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Chapter 1

Market, portfolio and arbitrage

1.1 Introduction

In this chapter the aim is focused on the mathematical modelling of �nancial markets. Any �nancial product
which is traded in the market is referred to as an asset. We consider a �nancial market consisting of N + 1
�nancial assets. One of these is instantaneously riskless, and will be called a money market account. Assets
1 through N are di�erent assets such as stocks, bonds with di�erent maturities, or various kinds of �nancial
derivatives. In the following we will give a mathematical de�nition of basic �nancial concepts.

We refer to Øksendal [19], Karatzas and Shreve [16], and Björk [2] for the basic notions in stochastic
di�erential theory, the general results in stochastic calculus, and the arbitrage theory in continuous time,
respectively.

1.2 Market theory

De�nition 1.2.1 (Market Place). A market place of duration T is a complete probability space (Ω,F , P )
endowed with a �ltration F = {Ft : t ∈ [0, T ]}, such that F0 = {∅,Ω} and FT = F . We will shortly write
(Ω,F ,F, P ).

It is clear that the �ltration represents the information generated by all observed events up to time t, the
information available at time t. In continuous-time, it is often convenient to impose further conditions on the
�ltration F, i.e., the �ltration F is right-continuous and F0 contains all the P -negligible sets in F . We will
shortly say that F satisfying the usual conditions1.

De�nition 1.2.2 (Price Process). A price of an asset is a stochastic process X = (X(t), t ∈ [0, T ]), adapted2to
the �ltration F, (shortly X is F-adapted), and such that3X(ω) ∈ Lp(0, T ; F) for some p ∈ [1,∞].

De�nition 1.2.3 (Market Model). A (�nite-dimensional) market M(X) is a couple composed by a market

place and a N + 1-dimensional process4X = (X0, . . . , XN )
′
of assets' prices.

In this framework the traded assets on the market are stocks (or primary assets) and derivative assets.

1Generally, we say that a �ltration S = {St : t ∈ [0, T ]} satis�es the usual conditions if S0 contains all the P -negligible sets in
F and the �ltration S is right-continuous, i.e.

St+ = St, ∀t ≥ 0, (1.1)

where St+ =
⋂
ε>0 St+ε.

2Equivalently X(t) is observable on F.

3We say that a process X ∈ Lp(a, b; F) if X(t) is F-adapted and

E

[∫ b

a
|X(s)|pds

]
< ∞, for p ∈ [1,∞) ,

E

[
sup
s∈[a,b]

|X(s)|
]

< ∞, for p =∞.

Moreover if X is a positive valued process, we will write X ∈ Lp+(a, b; F).

4The prime denotes transposition, so that X(t) is a column vectors.
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Generally, in the De�nition 1.2.3, X0 ∈ L∞(0, T ; F) represents the money market account and

X̃i =
Xi

X0
, i = 1, . . . , N (1.2)

are the discounted prices.
In the sequel we assume that X0 = G, where G as an adapted process of �nite variation and with continuous

sample paths. For almost all ω ∈ Ω, the function G(t) = G(t, ω) solves the following di�erential equation

dG(t) = r(t)G(t)dt, (1.3)

with the conventional initial condition G(0) = 1 and where r is an adapted process. Then G(t) is given by the
formula

G(t) = exp
(∫ t

0

r(u)du
)
. (1.4)

In �nancial interpretation, G represents the price process of a riskless asset whose interest rate at time t
is r(t). In another usual interpretation, G represents a model of a bank account at the interest rate r. In
the sequel, the process G is referred to as the money market account (also accumulation factor) while r(t) is
referred to as the riskless interest rate (also short interest rate or spot interest rate) at time t, accordingly to
the following de�nition.

De�nition 1.2.4 (Money Market Account). A money market account or accumulation factor is a riskless asset
whose price process G ∈ L∞(0, T ; F) follow the dynamics (1.3), where r ∈ L1

+(0, T ; F) is an F-adapted process
and represents the riskless interest rate.

We now make the following assumptions.

Assumption 1.2.1. We assume that on (Ω,F , P ) there exists an M-dimensional Wiener processW = (W1, . . . ,WM ),
where all the (Wi(t), t ∈ [0, T ])

′
are independent Wiener processes.

We observe that the �ltration generated by W , FW , does not satisfy the usual conditions. However, if we
replace FWt by F̄Wt = σ (FWt

⋃
N ), ( N is the σ-algebra generated by all the P -negligible sets of F) we obtain a

proper �ltration, denoted by F̄W , satisfying the desired conditions (see Section 2.7 of Karatzas and Shreve [16]).
We call it the augmented �ltration associated to the process W .

Assumption 1.2.2. We assume that on (Ω,F , P ) the �ltration F is the augmented �ltration associated to the
process (W (t), t ≥ 0), i.e. F = F̄W . When we talk about martingale or adapted process without mentioning any
�ltration, it is assumed that we are dealing with the �ltration F̄W .

In order to avoid some technical di�culties an augmented �ltration is necessary. As an example, let X be
an F-adapted process and Y be a process such that X(t) = Y (t) a.s. for every t. In general this does not imply
that Y is also an F-adapted process. In fact, the negligible event Nt = {X(t) 6= Y (t)} may not belong to Ft
and therefore Y (t) might not be Ft-measurable. This problem cannot appear if F0 contains all the P -negligible
sets in F . In this case, moreover, every a.s. continuous process has a continuous modi�cation. Also the fact
that the �ltration is right-continuous is a technical assumption that is often necessary; therefore we shall take
care, whenever possible, to prove that our processes of interest are de�ned on a probability space endowed with
a augmented �ltration.

Assumption 1.2.3. For i = 1, . . . , N , we assume that 5

Xi ∈ L2 (0, T ; F)

and that it satis�es a stochastic di�erential equation of the form

dXi(t) = µi(t)dt+
M∑
j=1

σij(t)dWj(t)

= µi(t)dt+ σi(t)dW (t) (1.5)

where µi and σij are adapted. We have used the notation σi = (σi1, . . . , σiM ).

