫ t

0

∫ t

r

|Drus|2 drds
) p

2

]
≤ ∥u ∥pL1,p < +∞. (5.24)

c1 and K̃ ′ depend on βp, cp, c
′
p, ηp and on kp,t.

Now, applying Hölder to the right side of the equation (5.23) and recalling
the equations (5.21), we have

E
[ ( ∫ t

0

∫ t

r

|DrX
n
s |2 dsdr

) p
2
]

≤ cE

[(∫ t

0

∫ s

0

|DrX
n
s |2 drds

) p
2

]

≤ c

∫ t

0

E
(∫ s

0

|DrX
n
s |2 dr

) p
2

ds.

(5.25)

Finally, we obtain

fn+1(t) ≤ c1 + K̃ ′c

∫ t

0

E
(∫ s

0

|DrX
n
s |2 dr

) p
2

ds

≤ c1 + c2

∫ t

0

fn(s) ds.

(5.26)

So (5.5) and (5.34) hold for n + 1.
Now we consider

E
(

sup
0≤t≤T

|Xn+1
t −Xn

t |p
)

= E
[

sup
0≤t≤T

∣∣∣ ∫ t

0

(
σ(s,Xn+1

s , us) − σ(s,Xn
s , us)dWs

)
+

∫ t

0

(
b(s,Xn+1

s , us) − b(s,Xn
s , us) ds

) ∣∣∣p ].
(5.27)

Then, by the Corollary E.1 and by Hypotheses 5.2-(A1’)-(A1’), we obtain

E
(

sup
0≤ t≤T

|Xn+1
t − Xn

t |p
)

≤ cpK
pT p−1

∫ T

0

E (|Xn
s − Xn−1

s |p )ds.

(5.28)
Then, it follows inductively that the preceding expression is bounded by

1

n!
(cpK

pT p−1)n+1 sup
0≤ s≤T

|X1
s |p, (5.29)
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so, consequently, we have

∞∑
n=0

E
(

sup
0≤ t≤T

|Xn+1
t − Xn

t |p
)
< +∞, (5.30)

which implies the existence of a continuous process X satisfying (5.1) and

such that E
(

sup
0≤ t≤T

|Xt|p
)

≤ C for all p > 1 and C is a positive constant

depending on p, T and K [21, section 1.2].
So we know that

E
(

sup
s≤T

|Xn
s − Xs |p

)
−→ 0 (5.31)

as n tends to infinity.
By Gromwall’s lemma applied to (5.23) we deduce that the derivatives of the
Xn

t are bounded in Lp(Ω × [0, T ]) uniformly in n for all p ≥ 2.
Due to Lemma 4.2 we can assert that the random variable Xt belongs to
D1,∞.
Finally, applying the operator D to equation (5.1) and using Proposition 4.4,
we deduce the linear stochastic differential equation (5.3) for the derivative
of Xt. �

Remark 5.3. If u ∈ L1,p with p fixed, p ≥ 2, then Xt ∈ D1,q ∀ q ≤ p. �

5.1.1 The n-dimensional case

For the sake of continuity, in this subsection we will prove the Theorem (5.1)
in the n-dimensional case.
We will proceed as well as for the 1-dimensional case, using the same tech-
niques, taking into account that now we will deal matrices in the place of the
vectors.

Remark 5.4. We want to remark that the reason which we repeat the proof
of the Theorem although using the same instruments, is that to prove the
main result of this work in the next section, we will use the matrix notation,
so we think that it is better to be used... �

Proof of the Theorem 5.1. We will consider the Picard approximation
(5.4), taking into account that Xt is stochastic process m dimensional, that
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is, we have

X i,n
t = xi0,

X i,n+1
t = xi0 +

d∑
j=1

∫ t

0

σi
j(s,X

n
s , us) dW

j
s +

∫ t

0

bi(s,Xn
s , us) ds(5.32)

for i = 1, . . . ,m, j = 1, . . . , d. We will prove the following property by in-
duction on n:

(∗∗) X i,n
t ∈ D1,∞ for all i = 1, . . . ,m, n ≥ 0 and t ∈ [0, T ]; furthermore,

for all p > 1 and j = 1, . . . , d we have

fj,n(t) := sup
0≤ s≤ t

E

[(∫ s

0

|Dj
rX

n
s |2dr

) p
2

]
< +∞ (5.33)

and

fj,n+1(t) ≤ c1 + c2

∫ t

0

fj,n(s)ds, (5.34)

for some positive constants c1 and c2.

Clearly, (∗∗) holds for n = 0. Suppose it is true for n.
Applying the Remark 4.4 to the random vector (Xn

s , us) whose components
belong to the space D1,p and to the functions σi

j and bi, we can deduce that the
random variables σi

j(s,X
n
s , us) and bi(s,Xn

s , us) belong to D1,p ∀ s ∈ [0, T ],
i = 1, . . . ,m, j = 1, . . . , d, and that there exist m-dimensional adapted
processes

σ̄n,i
j,X(s) = {σ̄n,i

j,X,1(s), . . . , σ̄
n,i
j,X,m(s)},

σ̄n,i
j,u(s) = {σ̄n,i

j,u,1(s), . . . , σ̄
n,i
j,u,m(s)},

b̄n,iX (s) = {b̄n,iX,1(s), . . . , b̄
n,i
X,m(s)},

b̄n,iu (s) = {b̄n,iu,1(s), . . . , b̄
n,i
X,m(s)}

(5.35)

uniformly bounded respectively by KX and Ku, such that

Drσ
i
j(s,X

n
s , us) = σ̄n,i

j,X,k(s)DrX
n,k
s 1r≤s + σ̄n,i

j,u,k(s)Dru
k
s1r≤s, (5.36)

and

Drb
i(s,Xn

s , us) = b̄n,iX,k(s)DrX
n,k
s 1r≤s + b̄n,iu,k(s)Dru

K
s 1r≤s. (5.37)

From Proposition 4.7 we deduce that the random variables σi
j(s,X

n
s , us) and

bi(s,Xn
s , us) belong to D1,∞.
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Thus, the processes {Drσ
i
j(s,X

n
s , us) }s and {Drb

i(s,Xn
s , us) }s are square

integrable and adapted ∀ r and ∀ i = 1, . . . ,m, j = 1, . . . , d.
Therefore, from (5.36) and (5.37) we get the following inequalities:

|Drσ
i
j(s,X

n
s , us)| ≤ KX |DrX

n,k
s | + Ku |Drus|, (5.38)

|Drb
i(s,Xn

s , us)| ≤ KX |DrX
n
s | + Ku |Drus|. (5.39)

We have to differentiate the integral
∫ (·)
0

σi
j(s,X

n
s , us) dW

j
s . To this aim, it

suffices to prove that the processes {σi
j(s,X

n
s , us)}s, belong to L1,2 ∀ i =

1, . . . ,m, j = 1, . . . , d. Due to Definition 4.4, we have to prove that for
almost all t and for i = 1, . . . ,m, j = 1, . . . , d it holds

E
[ ∫ T

0

|σi
j(t,X

n
t , ut) |2 dt

]
< +∞ (5.40)

and

E
[ ∫ T

0

∫ T

0

|Drσ
i
j(s,X

n
s , us) |2 dr ds

]
< +∞. (5.41)

By Hypotheses 4.3 we have

E
[ ∫ T

0

|σi
j(t,X

n
t , ut) |2 dt

]
≤ C2

(
E
[ ∫ T

0

|σi
j(t,X

n
t , ut) − σi

j(t, 0, ū)|2 dt

+ E
∫ T

0

|σi
j(t, 0, ū) |2 dt

])
≤ C ′

2

(
E
∫ T

0

K2(|Xn
t |2 + |ut − ū|2) dt + E

∫ T

0

K2|t|2 dt
)

≤ C ′′
2

(
E
∫ T

0

K2(|Xn
t |2 + |ut|2 + |ū|2) dt + E

∫ T

0

K2|t|2 dt
)

≤ C̃

(
E
∫ T

0

|Xn
t |2 dt + E

∫ T

0

|ut|2 dt
)
< +∞

(5.42)
because Xn

t ∈ D1,∞ by induction on n and u ∈ L1,2. C̃ depend on K, T
and on ū.
Now we have to prove (5.41).
By (5.38) we have

E
[ ∫ T

0

∫ T

0

|Dl
rσ

i
j(s,X

n
s , us) |2 dr ds

]
≤ K2

X E
[ ∫ T

0

∫ T

0

|Dl
rX

n
s |2 dr ds

]
+ K2

u E
[ ∫ T

0

∫ T

0

|Dl
rus |2 dr ds

]
,

(5.43)
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so (5.41) holds by induction hypothesis on n and by the fact that u ∈ L1,2.