5In order to guarantee the existence of stochastic integral we have to impose some integrability condition on Xi and the class
L2(0, T ; F) turns out to be a natural one.
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In the sequel we will call µi the drift term (or mean rate of return) of Xi and σi the di�usion term (or
volatility) of Xi. It is possible to rewrite (1.5) in the follow matrix notation

dX̄(t) = µ(t)dt+ σ(t)dW (t) (1.6)

where

X̄(t) =

 X1(t)
...

XN (t)

 , µ(t) =

 µ1(t)
...

µN (t)

 , σ(t) =


σ11 . . . σ1M

σ21 . . . σ2M

...
...

...
σN1 . . . σNM

 .

Fixing t0, x̄0, we make the following assumption.

Assumption 1.2.4. We assume that µ(t) and σ(t) in (1.6) are given by

µ(t) = µ̂(t,X(t)), (1.7)

σ(t) = σ̂(t,X(t)) (1.8)

for some measurable deterministic functions µ̂ and σ̂. Furthermore, given X̄(t0) = x̄0, equation (1.6) admits a
unique solution. We will denote the unique solution by X(t) = X(t; t0, x̄0), t ≥ t0.

Recall that the Theorem B.1.1 gives su�cient conditions on µ̂ and σ̂ to guarantee existence and uniqueness
of the solution.

Finally, we observe that the property of G, being a riskless asset, is characterized by the absence of the
driving dW -term, while a risk asset is characterized by the presence of a di�usion.

1.3 Self-�nancing portfolio

In this section the aim is to derive the dynamics of the so called self-�nancing portfolio. Thus we have the
following de�nitions.

De�nition 1.3.1 (Portfolio). Let the N+1-dimensional price process X =
(
G, X̄

)
be given. A portfolio strategy

(or simply portfolio) is any F̄X-adapted N + 1-dimensional process

h = (h0, h1, . . . , hN ) ,

where the component hi(t) is the number of shares of the ith asset held by the trader at time t and F̄X is the
augmented �ltration associated to the process X.

De�nition 1.3.2 (Value Process). The value process V h corresponding to the portfolio h is given by

V h(t) = h(t) ·X(t) =
N∑
i=0

hi(t)Xi(t). (1.9)

A self-�nancing portfolio is a portfolio with no exogenous infusion or withdrawal of money, in other words
the purchase of a new portfolio must be �nanced only by selling assets already in the portfolio.

In discrete time case, i.e. when t ∈ {t0, t1, . . . , tM} with t0 = 0 and tM = T , an self-�nancing portfolio
h(tn) = hn is a portfolio such that

hn ·Xn = hn+1 ·Xn, n = 0, . . . ,M, (1.10)

where Xn = X(tn). Adding and subtracting hn+1 ·Xn+1 to the left hand side into (1.10), we obtain

hn ·Xn + hn+1 ·Xn+1 − hn+1 ·Xn+1 = hn+1 ·Xn,

and grouping we have
hn+1 ·Xn+1 − hn ·Xn = hn+1 · (Xn+1 −Xn). (1.11)

Analogously to the De�nition 1.3.2, we de�ne the value process V h by

V hn = hn ·Xn, (1.12)

3



and substituting (1.12) into (1.11) we have

V hn+1 − V hn = hn+1 · (Xn+1 −Xn). (1.13)

If we now consider our continuous time model as a limit of the above discrete time model, as tn = tn+1 − tn
goes to 0, then (with the Itô interpretation of the integral6) we obtain the following de�nition.

De�nition 1.3.3 (Self-�nancing Portfolio). A portfolio h is self-�nancing if the value process V h satis�es the
condition

dV h(t) = h(t) · dX(t) =
N∑
i=0

hi(t)dXi(t). (1.14)

or equivalently, for t1 < t2

V h(t2)− V h(t1) =
∫ t2

t1

h(t) · dX(t). (1.15)

Here the stochastic di�erential is intended in the Itô's sense7.

Note that instead of specifying the absolute number of shares held of a certain asset, it may be convenient
to specify the relative proportion of the total portfolio value which is invested in the asset. Thus we have the
following de�nition.

De�nition 1.3.4 (Relative Portfolio). For a given portfolio h the corresponding relative portfolio U is given by

Ui(t) = 1{Xi(t)>0}
hi(t)Xi(t)
V h(t)

= 1{Xi(t)>0}ui(t), i = 0, 1, . . . , N. (1.16)

where
N∑
i=0

ui(t) = 1. (1.17)

In terms of the relative portfolio, the dynamics of a self-�nancing portfolio can be expressed with the following
lemma.

Lemma 1.3.1. A portfolio h is self-�nancing if and only if

dV h(t) = V h(t)
N∑
i=0

Ui(t)
dXi(t)
Xi(t)

= V h(t)
N∑
i=0

1{Xi(t)>0}ui(t)
dXi(t)
Xi(t)

, (1.18)

where U is the relative portfolio corresponding to h.

Observe that, in (1.18), we have 1{Xi(t)>0} in order to consider the case Xi(t) = 0, too.

Proof. Equation (1.18) follows immediately from De�nitions 1.3.4 and 1.3.3.

So far we have considered a situation without any consumption, but if now we consider a situation with
some consumption, we have the concepts and results similar to the ones of the previous situation. Taking into
account De�nitions 1.3.1 1.3.2, we have the following de�nitions.

De�nition 1.3.5 (Consumption Process). Let the N + 1-dimensional price process X =
(
G, X̄

)
be given. A

consumption process is any F̄X-adapted 1-dimensional process k(t), with t ≥ 0.

Now we extends the self-�nancing concept to this setting with the following de�nition.

De�nition 1.3.6 (A Self-�nancing Portfolio-Consumption). A portfolio-consumption pair, denoted by (h, k),
is called self-�nancing if the value process V h satis�es the condition

dV h(t) = h(t) · dX(t)− k(t)dt =
N∑
i=0

hi(t)dXi(t)− k(t)dt. (1.19)

6It is important that the increment ∆X(t) = X(tn+1)−X(tn) is a forward increment.

7We are implicitly assuming the integrability conditions assuring that the stochastic integrals on the right hand side of (1.15)
are de�ned.
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or equivalently, for t1 < t2

V h(t2)− V h(t1) =
∫ t2

t1

h(t) · dX(t)−
∫ t2

t1

k(t)dt. (1.20)

Here the stochastic di�erential is intended in the Itô's sense8.

Observe that the self-�nancing pairs (h, k) are simply portfolios with no exogenous infusion or withdrawal
of money, apart of course from the k-term. In others words, the purchase of a new portfolio, as well as all
consumption, must be �nanced solely by selling assets already in the portfolio.

Finally, we extend Lemma 1.3.1 to this setting with the following lemma.

Lemma 1.3.2. A portfolio-consumption pair (h, k) is self-�nancing if and only if

dV h(t) = V h(t)
N∑
i=0

Ui(t)
dXi(t)
Xi(t)

− k(t)dt = V h(t)
N∑
i=0

1{Xi(t)>0}ui(t)
dXi(t)
Xi(t)

− k(t)dt, (1.21)

where U is the relative portfolio corresponding to h.

We now make a further extension of the self-�nancing concept to a market with, besides the riskless rate r(t),
a cost factor associated to the asset. The di�erence between the present situation (with the cost factor) and the
case without the cost factor is that the budget equation (1.10) now has to be modi�ed. Let the N -dimensional
cost process D̄, where D̄i denotes the cumulative cost associated to the ith asset, the relevant budget equation
is given by

hn ·Xn = hn+1 ·
(
Xn − D̄n

)
, n = 0, 1, . . . ,M, (1.22)

where D̄n = D̄(tn). Going through the same arguments as above, we end up with the following dynamics for a
self-�nancing portfolio-consumption (h, k)

dV h(t) =
N∑
i=0

hi(t)
(
dXi(t)− dD̄i(t)

)
− k(t)dt. (1.23)

Finally, we extend Lemma 1.3.2 to this setting so that in terms of the relative portfolio, the dynamics of a
self-�nancing portfolio can be expressed as

dV h(t) = V h(t)

(
N∑
i=0

Ui(t)dXi(t)− dDi(t)

)
− k(t)dt

= V h(t)

(
N∑
i=0

1{Xi(t)>0}ui(t)
dXi(t)− dDi(t)

Xi(t)

)
− k(t)dt. (1.24)

1.4 Financial derivatives, completeness and arbitrage

Financial derivatives are completely de�ned in terms of some underlying assets already existing on the
market. These �nancial instruments have been created to manage with the risk. They are called derivatives as
their evolution depends on the evolution of some primary assets of the market. We will now give the formal
de�nition of a particular derivative: European contingent claim.

De�nition 1.4.1 (European Contingent Claim). An European contingent claim, with date of maturity (exercise
date) S ≤ T , (shortly S-claim), on the underlying assets X1, . . . , XN is a random variable X ∈ FXS . The random
variable X is also called payo�.

The interpretation of the above de�nition is that an European contingent claim is a �nancial contract
between two parties, the seller (writer) and the buyer (owner) of the contract. The requirement that X ∈ FXS
simply means that, at time S, it will actually be possible to determine the payo�.

Generally, there are two main problems concerning derivatives: pricing and hedging. The �rst problem
consists in �nding, if it exists, a fair price for a derivative, while the second problem regards the possibility for
the writer to minimize the risk associated to the derivative.

Two fundamental concepts in �nancial theory are the absence of arbitrage and completeness.

8We are implicitly assuming the integrability conditions assuring that the stochastic integrals on the right hand side of (1.20)
are de�ned.
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De�nition 1.4.2 (Arbitrage). An arbitrage opportunity (shortly arbitrage) on a �nancial market is a self-
�nancing portfolio h such that

V h(0) = 0, P (V h(T ) ≥ 0) = 1, with P (V h(T ) > 0) > 0. (1.25)

De�nition 1.4.3 (Arbitrage-free Market). A �nancial market is arbitrage-free if for any self-�nancing portfo-
lio h such that

V h(0) = 0 and P (V h(T ) ≥ 0) = 1 imply P (V h(T ) = 0) = 1. (1.26)

An arbitrage is thus equivalent to the possibility to make a pro�t without any risk of losing money. A market
is called e�cient, if it is arbitrage-free. The following result shows that, in an e�cient market, if a portfolio
has a value process whose dynamics contain no driving Wiener process, i.e. a riskless portfolio, then the rate of
return of that portfolio must equal the riskless interest rate.

Proposition 1.4.1. Suppose that there exists a self-�nancing portfolio h, such that the value process V h has
the dynamics

dV h(t) = γ(t)V h(t)dt, t ∈ I (1.27)

where q is a adapted cadlag9 process, and I is an open (non void) time intervall. Then either γ(t) = r(t) for
all t ∈ I, or it exists an arbitrage.

Proof. For simplicity, we assume that γ(t) > r(t) on I = (t0, t1) ⊆ [0, T ]. We can borrow money from the bank
and immediately we invest this money in the portfolio h. We follow this strategy on the interval (t0, t1), where
γ(t) > r(t). Thus the net investment at t = t0 is zero, whereas our wealth at t = t1 will be strictly positive. In
other words, we have an arbitrage. If instead, γ(t) < r(t), we sell the portfolio and we invest immediately this
money in the bank, and again there is an arbitrage.