Lemma 4.3 implies that
∫ (·)
0

σi
j(s,X

n
s , us)dW

j
s belongs to D1,2 and, by Hy-

potheses 4.3 and by Proposition 4.5, for any r ≤ t, we have

Dl
r

(∫ t

0

σi
j(s,X

n
s , us) dW

j
s

)
= σi

l(r,X
n
r , ur) +

∫ t

r

Dl
rσ

i
j(s,X

n
s , us) dW

j
s

= σi
l(r,Xr, ur) +

m∑
k=1

d∑
α=1

∫ t

r

σ̄n,i
α,X,k(s)Dl

rX
n,k
s dWα

s

+
m∑
k=1

d∑
α=1

∫ t

r

σ̄n,i
α,X,k(s)Dl

ru
n,k
s dWα

s

(5.44)
By a similar argument we can prove that

∫ t

0
bi(s,Xn

s , us)ds ∈ D1,2 with
i = 1, . . . ,m, and for any r ≤ t, it holds

Dl
r

(∫ t

0

bi(s,Xn
s , us) ds

)
=

∫ t

r

Dl
rb

i(s,Xn
s , us) ds

=
m∑
k=1

∫ t

r

b̄n,iX,k(s)Dl
rX

n,k
s ds +

m∑
k=1

∫ t

r

b̄n,iu,k(s)Dl
ru

k
s ds.

(5.45)
From these equalities and equation (5.4), we deduce that Xn+1

t ∈ D1,2 ∀ t ∈
[0, T ].
By invoking Proposition 4.7, in order to prove that Xn+1

t ∈ D1,p with p > 2,
we want that DXn+1

t ∈ Lp(Ω; H), taking into account that since Xn
t is a

matrix, then DXn+1
t is a matrix too.

So it has to be true

E

[[ ∫ T

0

|DrX
n+1
t |2 dr

] p
2

]
< +∞. (5.46)
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By (5.38), (5.39), (5.44) and (5.45) we have

E
[[ ∫ T

0

|Dl
rX

n+1,i
t |2 dr

] p
2
]

≤ Cp,2

{
E
[( ∫ T

0

|σi
l(r,X

n
r , ur)|2 dr

) p
2
]

+
m∑
k=1

d∑
α=1

E
[( ∫ T

0

∫ t

r

K2
k,X,α|Dl

rX
n,k
s |2 ds dr

) p
2
]

+
m∑
k=1

d∑
α=1

E
[( ∫ T

0

∫ t

r

Kk,u,α|Dl
ru

k
s |2 ds dr

) p
2
]

+
m∑
k=1

E
[( ∫ T

0

∫ t

r

K2
k,X |Dl

rX
n,k
s |2 ds dr

) p
2
]

+
m∑
k=1

E
[( ∫ T

0

∫ t

r

K2
k,u|Dl

ru
k
s |2 ds dr

) p
2
]}

≤ C
{
E
[( ∫ T

0

|σi
l(r,X

n
r , ur)|2 dr

) p
2
]

+ E
[( ∫ T

0

∫ t

r

|Dl
rX

n
s |2 ds dr

)] p
2

+ E
[( ∫ T

0

∫ t

r

|Dl
rus|2 ds dr

)] p
2
}

(5.47)
for i = 1, . . . ,m, l = 1, . . . , d, where the constant C also depends on dimen-
sions of the Brownian motion and of the stochastic process Xt, respectively
d and m.
Now, we have to prove that the right hand-side of the last inequality is finite.
Consider the first expectation of the right hand-side: applying Hypotheses
4.3, we have

E
[ ( ∫ T

0

|σi
l(r,X

n
r , ur)|2 dr

) p
2
]

≤ E

[(∫ T

0

Kp ( 1 + |Xn
r | + |ur − ū| + |r|)2 dr

) p
2

]

≤ K̃p

[
Ct,p + E

(∫ T

0

|Xn
r |2 dr

) p
2

+ E
(∫ T

0

|ur |2 dr
) p

2

]
< +∞

(5.48)
because Xn

t ∈ D1,∞ and by Hölder

E
(∫ T

0

|ur |2 dr
) p

2

≤ E
(∫ T

0

|ur |p dr
)

≤ ∥u ∥pL1,p (5.49)

and ut ∈ L1,∞.
K̃ is a constant depending on K, p, and t and Ct,p is a constant depending



80 5. Malliavin calculus with control processes

on t and p.
The second expectation is finite, in fact we have

E
[ ( ∫ T

0

∫ t

r

|Dl
rX

n
s |2 dsdr

) p
2
]

= E

[(∫ T

0

∫ s

0

|Dl
rX

n
s |2 drds

) p
2

]

≤ cE

(∫ T

0

(∫ s

0

|Dl
rX

n
s |2 dr

)p′

ds

) 1
p′

p
2


= cE

[∫ t

0

[∫ s

0

|Dl
rX

n
s |2 dr

] p
2

ds

]
(5.50)

for l = 1, . . . , d, where we have applied Hölder for p′ =
p

2
, p > 2 so p′ > 1.

So, by induction on n the expectation is finite.
By Definition 4.5 we can assert that also third expectation is finite.
So, it follows that (5.46) is true, consequently Xn+1

t ∈ D1,p with p ≥ 2.
Moreover by Hölder inequality it follows that Xn+1

t ∈ D1,p, p < 2, this
finally implies that Xn+1

t ∈ D1,∞.
Finally we have to show that Xn

t converges to the process X.
Let

βp = sup
n

E

[(∫ t

0

|σi
l(r,X

n
r , ur)|2 dr

) p
2

]
. (5.51)

Since the equation (5.48) yields for each n, it implies that βp < ∞ for
i = 1, . . . ,m, and l = 1, . . . , d.
Due to (5.47) and applying Corollary E.1 we obtain

fl,n+1(t) = sup
0≤ s≤ t

E

[(∫ s

0

|Dl
rX

n+1
s |2 dr

) p
2

]

≤ kp,tC

{
βp + cp E

[(∫ t

0

∫ t

r

|Dl
rX

n
s |2 dsdr

) p
2

]

+ c′p E

[(∫ t

0

∫ t

r

|Dl
rus|2 dsdr

) p
2

] }

≤ c1 + K̃ ′ E

[(∫ t

0

∫ t

r

|Dl
rX

n
s |2 dsdr

) p
2

]
(5.52)
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because ut ∈ L1,∞ and by Definition 4.5 we have

ηp = E

[(∫ t

0

∫ t

r

|Dl
rus|2 drds

) p
2

]
≤ ∥ u ∥pL1,p < +∞. (5.53)

c1 and K̃ ′ depend on C, βp, cp, c
′
p, ηp and on kp,t.

We conclude the proof of the Theorem applying Hölder to the right side of
the equation (5.52) and recalling the equations (5.50). Then, we have

E
[( ∫ t

0

∫ t

r

|Dl
rX

n
s |2 dsdr

) p
2

]
≤ cE

[(∫ t

0

∫ s

0

|Dl
rX

n
s |2 drds

) p
2

]

≤ c

∫ t

0

E
(∫ s

0

|Dl
rX

n
s |2 dr

) p
2

ds.

(5.54)
Finally, we obtain

fl,n+1(t) ≤ c1 + K̃ ′c

∫ t

0

E
(∫ s

0

|Dl
rX

n
s |2 dr

) p
2

ds

≤ c1 + c2

∫ t

0

fl,n(s) ds.

(5.55)

So (5.33) and (5.21) hold for n+ 1.
Although the argumentations to conclude the proof of the theorem are the
same used to prove the 1-dimensional case, we do not want to omit any
calculations, to well-understand the problem.
Calculate

E
(

sup
0≤t≤T

|Xn+1
t −Xn

t |p
)

= E
[

sup
0≤t≤T

∣∣∣ d∑
j=1

∫ t

0

(
σj(s,X

n+1
s , us) − σj(s,X

n
s , us)dW

j
s

)
+

∫ t

0

(
b(s,Xn+1

s , us) − b(s,Xn
s , us) ds

) ∣∣∣p ].
(5.56)

Then, recalling that we indicate with Xt the m× 1 vector, by the Corollary
E.1 and by Hypothesis-(A1), we obtain

E
(

sup
0≤ t≤T

|Xn+1
t − Xn

t |p
)

≤ cpdK
pT p−1

∫ T

0

E (|Xn
s − Xn−1

s |p )ds.

(5.57)
Then, it follows inductively that the preceding expression is bounded by

1

n!
(cpdK

pT p−1)n+1 sup
0≤ s≤T

|X1
s |p, (5.58)
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so, consequently, we have

+∞∑
n=0

E
(

sup
0≤ t≤T

|Xn+1
t − Xn

t |p
)
< ∞, (5.59)

which implies the existence of a continuous process X satisfying (5.1) and

such that E
(

sup
0≤ t≤T

|Xt|p
)

≤ C for all p > 1 and C is a positive constant

depending on p, T and K [21, section 1.2].
So we know that

E
(

sup
s≤T

|Xn
s − Xs |p

)
−→ 0 (5.60)

as n tends to infinity.
By Gromwall’s lemma applied to (5.23) we deduce that the derivatives of the
Xn

t are bounded in Lp(Ω × [0, T ]) uniformly in n for all p ≥ 2.
Due to Lemma 4.2 we can assert that the random variable Xt belongs to
D1,∞.
Finally, applying the operator D to equation (5.1) and using Proposition 4.4,
we deduce the linear stochastic differential equation (5.3) for the derivative
of Xt. �



Chapter 6

Absolute continuity of the
probability law

The main aim of this chapter is to find conditions on the coefficients of equa-
tion (5.1) which guarantee that the solution Xt at any time t ∈ (0, T ] has
an absolute continuous law with respect to the Lebesgue measure.
In particular, we want to find conditions weaker than the well-known hypoel-
lipticity property of the operator L: consider the second-order differential
operator

L = A0 +
1

2

d∑
j=1

(Aj)
2.