De�nition 1.4.4 (Attainable Claim). We say that an S-claim X is attainable, or �nanceable, if there exists a
self �nancing portfolio h such that

V h(S) = X a.s. (1.28)

In this case we say that h is a replicating or hedging portfolio for X . If every contingent claim is attainable we
say that the market is complete, otherwise the market is incomplete.

We will give some general results for determining whether a certain model is complete and/or arbitrage-free.
These results are obtained by natural applications of martingale theory10.

De�nition 1.4.5 (Equivalent Martingala Measure). A (probability) measure Q equivalent to P , Q ∼ P , such
that the discounted prices process X̃ are martingales with respect to Q, is called an equivalent martingale or a
risk-neutral measure.

Most of modern �nance theory is based on the following theorems, so called �rst and second fundamental
asset pricing theorems.

Theorem 1.4.2 ([14]). A market is arbitrage-free if and only if there exists an equivalent martingale measure
Q.

Theorem 1.4.3 ([15]). A market is complete if and only if there is one and only one equivalent martingale
measure Q.

Observe that in order to prove Theorem 1.4.2 and 1.4.3 it is necessary the Assumption 1.2.2. Moreover by
assumption of arbitrage-free market, we have the following result, which we will �nd again in the next chapters.

Theorem 1.4.4 ([19]). If a �nancial market11M(X) is arbitrage-free, then the market is complete if and only
if the volatility matrix σ(t) has a left inverse Λ(t) for all t almost surely, i.e., there exist an adapted matrix
valued process Λ(t) ∈ RM×N such that

Λ(t)σ(t) = IM ∀t a.s. (1.29)

9The cadlag process is "continus à droite avec limite à gauche", as the french say, which means right continuous with left limits
10The modern theory of �nancial derivatives is based mainly on martingale theory.

11Recall that N is the number of assets and M is the dimension of the underlying Wiener process.
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We observe that the property (1.29) is equivalent to the property

r (σ(t)) = M ∀t a.s. (1.30)

where, for a matrix A, r(A) is the rank of A.

Corollary 1.4.5 ([19]). Suppose a �nancial marketM(X) arbitrage-free.

1. If N = M then the market is complete if and only if σ(t) is invertible for all t almost surely.

2. If the market is complete, then
r (σ(t)) = M ∀t a.s. , (1.31)

and in particular, N ≥M .

Theorem 1.4.6 ([19]). If a �nancial marketM(X) is arbitrage-free, then there exists an adaptedM -dimensional

process ξ = (ξ1, . . . , ξM )
′
, such that for i = 1, . . . , N

M∑
j=1

σij(t)ξj(t) = µi(t)− r(t) ∀t a.s. (1.32)

or in matrix notation
σ(t)ξ(t) = µ(t)− r(t) ∀t a.s. (1.33)

Conversely, suppose that there exists an M -dimensional process ξ ∈ L2 (0, T ; F) that satis�es (1.33) and
such that

E

[
exp

(
1
2

∫ T

0

ξ(t)2dt

)]
<∞. (1.34)

Then the marketM(X) is arbitrage-free.

Really (1.34) is Novikov condition which guarantees that e−
∫ t
0 ξ(s)dW (s)− 1

2

∫ t
0 ξ

2(s)ds is a martingale with mean
equals 1.

Before we proceed we have the following useful result, where a Wiener process with respect to Q, W̄ (t), can
be constructed from a Wiener process with respect to P , W (t), via a change of measure from P to Q.

Lemma 1.4.7. Suppose there exists an M -dimensional process ξ ∈ L2(0, T ; F) that satis�es (1.33). Let

Z(t) = e−
∫ t
0 ξ(s)dW (s)− 1

2

∫ t
0 ξ

2(s)ds. (1.35)

We assume (1.34) and we consider the probability12 measure Q = QT on FT de�ned as

dQ = Z(T )dP. (1.36)

Then

W̄ (t) :=
∫ t

0

ξ(t)dt+W (t) (1.37)

is a M -dimensional Wiener process with respect to Q and in terms of W̄ (t) we have the following representation
of the discounted market

dX̃i(t) = X̃i(t)σi(t)dW̄ (t), i = 1, . . . , N. (1.38)

In particular, if

EQ

[∫ T

0

(
X̃i(t)σi(t)

)2

dt

]
<∞, i = 1, . . . , N (1.39)

then Q is an equivalent martingale measure.

12We observe that, after the assumption (1.34), L is a martingale (Novikov condition). Then we have that

Q(Ω) =

∫
Ω
Z(T )dP = E (Z(T )) = E (Z(0)) = 1,

i.e., Q is a probability measure.
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Proof. The �rst statement follows from Novikov condition (1.34) and Girsanov theorem. Using (1.33), to prove
the representation (1.38) we compute

dX̃i(t) = d

(
Xi(t)
G(t)

)
=

1
G(t)

dXi(t) + d

(
1

G(t)

)
Xi(t)

=
1

G(t)

[(
µi(t)Xi(t)− r(t)Xi(t)

)
dt+Xi(t)σi(t)dW (t)

]
=

1
G(t)

[(
µi(t)Xi(t)− r(t)Xi(t)

)
dt+Xi(t)σi(t)

(
W̄ (t)− ξ(t)dt

)]
=

Xi(t)
G(t)

σi(t)dW̄ (t)

= X̃i(t)σi(t)dW̄ (t).

In particular, by the proprieties of Itô integral, if EQ
[∫ T

0

(
X̃i(t)σi(t)

)2

dt

]
< ∞, then X̃i(t) is a martingale

with respect to Q.

There is a natural economic interpretation of the process ξ. The right hand side of (1.33) is the risk premium
of the N -dimensional price process X̄. In the left hand side of (1.33) we have σ(t)ξ(t), where σ(t) is the volatility
matrix of the process X̄. On the one hand ξ is called the risk premium for unit of volatility, while on the other
hand a relation similar to (1.33) appears in the CAPM's theory, so ξ is commonly called the market price of
risk. Finally, from (1.32), we see that the risk premium of any asset, µi(t) − r(t), can be written as a linear
combination of the volatility components σi of the asset. The important point is that the multipliers ξ1, . . . , ξN
are the same for all assets.

In conclusion, in an arbitrage-free market, regardless of whether the market is complete or incomplete, there
exists a market price of risk process, ξ, which is common to all assets in the market and satis�es the system of
equations (1.33).

More in general, system (1.33) can be used to characterize complete and/or arbitrage-free markets, consid-
ering the following three cases.

1. (Unique solution). System (1.33) has a unique solution ξ(t). If (1.34) holds, then from Lemma 1.4.7, we
de�ne a unique martingale measure Q, i.e., the market is arbitrage-free and complete.

2. (No solution). System (1.33) has no solution, then there is no martingale measure and the market admits
arbitrage.

3. (Multiple solution). System (1.33) has multiple solutions. If (1.34) holds, then there are multiple martin-
gale measures. The market is arbitrage-free, but there are contingent claims which cannot be hedged, i.e.,
the market is incomplete.
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Chapter 2

Short rate models

2.1 Introduction

Most traditional stochastic interest rate models are based on the speci�cation of a riskless interest rate. As
we have seen in Chapter 1 (see De�nition 1.2.4), the riskless interest rate r is modelled as an adapted process
de�ned on a �ltered probability space (Ω,F ,F, P ) under Assumptions 1.2.1 and 1.2.2, so that F = F̄Wr

. A
natural starting point is to give an a priori speci�cation of the dynamics of r. We examine the general case
of a riskless interest rate which follows an Itô process under the probability measure P , so we model r as the
solution of a stochastic di�erential equation of the form

dr(t) = µr(t)dt+ σr(t)dW r(t) (2.1)

where W r is a P -Wiener process, µr(t) and σr(t) are adapted1. This model is completely general, subject only
to the condition that the paths of the process are integrable with respect to the Lebesgue measure.

As in Section 1.2 (see Assumption 1.2.4), we assume that

µr(t) = µ̂r(t, r(t)), (2.2)

σr(t) = σ̂r(t, r(t)), (2.3)

for some measurable deterministic functions µ̂r and σ̂r, and that there exists a unique solution of equation (2.1).
Fixing r(s) = r̄, we will denote the unique solution of (2.1) by r(t) = r(t; s, r̄), t ≥ s. We observe that, under
the previous assumptions, the r(t; s, r̄) is a Itô di�usion2, which satis�es the important Markov property with
respect to the �ltration F (shortly r(t; s, r̄) is an Ft-Markov process), i.e., for all Borel measurable, bounded
functions f , we have

E [f(r(t′)|Ft] = E [f(r(t′))|r(t)] = g (r(t)) (2.4)

for �xed t, t′ such that s ≤ t ≤ t′ with g(x) := E [f(r(t; s, x))]. In the sequel, for simplicity, we use the following
notation3

E [f(r(t; s, r̄))] = Es,r̄ [f(r(t))] , (2.5)

so that the function g(x) can be written as

g(x) = Es,x [f(r(t))] . (2.6)

In the market described in Chapter 1, we assume that the riskless interest rate is the only object given a
priori, so that the only exogenously given asset is the money account with price process G (see De�nition 1.2.4).
Let us formulate this as a formalized assumption.

Assumption 2.1.1. We assume the existence of one exogenously given (riskless) asset. The price, G, of this
asset has dynamics given by equation (1.3), where the dynamics of r, under the probability measure P , are given
by equation (2.1).

1We assume implicitely the integrability conditions that are necessary to de�ne the right hand side of (2.1).

2We refer to Øksendal [19] for the stochastic di�erential theory
3More in general we will use the same kind of notation for functionals of the trajectory r(t; s, r̄), t ≥ s
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2.2 Zero coupon bonds: the term structure equation

In this section the aim is focused on the problem of modelling an arbitrage free family of zero coupon bond
price processes, and we follow the approach of Björk [2].

By a zero coupon bond (a discount bond) of maturity T we mean a �nancial security paying to its holder
one unit of cash at a �xed date T in the future. Formally, we have the following de�nition.

De�nition 2.2.1 (Zero Coupon Bond). A zero coupon bond with maturity date T , also called a T -bond, is a
contract which guarantees the holder 1 dollar to be paid on the date T . The (random) price at time t of a bond
with maturity T is denoted by B(t, T ).

The convention that the payment at the time of maturity, known as the principal value or face value, equals
one is made for computational convenience.

Let us �rst describe brie�y the set of general assumptions imposed on our �nancial market models.

Assumption 2.2.1. We assume that there exists a market for zero coupon T -bonds for every value of T .

We thus assume that our market contains all possible bonds (plus, of course, the riskless asset). Consequently
it is market containing an in�nite numbers of assets, but we again stress the fact that only the riskless asset is
exogenously given. In other words, in this model, the riskless asset is considered as the underlying asset whereas
all bonds are regarded as derivatives of the "underlying" short rate r, i.e., a zero coupon bond can be thought
of as a derivative on the interest rate.

Assumption 2.2.2. We assume that there is a market for T -bonds for every choice of T and that the market
is arbitrage free. We assume furthermore that, for every T , the price of a T -bond has the form

B(t, T ) = B̂T (t, r(t)) (2.7)

where B̂T is a deterministic function of two4 real variables. We assume that B̂T is smooth and strictly positive.

The aim now is to �nd the arbitrage free price process of a T -bond, B(t, T ). The price of a particular
bond is not be completely determined by the speci�cation (2.1) of the r-dynamics and the requirement that
the bond market is free arbitrage. To understand the reason why this problem arises, we consider that the
arbitrage pricing is pricing a derivative in terms of some underlying assets' prices. In our market we do not
have a su�cient number of underlying assets. We thus fail to determine a unique price of a particular bond.