Hörmander’s theorem [47] states that if the Lie algebra generated by the vec-
tor fields A0, A1, . . . , Ad has full rank at each point of Rm, then the operator
L is hypoelliptic. We want to find a condition weaker of this assumption.
Following the idea of Nualart, we will calculate the Malliavin Matrix, and we
will find the conditions assuring the invertibility of the matrix: in this way,
if the Malliavin matrix of Xt is strictly positive, due to Theorem 4.2, we can
state that the law of Xt is absolute continuous with respect to the Lebesgue
measure.

6.1 Hörmander condition in standard cases

In order to proceed, we recall the well-known Hörmander conditions usually
applied to find a probability law for a stochastic process Xt solution of a
SDE without depending on a control process.
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Let X = {Xt, t ∈ [0, T ] } be the solution of the

Xt = x0 +
d∑

j=1

∫ t

0

σj(Xs)dW
j
s +

∫ t

0

b(Xs) ds (6.1)

where the coefficients are assumed to be infinitely differentiable functions
with bounded derivatives of all orders that do not depend on the time. x0 ∈
Rm is the initial value of the process X.
Consider the following vector fields in Rm associated with the coefficients of
(6.1):

σj = σi
j(x)

∂

∂xi
, j = 1, ..., d,

b = bi(x)
∂

∂xi

that is the vectors σj (=σi
j) for j = 1, ..., d and b (= bi) are identified with

the first order differential operator.
The covariant derivative of σk in the direction of σj is defined as the vector
field σ▽

j σk = σl
j∂lσ

i
k

∂
∂xi

, and the Lie bracket between the vector fields σj and
σk is defined by

[σj, σk] = σ▽
j σk − σ▽

k σj.

▽ is called connection.
Set

σ0 =

[
bi(x) − 1

2
σj
l (x) ∂jσ

i
l(x)

]
∂

∂xi

= b − 1

2

d∑
l=1

σ▽
l σl.

(6.2)

The vector σ0 appears when we write the stochastic differential equation (6.1)
in terms of the Stratonovich integral of the Ito integral:

Xt =
d∑

j=1

∫ t

0

σj(Xs) ◦ dW j
s +

∫ t

0

σ0(Xs)ds.

Hörmander’s condition can be stated as follows:

(H) The vector space spanned by the vector fields

σ1, σ2, ..., σd, [σi, σj], 0 ≤ i, j ≤ d, [σi, [σj, σk]], 0 ≤ i, j, k ≤ d, ...

at point x0 is Rm.
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Theorem 6.1. Assume that Hörmander’s condition (H) holds. Then for any
t > 0 the random vector Xt has a probability distribution that is absolutely
continuous with respect to the Lebesgue measure.

The proof of this result can be found in [58, pag 131].
We also recall that in the 1-dimensional case, condition (H) asserts that
σ(X0) ̸= 0 or b(X0)∂

n
xσ(X0) ̸= 0 for some n ≥ 1.

Our aim is to establish what are the conditions that insure that the process
Xt has a probability distribution that is absolutely continuous with respect
to the Lebesgue measure, where the stochastic process Xt has coefficients
depending also on control processes.

6.1.1 Malliavin matrix for feedback control processes

Before to proceed with our objective, we want to remark a basilar aspect in
mathematical financial environment.
In most applications in finance the control processes are feedback controls.
This means that the controller is allowed to know the past history of states
Xr for r ≤ s when the control us is chosen. So, from now on, we will
concentrate on this type of processes.
Moreover, as for the diffusion and drift coefficients, we assume that ũt does
not depend on time.
So we will therefore consider Markovian control processes, that is, control
processes ut that can be written as ut = ũ(Xt) where ũ : Rm −→ U ⊆ Rm.
We suppose that ũ is a lipschitz function.
Then, by chain rule 4.3, it holds

Dl
ru

k
s =

m∑
h=1

∂hũ
k(Xs)D

l
rX

h
s .

By Theorem 4.2, we know that if the Malliavin matrix γXt is invertible,
then the law of Xt is absolutely continuous. Then, the idea to proceed is to
calculate the Malliavin matrix of stochastic process Xt and then to establish
if and when it is invertible.
First of all we have to calculate the stochastic derivative of Xt.
We recall that Xt is define in (6.1), and the coefficients are assumed to be
infinitely differentiable functions with bounded derivatives of all orders that
do not depend on the time.
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We have

Dl
rX

i
t = σi

l(Xr, ur) +
m∑

k,h=1

∫ t

r

(
∂kb

i
X(Xs, us)D

l
rX

k
s + ∂kb

i
u(Xs, us)∂hũ

k(Xs)D
l
rX

h
s

)
ds

+
m∑

k,h=1

d∑
θ=1

∫ t

r

(
∂kσ

i
θ,X(Xs, us)D

l
rX

k
s + ∂kσ

i
θ,u(Xs, us)∂hũ

k(Xs)D
l
rX

h
s

)
dW θ

s

(6.3)
for r ≤ t a.e., and Dj

rXt = 0 for r > t a.e..
The Malliavin matrix γXt is defined as

γi,jt = ⟨DrX
i
t , DrX

j
t ⟩H =

d∑
l=1

∫ t

0

Dl
rX

i
tD

l
rX

j
t dr. (6.4)

We know that to study the strictly positive of γXt we would have to calculate
the scalar product but the computations will not give us wanted results.
To overcome the problem we have to find another way to write γXt .
We calculate the stochastic differential of γi,jXt

. We have

d(γi,jt ) =
d∑

l=1

d
( ∫ t

0

Dl
rX

i
tD

l
rX

j
t dr

)
=

d∑
l=1

[
σi
l(t)σ

j
l (t)dt +

∫ t

0

d(Dl
rX

i
tD

l
rX

j
t )dr

]
.

(6.5)

Now, for i, j = 1, ...,m

d(Dl
rX

i
tD

l
rX

j
t ) = d(Dl

rX
i
t)D

l
rX

j
t + Dl

rX
i
td(Dl

rX
j
t ) + d[Dl

rX
i, Dl

rX
j]t. (6.6)

We will write separately the dynamics of the terms of the above equation to
avoid to mix up indices of columns and of the rows. So, for i = 1, ...m, and
j = 1, . . . , d, we have

d(Dl
rX

i
t) =

m∑
k,h=1

d∑
θ=1

(
∂kσ

i
θ,X(t)Dl

rX
k
t + ∂kσ

i
θ,u(t)∂hũ

k(Xt)D
l
rX

h
t

)
dW θ

t

+
m∑

k,h=1

(
∂kb

i
X(s)Dl

rX
k
s + ∂kb

i
u(s)∂hũ

k(Xt)D
l
rX

h
s

)
dt,

(6.7)
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d(Dl
rX

j
t ) =

m∑
k,h=1

d∑
θ=1

(
∂kσ

j
θ,X(t)Dl

rX
k
t + ∂kσ

j
θ,u(t)∂hũ

k(Xt)D
l
rX

h
t

)
dW θ

t

+
m∑

k,h=1

(
∂kb

j
X(s)Dl

rX
k
s + ∂kb

j
u(s)∂hũ

k(Xt)D
l
rX

h
s

)
dt,

(6.8)
and

d[Dl
rX

i, Dl
rX

j]t

=
d∑

θ=1

m∑
k,h,α,ν=1

[(
∂kσ

i
θ,X(t)Dl

rX
k
t + ∂kσ

i
θ,u(t)∂hũ

k(Xt)D
l
rX

h
t

)(
∂νσ

j
θ,X(t)Dl

rX
ν
t

+ ∂νσ
j
θ,u(t)∂αũ

ν(Xt)D
l
rX

α
t

)]
dt.

(6.9)
Now we substitute (6.7), (6.8) and (6.9) into equation (6.6), with respect to
the requested calculus. We have

d(Dl
rX

i
tD

l
rX

j
t )

=

[ m∑
k,h=1

d∑
θ=1

(
∂kσ

i
θ,X(t)Dl

rX
k
t + ∂kσ

i
θ,u(t)∂hũ

k(Xt)D
l
rX

h
t

)
dW θ

t

+
m∑

k,h=1

(
∂kb

i
X(t)Dl

rX
k
t + ∂kb

i
u(t)∂hũ

k(Xt)D
l
rX

h
t

)
dt

]
Dl

rX
j
t

+ Dl
rX

i
t

[ m∑
k,h=1

d∑
θ=1

(
∂kσ

j
θ,X(t)Dl

rX
k
t + ∂kσ

j
θ,u(t)∂hũ

k(Xt)D
l
rX

h
t

)
dW θ

t

+
m∑

k,h=1

(
∂kb

j
X(t)Dl

rX
k
t + ∂kb

j
u(t)∂hũ

k(Xt)D
l
rX

h
t

)
dt

]

+
d∑

θ=1

m∑
k,h,α,ν=1

[(
∂kσ

i
θ,X(t)Dl

rX
k
t + ∂kσ

i
θ,u(t)∂hũ

k(Xt)D
l
rX

h
t

)(
∂νσ

j
θ,X(t)Dl

rX
ν
t

+ ∂νσ
j
θ,u(t)∂αũ

ν(Xt)D
l
rX

α
t

)]
dt.

(6.10)
Finally, substitute the above equation into (6.5), so that we will have the
exactly and explicit form of the differential stochastic of the Malliavin matrix
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for any i, j = i, ...,m. We have

d(γi,jXt
) =

d∑
l=1

{
σi
l(t)σ

j
l (t)dt+

∫ t

0

d(Dl
rX

i
tD

l
rX

j
t )dr

}
=

d∑
l=1

{
σi
l(t)σ

j
l (t)dt

+

∫ t

0

[[ m∑
k,h=1

d∑
θ=1

(
∂kσ

i
θ,X(t)Dl

rX
k
t + ∂kσ

i
θ,u(t)∂hũ

k(Xt)D
l
rX

h
t

)
dW θ

t

+
m∑

k,h=1

(
∂kb

i
X(t)Dl

rX
k
t + ∂kb

i
u(t)∂hũ

k(Xt)D
l
rX

h
t

)
dt

]
Dl

rX
j
t

+Dl
rX

i
t

[ m∑
k,h=1

d∑
θ=1

(
∂kσ

j
θ,X(t)Dl

rX
k
t + ∂kσ

j
θ,u(t)∂hũ

k(Xt)D
l
rX

h
t

)
dW θ

t

+
m∑

k,h=1

(
∂kb

j
X(t)Dl

rX
k
t + ∂kb

j
u(t)∂hũ

k(Xt)D
l
rX

h
t

)
dt

]

+
d∑

θ=1

m∑
k,h,α,ν=1

[(
∂kσ

i
θ,X(t)Dl

rX
k
t + ∂kσ

i
θ,u(t)∂hũ

k(Xt)D
l
rX

h
t

)(
∂νσ

j
θ,X(t)Dl

rX
ν
t

+ ∂νσ
j
θ,u(t)∂αũ

ν(Xt)D
l
rX

α
t

)]
dt

]
dr

}
=

d∑
l=1

σi
l(t)σ

j
l (t)dt+

d∑
θ=1

( m∑
k=1

∂kσ
i
θ,X(t)γk,jXt

+
m∑

k,h=1

∂kσ
i
θ,u(t)∂hũ

k(t)γh,jXt

)
dW θ

t

+
( m∑

k=1

∂kb
i
X(t)γk,jXt

+
m∑

k,h=1

∂kb
i
u(t)∂hũ

k(t)γh,jXt

)
dt+

d∑
θ=1

m∑
k=1

∂kσ
j
θ,X(t)γi,kXt

dW θ
t

+
d∑

θ=1

m∑
k,h=1

∂kσ
j
θ,u(t)∂hũ

k(t)γi,hXt
dW θ

t +
( m∑

k=1

∂kb
j
X(t)γi,kXt

+
m∑

k,h=1

∂kb
j
u(t)∂hũ

k(t)γi,hXt

)
dt

+
d∑

θ=1

( m∑
k,ν=1

∂kσ
i
θ,X(t)∂νσ

j
θ,X(t)γk,νXt

+
m∑

k,ν,α=1

∂kσ
i
θ,X(t)∂νσ

j
θ,u(t)∂αũ

k(t)γk,αXt

)
dt

+
d∑

θ=1

m∑
k,h,ν=1

∂kσ
i
θ,u(t)∂hũ

k(t)∂νσ
j
θ,X(t)γh,νXt

dt

+
d∑

θ=1

m∑
k,h,ν,α=1

∂kσ
i
θ,u(t)∂hũ

k(t)∂νσ
j
θ,u(t)∂αũ

k(t)γh,αXt
dt.

(6.11)
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For the sake to simplify the notations, we set ℓik,θ,X(t) = ∂kσ
i
θ,X(t), ℓjk,θ,X(t) =

∂kσ
j
θ,X(t) and gik,X(t) = ∂kb

i
X(t), gjk,X(t) = ∂kb

j
X(t) for all i, j, k = 1, ...,m.

Obviously when we consider the derivatives with respect to the control pro-
cess u, we will use the same functions ℓ and g, that is, ℓiθ,u(t) = ∂kσ

i
θ,u(t),

ℓjθ,u(t) = ∂kσ
j
θ,u(t) and gik,u(t) = ∂kb

i
u(t), gjk,u(t) = ∂kb

j
u(t) for all i, j, k =

1, ...,m. Moreover we set h(t) = ∂hũ
k(t), for k, h = 1, . . . ,m.

Then, we write the Malliavin matrix defined in equation (6.11) as

d(γi,jXt
)

=
d∑

θ=1

σi
θ(t)σ

j
θ(t)dt+

d∑
θ=1

m∑
k=1

(
ℓik,θ,X(t)γk,jXt

+ ℓjk,θ,X(t)γi,kXt

)
dW θ

t

+
d∑

θ=1

m∑
k,h=1

(
ℓik,θ,u(t)hkh(t)γh,jXt

+ ℓjk,θ,u(t)hkh(t)γi,hXt

)
dW θ

t

+
m∑
k=1

(
gik,X(t)γk,jXt

+ gjk,X(t)γi,kXt

)
dt+

m∑
k,h=1

(
gik,u(t)hkh(t)γh,jXt

+ gjk,u(t)hkh(t)γi,hXt

)
dt

+
d∑

θ=1

m∑
k,ν=1

ℓik,θ,X(t)ℓjν,θ,X(t)γk,νXt
dt+

d∑
θ=1

m∑
k,ν,α=1

ℓik,θ,X(t)ℓjν,θ,u(t)hkα(t)γk,αXt
dt

+
d∑

θ=1

m∑
k,h,ν=1

ℓik,θ,u(t)hkh(t)ℓjν,θ,X(t)γh,νXt
dt+

d∑
θ=1

m∑
k,h,ν,α=1

ℓik,θ,u(t)hkh(t)ℓjν,θ,u(t)γh,αXt
dt

(6.12)
so

d(γi,jXt
)

=
d∑

θ=1

σi
θ(t)σ

j
θ(t)dt+

d∑
θ=1

[(
ℓθ,X(t)γXt

)i,j
+
(
ℓθ,X(t)γXt

)j,i]
dW θ

t

+
d∑

θ=1

[(
ℓθ,u(t)h(t)γXt

)i,j
+
(
ℓθ,u(t)h(t)γXt

)j,i]
dW θ

t

+
[(
gX(t)γXt

)i,j
+
(
gX(t)γXt

)j,i]
dt+

[(
gu(t)h(t)γXt

)i,j
+
(
gu(t)h(t)γXt

)j,i]
dt

+
d∑

θ=1

(
ℓθ,X(t)γXtℓ

T
θ,X(t)

)i,j
dt+

d∑
θ=1

[
ℓθ,X(t)γXt

(
ℓθ,u(t)h(t)

)T]i,j
dt

+
d∑

θ=1

(
ℓθ,u(t)h(t)γXtℓ

T
θ,X(t)

)i,j
dt+

d∑
θ=1

[
ℓθ,u(t)h(t)γXt

(
ℓθ,u(t)h(t)

)T]i,j
dt

(6.13)
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and, consequently, using matrix notation, we have

dγXt =
d∑

θ=1

[
(ℓθ,X(t) + ℓθ,u(t)h(t)) γXt + γXt (ℓθ,X(t) + ℓθ,u(t)h(t))T

]
dW θ

t

+
[
σθ(t)σ

T
θ (t) + (gX(t) + gu(t)h(t)) γXt + γXt (gX(t) + gu(t)h(t))T

]
dt

+
d∑

θ=1

[
(ℓθ,X(t) + ℓu,X(t)h(t)) γXt (ℓθ,X(t) + ℓθ,u(t)h(t))T

]
dt

(6.14)
The system defined by equation (6.14) represents a system of m stochastic
differential equations.

6.1.2 Malliavin matrix written as product of matrices

We recall that our objective is to prove that the Malliavin matrix is strictly
positive to apply Theorem 4.2.
The presence of the control process in the stochastic differential equation
(5.1), and consequently in the Malliavin matrix, renders not possible to ap-
ply the standard techniques to the problem in its current form ([58]).
A possible way to tackle this problem consists in representing the Malliavin
matrix in such way that it is more sample to study.
Our idea to solve the problem is the following:
we will define a matrix γt having the same dimension of the Malliavin ma-
trix as a product of vectors of the stochastic process, taking into account
the dimensionality. Then we will calculate the stochastic differential of γt,
showing that the system obtained represents a system of m stochastic dif-
ferential equations, having the same form of (6.14). Then we will find the
solution of the obtained system: obviously it will be the same of the (6.14),
that is, it will represent the Malliavin matrix defined in (6.4), but it will be
define in such way that it is possible to prove that it is strictly positiveness.

We will begin proving the following

Proposition 6.1. Let σ and b the coefficients of the stochastic differential
equation (5.1), satisfying Hypotheses 4.3 of the subsection 4.4.1.
Let

γt = eAt

(∫ t

0

(
eAs
)−1

σ(Xs, us)
((
eAs
)−1

σ(Xs, us)
)∗
ds

)(
eAt
)∗

(6.15)
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be a system of equations where At is a m × m matrix whose elements are
stochastic differential equations.
Then (6.15) is the solution of (6.14).
In particular, the processes At are stochastic differential equations whose co-
efficients are linear combinations of the partial derivatives of the coefficients
of (6.14).

Proof. We will proceed by first calculating the stochastic differential of
(6.15), and then proving that it has the same form of the (6.14).