Fortunately this fact does not mean that bond prices can take any form. On the contrary the bond prices
with di�erent maturities will have to satisfy certain internal consistency relations in order to avoid arbitrage
on the bond market. If we take the price of one particular bond (called benchmark bond) as given, then the
prices of all other bonds will be uniquely determined in terms of the price of the benchmark bond (and the
r-dynamics), as we will see in Remark 2.2.1. In our market model (see Assumption 2.2.2 and in particular (2.7))
this fact is in complete agreement with the Corollary 1.4.5, since in the a priori given market consisting of one
benchmark bond plus the risk free asset we will have N = M = 1, thus guaranteeing completeness5.

Recall that, by De�nition 2.2.1, a zero coupon bond pays one unit of cash at a prescribed date T in the
future: it is thus clear that, necessarily, we have a simple boundary condition

B̂T (T, r) = 1 ∀r. (2.8)

where r is a real variable and denotes a generic outcome of the process r(t).
From Assumption 2.2.2 and the Itô formula we have the price dynamics of the following form for T -bond

dB(t, T )
B(t, T )

= µ(t, T )dt+ σ(t, T )dW r(t) (2.9)

where

µ(t, T ) = µ̂T (t, r(t)), (2.10)

σ(t, T ) = σ̂T (t, r(t)), (2.11)

for suitable deterministic function µ̂ and σ̂. The functions µ̂T and σ̂T can be expressed by mean of the function
B̂T as shown in the following lemma.

4It is convenient to consider B̂T as a function of only two variables, namely t and r, whereas T is regarded as a parameter.
5We are implicitly assuming that the volatility of the benchmark bond is not zero
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Lemma 2.2.1. Under Assumption 2.2.2, the following equalities hold with probability 1, for all t and for every
choice of maturity time T .

µ̂T (t, r(t)) =
B̂T
t (t, r(t)) + B̂T

r (t, r(t))µ̂r(t, r(t)) + 1
2 B̂

T
rr(t, r(t))

(
σ̂r(t, r(t))

)2
B̂T (t, r(t))

, (2.12)

σ̂T (t, r(t)) =
B̂T
r (t, r(t))σ̂r(t, r(t))

B̂T (t, r(t))
, (2.13)

where µ̂r, σ̂r are the functions in (2.2),(2.3) respectively, and, where we have used the notation

B̂T
t (t, r) = ∂B̂T

∂t (t, r), B̂T
r (t, r) = ∂B̂T

∂r (t, r), B̂T
rr(t, r) = ∂2B̂T

∂r2 (t, r). (2.14)

In the sequel, when it is convenient, we will use the above notation (2.14).

Proof. (Lemma 2.2.1). The proof of (2.12) and (2.13) follows by observing that

dB̂T (t, r(t)) = B̂T

t (t, r(t))dt+ B̂T

r (t, r(t))dr(t) +
1
2
B̂T

rr(t, r(t))
(
σ̂r(t, r(t))

)2
dt, (2.15)

and inserting the di�erential form (2.1) of dr into (2.15), we obtain

dB̂T (t, r(t))
B̂T (t, r(t))

=
1
B̂T

B̂T

t dt+
1
B̂T

B̂T

r µ̂
rdt+

1
2

1
B̂T

B̂T

rr(σ̂
r)2dt+

1
B̂
B̂T

r σ̂
rdW r(t)

=
1
B̂T

(B̂T

t + B̂T

r µ̂
r +

1
2
B̂T

rr(σ̂
r)2)dt+

1
B̂T

B̂T

r σ̂
rdW r(t)

= µ̂T (t, r(t))dt+ σ̂T (t, r(t))dW r(t), (2.16)

where for the notational convenience, the argument (t, r(t)) �has been suppressed�, so that we have used the
shorthand notation of the form

µ̂r = µ̂r(t, r(t)), σ̂r = σ̂r(t, r(t)), (2.17)

for the process r(t), and

µ̂T = µ̂T (t, r(t)), σ̂T = σ̂T (t, r(t)), B̂T = B̂T (t, r(t)), (2.18)

for the process B(t, T ), and similarly for the partial derivatives terms. Finally equation (2.16) does not depend
on T , thus it must hold with probability 1, for all t and for every choice of maturity time T .

Accordingly to Theorem 1.4.6, we have the following central result.

Proposition 2.2.2. Assume that the bond market is arbitrage free. Then there exists a process ξr such that
the relation

µ(t, T )− r(t)
σ(t, T )

= ξr(t) (2.19)

holds, with probability 1, for all t and for every choice of maturity time T .

By (2.10) and (2.11), we observe that ξr(t) can be expressed as a deterministic function of t and r(t), namely

ξr(t) = ξ̂r(t, r(t)), (2.20)

and (2.19) becomes
µ̂T (t, r(t))− r(t)

σ̂T (t, r(t))
= ξ̂r(t, r(t)), ∀t, a.s. (2.21)

Proof. (Proposition 2.2.2). We �x two times of maturity T and S, in order to form a portfolio (hT (t), hS(t))
consisting only of bonds having di�erent times of maturity B(t, T ) and B(t, S) respectively, (i.e., in this setting
nothing will be invested in the bank or loaned by the bank), and we choose the weights so as to make a
riskless portfolio. From general results of Section 1.3, let h(t) = (h0, h1(t), h2(t)) be the portfolio associated
to X = (X0, X1, X2), where X1 = B(t, T ), X2 = B(t, S), h1(t) = hT (t), h2(t) = hS(t) and h0 = 0, so that
h(t) = (hT (t), hS(t)).
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Exactly as in (2.16), we have the corresponding equation for the S-bond

dB̂S(t, r(t))
B̂S(t, r(t))

= µ̂S(t, r(t))dt+ σ̂S(t, r(t))dW r(t), (2.22)

where analogously to (2.12) and (2.13)

µ̂S(t, r(t)) =
B̂S
t (t, r(t)) + B̂S

r (t, r(t))µ̂r(t, r(t)) + 1
2 B̂

S
rr(t, r(t))

(
σ̂r(t, r(t))

)2
B̂S (t, r(t))

,

σ̂T (t, r(t)) =
B̂S
r (t, r(t))σ̂r(t, r(t))

B̂S(t, r(t))
.