Let Mt a m×m matrix of stochastic differential equation defined as{
M0 = I,

dMt = Mt(Utdt+
∑d

θ=1Rθ,tdW
θ
t )

(6.16)

where Ut represents the matrix of drift coefficients, Rt represents the matrix
of the diffusion coefficients and (Wt)t≥0 represents the (Ft)t≥0 d-dimensional
standard Brownian motion, defined on (Ω, F,P).
Now we set

Mt = eAt

and

Nt =

∫ t

0

(
eAs
)−1

σ(Xs, us)
((
eAs
)−1

σ(Xs, us)
)∗
ds,

so we can write equation (6.15) as the product of stochastic matrix defined
as

γt = MtNtM
∗
t . (6.17)

Now we want to calculate the stochastic differential of (6.17).
We recall the formula to calculate the stochastic differential of a matrices
product DtNtCt, where Dt, Nt, Ct are stochastic differential equations Rd-
valued such that

dDt = Utdt +
d∑

θ=1

Rθ,tdW
θ
t

dNt = Htdt +
d∑

θ=1

Kθ,tdW
θ
t

dCt = Vtdt +
d∑

θ=1

Zθ,tdW
θ
t ,
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where the coefficients are assumed to be infinitely differentiable functions
with bounded derivatives of all orders that do not depend on time, and
(Wt)t≥0 is a d-dimensional standard Brownian motion. It holds true

d(DtNtCt)

=

[(
UtNt +DtHt +

d∑
θ=1

Rθ,tKθ,t

)
Ct +DtNtVt +

d∑
θ=1

(Rθ,tNt +DtKθ,t)Zθ,t

]
dt

+
d∑

θ=1

[(Rθ,tNt +DtKθ,t)Ct +DtNtZθ,t] dW
θ
t

=

{
UtNtCt +DtHtCt +DtNtVt +

d∑
θ=1

[Rθ,tKθ,tCt +Rθ,tNtZθ,t +DtKθ,tZθ,t]

}
dt

+
d∑

θ=1

[Rθ,tNtCt +DtKθ,tCt +DtNtZθ,t] dW
θ
t .

(6.18)
We use above result to calculate the stochastic differential of (6.17), then we
have

dγt = d(MtNtM
∗
t ) =

[
MtUtNtM

∗
t +MtM

−1
t σ(Xt)

(
M−1

t σ(Xs)
)∗
M∗

t

+MtNt (MtUt)
∗ +Mt

d∑
θ=1

Rθ,tNt

(
Mt

d∑
θ=1

Rθ,t

)∗ ]
dt

+
d∑

θ=1

[
MtRθ,tNtM

∗
t +MtNt

(
Mt

d∑
θ=1

Rθ,t

)∗]
dW θ

t

=

(
MtUtNtM

∗
t + σ(Xt)σ

∗(Xt) +MtNtU
∗
t M

∗
t +

d∑
θ=1

MtRθ,tNtR
∗
θ,tM

∗
t

)
dt

+
d∑

θ=1

(
MtRθ,tNtM

∗
t +MtNtR

∗
θ,tM

∗
t

)
dW θ

t

=

(
Utγt + σ(Xt)σ

∗(Xt) + γtU
∗
t +

d∑
θ=1

Rθ,tγtR
∗
θ,t

)
dt

+
d∑

θ=1

(
Rθ,tγt + γtR

∗
θ,t

)
dW θ

t .

(6.19)
Equation (6.19) has exactly the same form as equation (6.14). In facts,
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setting

σ(Xt)σ
∗(Xt) =

d∑
θ=1

σθ(Xt)σ
∗
θ(Xt),

Ut = gX(t) + gu(t)h(t),

Rθ,t = ℓθ,X(t) + ℓθ,u(t)h(t),

(6.20)

we obtain the same equation (6.14). This means that the solution of equation
(6.14) is exactly (6.15) and the process Mt = eAt of (6.16) is exactly

{
M0 = eA0 = I,

dMt = eAt

[
(gX(t) + gu(t)h(t)) dt +

∑d
θ=1 (ℓθ,X(t) + ℓθ,u(t)h(t)) dW θ

t

]
.

(6.21)
Thus the matrix γt is exactly the Malliavin matrix γXt defined in (6.4), and
we have proved the claim. �

It remains to prove main result, that is the positivity of γt.
We can again simplify the proof of the matrix positivity recalling the expo-
nential matrix positivity, so that, to our aim, it suffice to prove that

Yt =

∫ t

0

e−Asσθ(Xs, us)
(
e−Asσθ(Xs, us)

)∗
ds > 0 (6.22)

for t ≥ 0 a.e..

6.2 Strictly Positiveness of Malliavin Matrix

In this section we will prove the main result of this work, that is, we will
assure the existence of the density function of the process Xt defined in
(4.32).
The idea is to consider the standard case which Xt does not depend on the
control process ut and to find and verify an alternative condition to that well-
known of Hörmander (see condition (H) in Subsection 6.1). Then we will
prove that the found condition will also holds when the drift and diffusion
coefficients of Xt are depending on the control process.
For the sake to simplify the computations we will begin studying the 1-
dimensional case.
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6.2.1 The 1-dimensional case

We derive an expression of σ(Xs, us) using the Taylor’s expansion of σ(·, us)
at X0:

σ(Xs, us) = σ(X0, us) +
∂σ

∂x
(X0, us)(Xs −X0) + . . .+

∂(n)σ

∂xn
(X0, us)

(Xs −X0)
n

n!

+
∂(n+1)σ

∂xn+1
(ξs, us)

(Xs −X0)
n+1

(n+ 1)!
(6.23)

where ξs belongs to the interval in the points X0 and Xs.
We define for n ≥ 1

Hn(X, u) := σ(X, u) +
∂σ

∂x
(X, u)(X −X0) + . . .+

∂(n)σ

∂xn
(X, u)

(X −X0)
n

n!

+
∂(n)σ

∂xn
(X, u)

(X −X0)
n

n!
(6.24)

We state the following

Proposition 6.2. We suppose that there exists an integer n ≥ 0 such that
Hn(X, u) ̸= 0 ∀X ∼ X0, X ̸= X0, u ∼ u0.
Let Yt the Malliavin matrix defined as

Yt =

∫ t

0

(
e−Asσ(Xs, us)

)2
ds. (6.25)

Then, Yt is strictly positive for t ≥ 0 a.e.

Proof. We suppose that there exists a X0 such that σ(X0, u(X0)) ̸= 0.
Define the stopping time

τ 1 =

{
inf{t ∈ [0, T ] : |Xt −X0| ≥ ϵ} ∧ T, if {t ∈ [0, T ] : |Xt −X0| ≥ ϵ} ̸= ∅;
T, if {t ∈ [0, T ] : |Xt −X0| ≥ ϵ} = ∅.

If s < τ 1, since σ(X0, u0) ̸= 0, we can state it holds true

|σ(Xs, us) − σ(X0, u0)| ≤ C

where C is a Lipschitz constant.
Then, we have to prove that P (τ 1 > 0) = 1, otherwise, there exists a set A
with positive probability such that τ 1(ω) = 0 for any ω ∈ A.
For all ω ∈ A there exists a sequence tn ∈ [0, T ], tn = tn(ω) such that

tn −→ 0 : |Xtn − X0| ≥ ϵ.
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Now we can assume, without loss of generality that

[0, T ] ∋ t 7→ Xt(ω) ∈ R

is continuous ∀ω ∈ A, ω a.s.
This means that ∀ω ∈ A

Xt(ω) −→ X0, t −→ 0

so that
lim

tn−→0
Xtn(ω) = X0, ∀ω ∈ A

but this implies a contradiction with |Xtn −X0| ≥ ϵ.
We conclude that P (τ 1 > 0) = 1.
Now, fix ϵ0 such that 0 < ϵ0 and let Cϵ0 be a constant such that

Cϵ0 ≥
∥∥∥∥∂σ2

∂x

∥∥∥∥
L∞(X0−ϵ0,X0+ϵ0)

+

∥∥∥∥∂σ2

∂u

∥∥∥∥
L∞(X0−ϵ0,X0+ϵ0)

L̃,

where L̃ is the Lipschitz constant of the function ũ(·). So we can state

|σ2(Xs, ũ(Xs)) − σ2(Xs, ũ(X0))| ≤ Cϵ0 |Xs − X0|,

∀ 0 ≤ s < τ 1(ω), ∀ω ∈ Ω P a.s. Then, ω a.s and 0 < ϵ < ϵ0 we have∫ T

0

e−Asσ2(Xs, ũ(Xs))ds ≥
∫ τ1(ω)

0

e−Asσ2(X0, ũ(X0))ds−
∫ τ1(ω)

0

e−AsCϵ0 |Xs−X0|ds.

Finally, since for all s < τ 1(ω) it holds |Xs −X0| < ϵ, we deduce that∫ T

0

e−Asσ2(Xs, ũ(Xs))ds ≥ σ2(X0, ũ(X0))

∫ τ1ϵ (ω)

0

e−Asds−Cϵ0ϵ

∫ τ1ϵ (ω)

0

e−Asds.

Therefore choosing ϵ < min{σ2(X0, ũ(X0))/2Cϵ0 , ϵ0}, then we have∫ T

0

e−Asσ2(Xs, ũ(Xs))ds ≥
σ2(X0, ũ(X0))

2

∫ τ1ϵ (ω)

0

e−Asds > 0

for all ω a.s..
Then we can state that

P (τ 1 > 0) = 1. (6.26)

Define the stopping time

τ 2 =

{
inf{t ∈ [0, T ] : Xt ̸= X0} ∧ T, if {t ∈ [0, T ] : Xt ̸= X0} ̸= ∅;
T, if {t ∈ [0, T ] : Xt ̸= X0} = ∅.
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We will prove that P (τ 2(ω) = 0) = 1.
Suppose that P (τ 2(ω) > 0) > 0, that is, there exists a set A with P (A) > 0
such that, it holds τ 2(ω) > 0 for all ω ∈ A.
We have

X0 = Xt = X0 +

∫ t

0

b(Xs, us)ds+

∫ t

0

σ(Xs, us)dWs,

for all t such that 0 < t < τ 2(ω), with ω ∈ A. Hence

0 =

∫ t

0

b(X0, u0)ds = b(X0, u0)t > 0.

This is an obvious contradiction, implying that

P (τ 2 = 0) = 1. (6.27)

Thus, we easily argue that, defining

h
(k)
T =

∫ T

0

|Xs − X0|kds

it satisfies
P (h

(k)
T > 0) = 1.

By the last considerations, there exists a (F)-measurable set C such that

(i) P (C) = 1;

and ∀ω ∈ C hold

(ii) [0, T ] ∋ t −→ Xt(ω)) ∈ R is continuous;

(iii) τ 1(ω) > 0, τ 2(ω) = 0.

As a consequence it holds that integral h
(k)
T is positive in C.

By hypotheses on ũ(x), we know that ũ(x) ∈ K, where K is a compact set.
We fix ϵ0 > 0. Let N > 0 and ∀ k such that 0 < k < N we have∣∣∣∂kσ(x, y)

∂xk
− ∂kσ(x′, y′)

∂xk

∣∣∣ ≤ M
(
|x − x′| + |y − y′|

)
where x, x′ ∈ [X0 − ϵ0, X0 + ϵ0], y, y

′ ∈ K, and M is Lipschitz constant.
For every s, 0 < s < τ 1(ω), ω ∈ C, we have Xs(ω) ∈ [X0 − ϵ0, X0 + ϵ0].
Our aim is to prove that

Yt =

∫ t

0

(
e−Asσ(Xs, us)

)2
ds
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ω a.s.. We know that ω ∈ C τ 1ϵ (ω) > 0 τ 2(ω) = 0 and the trajectories are
continuous. So, we can write by hypothesis that Hn(X, u) ̸= 0 ∀ |X −X0| <
ϵ, |u− u0| < ϵ.
Hence we can fix

σ2(Xs, us) = H2
n(Xs, us) + o ((Xs −X0)

n) ;

in facts by hypothesis on us = ũ(Xs) we have |us − u0| ≤ L̃ϵ so that
o ((Xs −X0)

n) ≤ Mϵ(1 + L̃). So, fixed ϵ̄ = min{L̃, 1}ϵ, if t < τ 1ϵ̄ we ob-
tain

∀ s < t σ2(Xs, us) > 0 =⇒ Yt > 0.

that proves the claim.
�
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Appendix A

Semigroups Theory

A.1

Proposition A.1. Let S(t) := eAt for some A ∈ Mn(C). Then the function
S(·) : R+ −→Mn(C) is differentiable and satisfies the differential equation

(DE) 
d

dt
S(t) = AS(t) for t ≥ 0,

S(0) = I.

Conversely, every differentiable function S(·) : R+ −→ Mn(C) satisfying
(DE) is already of the form S(t) = eAt for some A ∈ Mn(C). Finally, we
observe that A = Ṡ(0).

Definition A.1. Find all maps S(·) : R+ −→ L(X) satisfying the functional
equation

(FE) {
S(t+ s) = S(t)S(s) for all s, t ≥ 0,
S(0) = I.

The problem was investigated by E. Hille [46] and K. Yosida [73] inde-
pendently by each other in 1948.
Although the object of this study is not dynamical systems per se (or semi-
groups), it is however necessary to precisely define our problem. For the
proof of Proposition (A.1) and an in-depth discussion the reader is referred
to [28].
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Definition A.2. A family (S(t))t≥0 of bounded linear operators on a Banach
space X is called a (one-parameter) semigroup (or linear dynamical system)
on X if it satisfies the functional equation (FE). If (FE) holds even for all
t, s ∈ R, we call (S(t))t∈R a (one-parameter) group on X.

The ”typical” example of one-parameter semigroups of operators on a
Banach space X is the following: we take any operator A ∈ L(X). We can
define an operator-valued exponential function by

etA :=
∞∑
k=0

tkAk

k!
,

where the convergence of this series takes place in the Banach algebra L(X).
One can show that (eAt)t≥ 0 satisfies the functional equation (FE) and the
the differential equation (DE).

Theorem A.1. Every uniformly continuous semigroup (S(t))t≥0 on a Ba-
nach space X is of the form

S(t) = etA, t ≥ 0

for some bounded operator A ∈ L(X).

Definition A.3. A family (S(t))t≥0 of bounded linear operators on a Banach
space X is called a strongly continuous (one-parameter) semigroup (or C0-
semigroup, where the symbol C0 abbreviates ”Cesáro summable” of order 0),
if it satisfies the functional equation (FE) and is strongly continuous.

Hence, (S(t))t≥0 is a strongly continuous semigroup if the functional equa-
tion (FE) holds and the orbit maps

(SC) ξx := t 7→ ξx(t) := S(t)x

are continuous from R+ into X for every x ∈ X.
If these properties hold for R instead of R+, we call (S(t))t∈R a strongly
continuous (one-parameter) group (or C0 group) on X.
The operator A is the infinitesimal generator of S(·). It will be a linear, but
generally unbounded, operator defined only on a dense subspace D(A) of the
Banach space X. So we write

D(A) =

{
x ∈ X

∣∣∣ ∃ lim
h−→0+

S(t)x− x

h

}

Ax = lim
h−→0+

S(t)x− x

h
, ∀x ∈ D(A)
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Canonical R-valued integration

and W
1,2
r -valued integration

B.1 Bochner Integral

This integral is the generalization of Lebesgue integral to Banach-valued
functions, i.e, is used for integrations of functions f from some finite measure
space [a, b] to a Banach space X equipped with a norm ∥ · ∥X .
Let X be a R-valued Banach space and a, b ∈,R, a < b. We denote with
∥ · ∥ the norm on X and we consider the functions f : [a, b] −→ X. We recall
some definitions and properties.

Definition B.1. We denote by S([a, b];X) the vectorial space of the simple
functions, that is, of the functions φ : [a, b] −→ X such that

φ(t) =
k∑

i=1

xiχAi
(t), t ∈ [a, b]

where k ∈ N+, xi ∈ X, and Ai are Lebesgue measurable subsets of [a, b]:
Furthermore Ai are disjointed.

Definition B.2. If φ ∈ S([a, b];X), φ =
∑k

i=1 xiχAi
, then the integral of φ

on [a, b] belongs to X and it holds

∫ b

a

φ(t)dt =
k∑

i=1

xim(Ai).

We note that ∥φ(·)∥ is a R-valued simple function on [a, b].
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Definition B.3. A function f : [a, b] −→ X is said to be strongly measura-
ble if there exists a sequence (φn)n∈N ⊆ S(X) such that

φn(t) −→ f(t) onX ∀ t ∈ [a, b].

The function f is said to be weakly measurable if for any F ∈ X∗ the
function t 7→ Ff(t) is Lebesgue measurable.

Remark B.1. If a function f is strongly measurable then the real function
t→ ∥f(t)∥ is also Lebesgue measurable.

Definition B.4. Let f : [a, b] −→ X be a strongly measurable function.
Then f is said summable on [a, b] if∫ b

a

∥f(t)∥dt < ∞.

Definition B.5. For 1 ≤ p < ∞ we denote by Lp([a, b];X) the space of the

functions f : [a, b] −→ X strongly measurable such that
∫ b

a
∥f(t)∥pdt < ∞.

If p = ∞ we denote by L∞([a, b];X) the space of the functions f : [a, b] −→
X strongly measurable such that sup ess t∈[a,b]∥f(t)∥ <∞.

Definition B.6. Let X be a Banach space and f : [a, b] −→ X be a
summable function. The Bochner integral of f on [a, b] is the element in
X defined as ∫ b

a

f(t)dt = lim
n→∞

∫ b

a

φn(t)dt,

where we take the limit with respect to the norm of X, and (φn)n∈N is a

sequence of simple functions such that limn→∞
∫ b

a
∥f(t) − φn(t)∥dt = 0.

Let f be a Bochner integrable function on [a, b]. We define a seminorm,

called Bochner norm, defined as ∥f∥1 = ∥f∥L1 :=
∫ b

a
∥f∥Xdt.

We will use above definitions to link the W 1,2
r -valued integration with the

canonical R-valued integration.
The Banach space considered is the Sobolev space X = W 1,2

r , with the norm
∥ · ∥W 1,2

r
. The space of simple functions is defined as S([a, b];W 1,2

r ), and it is
dense in L2([a, b];W 1,2

r ), endowed with the norm

∥f∥L2([a,b];W 1,2
r ) =

(∫ b

a

∥f(t)∥2
W 1,2

r

) 1
2

.

Given f ∈ W 1,2
r , we can define for all ξ ∈ [−r, 0], the R-valued function

f(ξ), .
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Lemma B.1. Let f ∈ W 1,2
r ; then f(ξ) ∈ R for all ξ ∈ [−r, 0].