As we have observed in Chapter 1 (see De�nition 1.3.4), often it is convenient to describe a portfolio in relative
terms using, instead of h(t), the relative portfolio U(t). From Assumption 2.2.2,

B(t, T ) > 0, ∀t, ω

then we have that in (1.16) U(t) = u(t). We use the notation u(t) = (uT , uS) for the corresponding relative
portfolio.

Setting V (t) = V h(t) = hT (t)B(t, T )+hS(t)B(t, S), the value process corresponding to the portfolio h, from
De�nition 1.3.4 we have that

uT (t) =
hT (t)B(t, T )

V (t)
=
hT (t)B̂T (t, r(t))

V (t)
, (2.23)

uS(t) =
hS(t)B̂(t, S)

V (t)
=
hS(t)B̂S(t, r(t))

V (t)
, (2.24)

and
uT (t) + uS(t) = 1 ∀t. (2.25)

Using the self-�nancing condition in terms of the relative portfolio (see (1.18)), we obtain the following dynamics
for the portfolio value V

dV (t) = V (t)

(
uT (t)

dB̂T (t, r(t))
B̂T (t, r(t))

+ uS(t)
dB̂S(t, r(t))
B̂S(t, r(t))

)
. (2.26)

Now we insert (2.16) and (2.22) (the expression for dB̂T

B̂T
and dB̂S

B̂S
respectively) into (2.26), and we have

dV (t)
V (t)

= uT (t)
(
µ̂T (t, r(t))dt+ σ̂T (t, r(t))dW r(t)

)
+ uS(t)

(
µ̂S(t, r(t))dt+ σ̂S(t, r(t))dW r(t)

)
,

so that grouping dt and dW terms, we obtain

dV (t)
V (t)

=
(
uT (t)µ̂T (t, r(t)) + uS(t)µ̂S(t, r(t))

)
dt+

(
uT (t)σ̂T (t, r(t)) + uS(t)σ̂S(t, r(t))

)
dW r(t),

where the only restriction on the relative portfolio is given by (2.25). If the relative portfolio satis�es the
following conditions {

uT (t) + uS(t) = 1
uT (t)σ̂T (t, r(t)) + uS(t)σ̂S(t, r(t)) = 0 (2.27)

then the value dynamics becomes

dV (t) = V (t)
(
uT (t)µ̂T (t, r(t)) + uS(t)µ̂S(t, r(t))

)
dt. (2.28)

Thus the value process has no driving noise terms and we have obtained a riskless portfolio. From Assump-
tion 2.2.2 the market is arbitrage-free and then the portfolio rate of return and the short rate of interest are
equal (see Proposition 1.4.1), namely

uT (t)µ̂T (t, r(t)) + uS(t)µ̂S(t, r(t)) = r(t) ∀t, a.s. (2.29)
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It is easily seen that

uT (t) = − σ̂S(t, r(t))
σ̂T (t, r(t))− σ̂S(t, r(t))

uS(t) =
σ̂T (t, r(t))

σ̂T (t, r(t))− σ̂S(t, r(t))

solve system (2.27). Substituting the above expression into (2.29), we have(
− σ̂S(t, r(t))
σ̂T (t, r(t))− σ̂S(t, r(t))

)
µ̂T (t, r(t)) +

(
σ̂T (t, r(t))

σ̂T (t, r(t))− σ̂S(t, r(t))

)
µ̂S(t, r(t)) = r(t),

or equivalently
µ̂S(t, r(t))σ̂T (t, r(t))− µ̂T (t, r(t))σ̂S(t, r(t))

σ̂T (t, r(t))− σ̂S(t, r(t))
= r(t), ∀t a.s. (2.30)

After some reshu�ing, equation (2.30) can be rewritten as

µ̂S(t, r(t))− r(t)
σ̂S(t, r(t))

=
µ̂T (t, r(t))− r(t)

σ̂T (t, r(t))
, (2.31)

i.e.,
µ(t, S)− r(t)

σ(t, S)
=
µ(t, T )− r(t)

σ(t, T )
. (2.32)

Indeed equation (2.31) can be immediately obtained by grouping σ̂T and σ̂S terms in the right hand side of
the following identity

µ̂S(t, r(t))σ̂T (t, r(t))− µ̂T (t, r(t))σ̂S(t, r(t)) = r(t)σ̂T (t, r(t))− r(t)σ̂S(t, r(t)).

Finally equation (2.32) shows that the left hand side of (2.19) does not depend on T and therefore (2.19)
uniquely de�nes the process ξr.

Assuming that the support (the set of possible values) of the riskless interest rate r(t) is the entire set R+,
we now can state one of the most important result in the theory of interest rate: for each T the function B̂T

satis�es the so called term structure equation.

Theorem 2.2.3. Assuming that the support of the riskless interest rate r(t) is entire set R+, in an arbitrage
free bond market the function B̂T (t, r) satis�es the term structure equation{

B̂T
t (t, r) +

(
µ̂r(t, r)− ξ̂r(t, r)σ̂r(t, r)

)
B̂T
r (t, r) + 1

2 B̂
T
rr(t, r)

(
σ̂r(t, r)

)2 − rB̂T (t, r) = 0,
B̂(T, r;T ) = 1,

(2.33)

where (t, r) ∈ (0, T )× R+.