We have to show that if we have a function f defined in W 1,2
r , the same

function calculated in a point t belonging to an interval is a function defined
in R, that is f(t) ∈ R.

�

Lemma B.2. Let f, g ∈ W 1,2
r ; suppose that, for all ξ ∈ [−r, 0] we have

f(ξ) = g(ξ) in R. Then f = g in W 1,2
r .

Proof. We know that, for all ξ ∈ [−r, 0], it holds

(f − g)(ξ) = (f(ξ) − g(ξ)) inR.

So, as we have argued in the preceding lemma, we can state

∥f − g∥2
W 1,2

r
=

∫ 0

−r

|(f − g)(ξ)|2dξ +

∫ 0

−r

|(f − g)′(ξ)|2dξ

=

∫ 0

−r

|f(ξ) − g(ξ)|2dξ +

∫ 0

−r

|f ′(ξ) − g′(ξ)|2dξ

= 0

since we know that for all f, g ∈ W 1,2
r if

f − g −→ 0, then f ′ − g′ −→ 0

in L2
r.

�
Finally we can state the link between the W 1,2

r -valued integration and the
R-valued integration.

Lemma B.3. Let f ∈ L2 ([a, b];W 1,2
r ) . Then we have, for all ξ ∈ [−r, 0]

the following equality in R(∫ b

a

f(t)dt

)
(ξ) =

∫ b

a

f(t)(ξ)dt.

Proof. Let f ∈ L2([a, b];W 1,2
r ) and let (φn)n≥0 ⊆ S([a, b];W 1,2

r ) such
that φn −→ f in L2([a, b];W 1,2

r ), that is∫ b

a

∥f(t) − φn(t)∥W 1,2
r
dt −→ 0 for n −→ ∞.
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We have the equality in R for n ∈ N, in facts, by Definition B.2 we know
that

∫ b

a
φn(t)dt belongs to W 1,2

r , so that, for what we have above asserted,(∫ b

a
φn(t)dt

)
(ξ) is R-valued for ξ ∈ [−r, 0]. So we have

(∫ b

a

φn(t)dt

)
(ξ) =

∫ b

a

φn(t)(ξ)dt

and(∫ b

a

φn(t)′dt

)
(ξ) =

∫ b

a

φn(t)′(ξ)dt.

(B.1)

We want to pass to the limit this equality to get the claim. We know that
φn −→ f in L2([a, b];W 1,2

r ), so we have∫ b

a

dt

∫ 0

−r

|φn(t)(ξ) − f(t)(ξ)|2dξ +

∫ b

a

dt

∫ 0

−r

|φn(t)′(ξ) − f(t)′(ξ)|2dξ

=

∫ b

a

∥φn(t) − φ(t)∥2
W 1,2

r
dt −→ 0,

so that ∫ 0

−r

dξ

∫ b

a

|φn(t)(ξ) − f(t)(ξ)|2dt −→ 0

and ∫ 0

−r

dξ

∫ b

a

|φn(t)′(ξ) − f(t)′(ξ)|2dt −→ 0.

Thus, this means that we can suppose that, for all ξ ∈ [−r, 0], we have the
convergences φn(·)(ξ) −→ f(·)(ξ), and φn(·)′(ξ) −→ f(·)′(ξ), in the space
L2([a, b];R), i.e., for all ξ ∈ [−r, 0], the convergences in R,∫ b

a

φn(t)(ξ)dt −→
∫ b

a

f(t)(ξ)dt,∫ b

a

φn(t)′(ξ)dt −→
∫ b

a

f(t)′(ξ)dt.

(B.2)

Furthermore, since φn → f in L2([a, b];W 1,2
r ), we have the convergences in

W 1,2
r ∫ b

a

φn(t)dt −→
∫ b

a

f(t)dt,∫ b

a

φn(t)′dt −→
∫ b

a

f(t)′dt.
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So, we can write∫ 0

−r

[((∫ b

a

f(t)dt

)
(ξ) −

(∫ b

a

φn(t)dt

)
(ξ)

)2
]
dξ −→ 0

and, obviously,∫ 0

−r

[((∫ b

a

f(t)′dt

)
(ξ) −

(∫ b

a

φn(t)′dt

)
(ξ)

)2
]
dξ −→ 0.

Finally, without loss of generality, we can conclude that for all ξ ,∈ [−r, 0],(∫ b

a

φn(t)dt

)
(ξ) −→

(∫ b

a

f(t)dt

)
(ξ),(∫ b

a

φn(t)′dt

)
(ξ) −→

(∫ b

a

f(t)′dt

)
(ξ)

(B.3)

in R. So, combining (B.1), (B.2) and (B.3), we obtain the desired equality.
�
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Linear Deterministic Equations

C.1

We are here concerned with the initial value problem in a Banach space E:
u′(t) = Au(t) + f(t), f ∈ [0, t],

u(0) = x , x ∈ E,
(C.1)

where A is the infinitesimal generator of a C0- semigroup S(·) in E and
f ∈ L1([0, T ];E) is measurable.
A strict solution of problem (C.1) in Lp([0, T ];E), p ∈ [1,∞], is a function
u that belongs to W 1

p ([0, T ];E) ∩  Lp([0, T ];D(A)) and fulfill (C.1).
A strict solution of problem (C.1) in C([0, T ];E), is a function u that belongs
to C1([0, T ];E) ∩ C([0, T ];D(A)) and fulfills (C.1).
A weak solution of problem (C.1) is a function u ∈ C([0, T ];E) such that

φ(u(t)) = φ(x) +

∫ t

0

(A∗φ)(u(s))ds +

∫ t

0

f(s)ds, ∀φ ∈ D(A∗).

Obviously, a strict solution is also a weak solution; but not conversely.
The following result is proved in [16].

Proposition C.1. Let A be the infinitesimal generator of a C0-semigroup
S(·) in E, and f ∈ L1([0, T ];E). Then there exists a unique weak solution u
of equation (C.1) and it is given by the variation of constants formula

u(t) = S(t)x +

∫ t

0

S(t− s)f(s)ds, f ∈ [0, T ]. (C.2)
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The function u(·) defined by (C.2) is called the mild solution of problem
(C.1).
Before proving a sufficient condition for the existence of strict solutions, it is
convenient to introduce the approximating problem

u′(t) = Anun(t) + f(t), t ∈ [0, T ],

u(0) = x, x ∈ E.
(C.3)

where An are the Yosida approximations of A [11, chapter II, pag 101].
Clearly problem (C.3) has a unique solution un ∈ W 1

1 ([0, T ];E), given by
the variation of constants formula

un(t) = Sn(t)x +

∫ t

0

Sn(t− s)f(s)ds, f ∈ [0, T ] (C.4)

where Sn(t) = etAn , t > 0, and moreover

lim
n−→∞

un = u inC([0, T ];E). (C.5)

Proposition C.2. Let A be the infinitesimal generator of a C0-semigroup
S(·) in E.

(i) If x ∈ D(A) and f ∈ W 1
p ([0, T ];E) with p ≥ 1, then problem (C.1)

has a unique strict solution u in Lp([0, T ];E), given by formula (C.4)
and moreover u ∈ C1([0, T ];E) ∩ C([0, T ];D(A)).

(ii) If x ∈ D(A) and f ∈ Lp([0, T ];D(A)), then problem (C.1) has a
unique strict solution u ∈ C([0, T ];E), given by formula (C.2) and
moreover u ∈ W 1

p ([0, T ];E) ∩ C([0, T ];D(A)).
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The Legendre Transform

The Legendre transform is a classical topic of convex analysis. The Legendre
transform for differentiable functions defines a correspondence which, for
convex functions, is intimately connected with the conjugacy correspondence.
A comprehensive treatment of this transform can be found in many textbooks
(e.g. [64]); here we give for the convenience of the reader a short and self-
contained exposition of the properties which are used in this work.
Let us first recall some basic notions about convex functions. Let h : Rn → R
abe a convex function and u ∈ Rn. We recall that the subdifferential of h at
u, denoted by D−h(u), is the set defined as

D−h(u) :=

{
p ∈ Rn | h(v) − h(u)

v − u
≥ p, ∀ v ∈ Rn

}
.

If the function is convex, then this definition is equivalent to the one of
Fréchet subdifferential.
We deduce the following

Proposition D.1. Let h : Rn → R be a convex function. Then D−h(u) is
non-empty for every u ∈ Rn. In addition h is differentiable at u if and only if
D−h(u) is a singleton. If h is differentiable at all points then its differential
Dh(u) is continuous. �

Let us now give the definition of the Legendre transform. We restrict
ourselves to convex functions defined in the whole space and superlinear.

Definition D.1. Let h : Rn → R be a convex function which satisfies

lim
|u|−→+∞

h(u)

|u|
= +∞. (D.1)
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The Legendre transform of h is the function

h∗(p) := sup
u∈Rn

{up− h(u)} , p ∈ Rn. (D.2)

Theorem D.1. Let h : Rn → R be a convex function satisfying (D.1).

(i) For every p there exists at least one point up where the supremum in
(D.2) is attained. In addition for every bounded set C ⊂ Rn there
exists R > 0 such that |up| < R for all p ∈ C.

(ii) The function h∗ is convex and satisfies lim
|p|→+∞

h∗(p)

|p|
= +∞.

(iii) h∗∗ = h.

(iv) Given ū, p̄ ∈ Rn we have

p̄ ∈ D−h(ū) ⇐⇒ ū ∈ D−h∗(p̄) ⇐⇒ h(ū) + h∗(p̄) = ū · p̄.

Theorem D.2. h is strictly convex if and only if h∗ is of class C1.

Proof. For the proofs of Theorem D.1 and Theorem D.2 we refer the
reader to [18, Theorem A.1.3, Theorem A.1.4]. �
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Inequalities and Properties
Martingales

E.1

Definition E.1. Feynman-Kack formula Consider continuous functions
f : Rd −→ R, k : Rd −→ [0,∞), and g : [0, T ] × Rd −→ R. Suppose
that v is a continuous, real-valued function on [0, T ] × Rd, of class C1,2 on
[0, T ] × Rd and satisfies

−∂v
∂t

+ kv =
1

2
△ v + g; on [0, T ) × Rd, (E.1)

v(T, x) = f(x); x ∈ Rd. (E.2)

Then the function v is said to be solution of the Cauchy problem for the
backward heat equation (E.1) with potential k and Lagrangian g, subject to
the terminal condition (E.2).

Theorem E.1. (Feynman(1948), Kack (1949)) Let v be as Definition
(E.1) and assume that

max
0≤t≤T

|v(t, x)| + max
0≤t≤T

|g(t, x)| ≤ Kea∥x∥
2

; ∀x ∈ Rd, (E.3)

for some constants K > 0 and 0 < 1/(2Td). Then v admits the stochastic
representation

v(t, x) = Ex

[
f(WT−t) exp

{∫ T−t

0

k(Ws)ds

}
+

∫ T−t

0

g(t+ θ,Wθ) exp

{
−
∫ θ

0

k(Ws)ds

}
dθ

]
; 0 ≤ t ≤ T, x ∈ Rd.

(E.4)
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In particular, such a solution is unique.

For the proof see [48, pag 269].

Proposition E.1. (Doob’s maximal inequality)
Let {Xt, (Ft)t≥ 0; t ∈ [0, T ] } be a submartingale whose every path is right-
continuous, let [σ, τ ] be a subinterval of [0,∞). We have the following result:

E
(

sup
α≤ t≤ τ

Xt

)p

≤
(

p

p− 1

)p

E (Xp
τ ), p > 1,

provided Xt ≤ 0 a.s. P for every t ≤ 0, and E(Xp
τ ) < ∞.

Corollary E.1. Let [σ, τ ] be a subinterval of [0,∞).
If {Xt, (Ft)t≥ 0; t ∈ [0, T ] } is a (Ft)t≥ 0 continuous martingale, then

E
(

sup
α≤ t≤ τ

|Xt|
)p

≤
(

p

p− 1

)p

E (|Xτ |p) p > 1.

Theorem E.2. (Burkholder-Davis-Gundy inequalities)
Let M ∈ Mc,loc where Mc,loc is the space of continuous local martingale and
use the convention

M∗
t , max

0≤ s≤ t
|Ms|.

For every m > 0 there exists universal positive constants km, Km (depending
only on m) such that

km E ([M ]mT ) ≤ E ((M∗
T )2m) ≤ Km E ([M ]mT )

holds for every stopping times T. In particular, if we have E
√

[M ]a < ∞
for every 0 < a <∞, then M is a martingale.

Definition E.2. We say that a stochastic process W = {W (h), h ∈ H}
defined in a complete probability space (Ω,F , P ) is an isonormal Gaussian
process (or a Gaussian process on H) if W is a centered Gaussian family of
random variables such that E(W (h)W (g)) = ⟨h, g⟩H for all h, g ∈ H.

E.2 Lagrange Multipliers

Definition E.3. Let X be a Banach space, F ∈ C1(X,R) a set of con-
straints:

S := { v ∈ X; F (v) = 0}.
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Suppose that for any u ∈ S, it holds F ′(u) ̸= 0. If J ∈ C1(X,R) (or C1

on a neighborhood of S or C1 on S) then it says that c ∈ R is a critical
point of J on S if there exists u ∈ S, and λ ∈ R such that J(u) = c et
J ′(u) = λF ′(u). The point u is a critical point of J on S and the valued-real
λ is named Lagrange multiplier for the critical value c (or critical point
u).

If X is a functional space and the equation J ′(u) = λF ′(u) correspond
to a partial differential equation, it says that J ′(u) = λF ′(u) is the Eu-
ler?Lagrange equation (or Euler-equation) satisfied by the critical point u on
the constraint S.
The Definition E.3 is justified by the following result that establish the exis-
tence of Lagrange multipliers.

Theorem E.3. Let X, Y, Z be Banach spaces, Ω an open set of X × Y and
f ∈ C1(Ω, Z). Suppose that (x0, y0) ∈ Ω in such a way that f(x0, y0) =
0 and that ∂yf(x0, y0) is an homomorphism (linear) from Y to Z. Then
there exists ω ⊂ X connected neighborhood of x0 and an unique application
φ ∈ C1(ω, Y ) such that φ(x0) = y0 and such that for all x ∈ ω it holds
f(x, φ(x)) = 0. Moreover, if x ∈ ω and f(x, y∗) = 0, then y∗ = φ(x). The
derivative φ′ is given by:

φ′(x) = −(∂yf(x, φ(x)))−1 ◦ (∂xf(x, φ(x))).
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[50] Kavian O., Introduction à la théorie des points critiques, Springer, 1994.



BIBLIOGRAPHY 121

[51] Koivo H.N., Lee E.B., Controller synthesis for linear system with re-
tarded state and control variables and quadratic cost, Automatica, Vol.
8, pp. 203–208, 1972.

[52] Kydland F. E., Prescott E. C., Time-to-build and aggregate fluctuations,
Econometrica, Vol. 50, No. 6, pp. 1345–1370, 1982.

[53] Li X., Yong J., Optimal Control Theory for Infinite-Dimensional Sys-
tems, Birkhauser Boston, 1995.

[54] Maz’ja Vladimir G., Sobolev Spaces, Springer-Verlag Berlin Heidelberg,
1985.

[55] Merton R.C., Optimum consumption and portfolio rules in a continuous-
time model, Journal of Economic Theory, Vol.3, pp. 373–413, 1971.

[56] Nerlove M., and Arrow J. K., Optimal advertising policy under dynamic
conditions, Economica, Vol. 29, pp. 129–142, 1962.

[57] Neveu J., Discrete-parameter Martingales, North Holland, Amsterdam,
1975.

[58] Nualart D., The malliavin calculus and related topics, Springer, 2nd
Edition, 2006.

[59] Papi M., On the domain of the implicit function and applications, Jour-
nal of Inequalities and Applications, Vol. 2005, Issue 3, pp. 221–234.

[60] Pauwels W., Optimal Dynamic Advertising Policies in the Presence of
Continuously Distributed Time Lags, Journal of Optimization Theory
and Applications, Vol. 22, No 1, pp. 79–89, May 1977.

[61] Phelps R., Convex Functions, Monotone operators and Differentiability
(2nd edition), Lecture Notes in Mathematics, Springer-Verlag, Vol. 1364,
1993.

[62] Preiss D., Differentiability of Lipschitz functions on Banach spaces,
Journal of Functional Analysis, Vol. 91, pp. 312–345, 1990.

[63] Revuz D. and Yor M., Continuous Martingales and Brownian Motion,
Springer Verlag, 1991.

[64] Rockafellar R.T., Convex Analysis, Princeton University Press, 1970.

[65] Saks S., Theory of the Integral, Dover Phoenix Editions, 1964.

[66] Sethi S. P., Sufficient Conditions for the Optimal Control of a Class
of Systems with Continuous Lags, Journal of Optimization Theory and
Applications, Vol. 13, No. 5, 1974.



122 BIBLIOGRAPHY

[67] Takeuchi K., Comparison theorems for solutions of stochastic differ-
ential equation, (Received July 2, 1980); Memoirs of the Faculty of
Science, Kyushu Universit, Ser. A., Vol. 35, No. 1, 1981.

[68] Touzi N., Stochastic control problems, viscosity solutions, and applica-
tion to finance, special research semester on financial markets: Mathe-
matical, statistical and economic analysis, Pisa, april 29-July 15, 2002.

[69] Tsoukalas John D., Time to Build Capital: Revisiting Investment-Cash
Flow Sensitivities, Journal of Economic Dynamics & Control, November
2010.

[70] Vinter R. B. and Kwong R. H., The infinite time quadratic control pro-
blem for linear systems with state and control delays: an evolution equa-
tion approach, SIAM Journal on Control and Optimization, Vol. 19, No.
1, pp. 139–153, 1981.

[71] Yong J., Zhou X.Y., Stochastic Controls - Hamiltonian Systems and
HJB equations, Springer-Verlag, Berlin-New York, 1999.

[72] Zhou X. Y., Yong J. and Li X., Stochastic Verification theorems within
the framework of viscosity solutions, SIAM Journal on Control and Op-
timization, Vol. 37, pp. 243–253, 1997.

[73] Yosida K., On the differentiability and the representation of one-
parameter semigroups of linear Operators, Journal of the Mathematical
Society of Japan, Vol. 1, pp. 15–21, 1948.

[74] Young L. C., Lectures on the Calculus of Variations, Chelsea, New York,
Second edition, 1980.