Remark 2.2.1. If, for a �xed maturity time T , a T -bond price process B(t, T ) is observable, then B(t, T ) is
called a benchmark of the bond market. If we assume that also r(t) is observable, the obtained results can be
interpreted by saying that all bond prices will be determined in terms of the benchmark T -bond and the short
rate of interest. Indeed once the market has determined the dynamics of this benchmark B(t, T ), then µ(t, T )
and σ(t, T ) can be considered as known together with r(t), and therefore the market has implicitly speci�ed ξr by
equation (2.19). Once ξr is determined, all other bond prices will be determined by the term structure equation
(2.33).

Proof of Theorem 2.2.3. Inserting (2.12) and (2.13) into (2.21), we obtain

1
B̂T

(
B̂T
t + B̂T

r µ̂
r + 1

2 B̂
T
rr(σ̂

r)2
)
− r

1
B̂T

B̂T
r σ̂

r
= ξ̂r, (2.34)

that is

B̂T

t + µ̂rB̂T

r +
1
2
B̂T

rr(σ̂
r)2 − rB̂T = ξ̂rB̂

T

r σ̂
r, (2.35)

and �nally, grouping B̂T
r terms, we have

B̂T

t +
(
µ̂r − ξ̂rσ̂r

)
B̂T

r +
1
2

(σ̂r)2B̂T

rr − r(t)B̂T = 0, (2.36)
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where for the notational convenience, the argument (t, r(t)) �has been suppressed�, so that we have used the
shorthand notation (2.17) and (2.18). Since we have assumed that the support of the process r(t) is the entire
set R+, we can then conclude that the equation (2.36) must also hold identically when we evaluate it at an
arbitrary deterministic point (t, r). By De�nition 2.2.1, we must also have B̂(T, r;T ) = 1, so we have proved
the result.

Before proceeding any further, we observe that the price dynamics of B(t, T ) can be expressed by mean of
the market price ξr. Indeed, by Itô formula and the term structure equations (2.33), we have the price dynamics
of the following form

dB̂T (t, r(t))
B̂T (t, r(t))

=

(
r(t) + ξ̂r(t, r(t))σ̂r(t, r(t))

B̂T
r

B̂T
(t, r(t))

)
dt+ σ̂r(t, r(t))

B̂T
r

B̂T
(t, r(t))dW r(t). (2.37)

The proof of (2.37) follows by observing that

dB̂T (t, r(t)) = B̂T

t (t, r(t))dt+ B̂T

r (t, r(t))dr(t) +
1
2
B̂T

rr(t, r(t))
(
σ̂r(t, r(t))

)2
dt, (2.38)

and inserting the di�erential form (2.1), (2.2) and (2.3), into (2.38), we obtain

dB̂(t, r(t)) = B̂T

t (t, r(t))dt+ B̂T

r (t, r(t))dr(t) +
1
2
B̂T

rr(t, r(t))
(
σ̂r(t, r(t))

)2
dt

=
(
B̂T

t (t, r(t)) + µ̂r(t, r(t))B̂T

r (t, r(t)) +
1
2
B̂T

rr(t, r(t))
(
σ̂r(t, r(t))

)2)
dt

+ σ̂r(t, r(t))B̂T

r (t, r(t))dW r(t)

=
(
r(t)B̂T + ξ̂r(t, r(t))σ̂r(t, r(t))B̂T

r (t, r(t))
)
dt+ σ̂r(t, r(t))B̂T

r (t, r(t))dW r(t),

where in the last step we have used the following relation

B̂T

t + µ̂rB̂T

r +
1
2
B̂T

rr(σ̂
r)2 = ξ̂rσ̂

rB̂T

r + r(t)B̂T ,

given by the term structure equation (2.33) with all terms evaluated at the point (t, r(t)).
So far we have found that arbitrage free price process of a T -bond solves the term structure equation (2.33),

but we observe that ξr is not determined within the model. In order to be able to solve (2.33), we must specify
ξr exogenously just as we have to specify µr and σr.

Despite this problem, we can obtain more information by applying the Feynman-Ka�c representation to the
function B̂T .

In the sequel we assume that the process ξr ∈ L2(0, T ; F̄Wr ) and satis�es Novikov condition (1.34), so that
the assumptions of Lemma 1.4.7 are satis�ed if we choose

ξ(t) := ξr(t). (2.39)

From Lemma 1.4.7 the process W̄ r(t) de�ned as

W̄ r(t) :=
∫ t

0

ξr(t)dt+W r(t) (2.40)

is a Wiener process with respect to the measure Q = QT de�ned as

dQ = e−
∫ T
0 ξr(t)dW r(t)− 1

2

∫ T
0 ξ2

r(t)dtdP. (2.41)

Assuming the integrability condition (1.39), let Q be the equivalent martingale such that, under Q, the riskless
interest rate follows the dynamics

dr(t) = µ̂r(t, r(t)) + σ̂r(t, r(t))
[
dW̄ r(t)− ξ̂r(t, r(t))dt

]
. (2.42)

Finally we obtain the following stochastic representation formula.
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Proposition 2.2.4. In an arbitrage free bond market, let ξr ∈ L2(0, T ; FW r

) and satis�es Novikov condition
(1.34). Then the bond prices are given by the formula (2.7) with

B̂T (t, r) = EQt,r

(
e−

∫ T
t
r(s)ds

)
, (2.43)

where the measure martingale Q and the subscripts t and r denote that the expectation is taken using the
dynamics given by (2.42), i.e.,{

dr(s) =
[
µ̂r(s, r(s))− ξ̂r(s, r(s))σ̂r(s, r(s))

]
ds+ σ̂r(s, r(s))dW̄ r(s)

r(t) = r
(2.44)

where W̄ r is a Wiener process with respect to Q de�ned in (2.40).

Proof. By Itô's formula we have

dB̂T (s, r(s)) = B̂T

s ds+ B̂T

r dr(s) +
1
2
B̂T

rrd 〈r(·), r(·)〉s

=
[
B̂T

s + (µ̂r − ξ̂rσ̂r)B̂T

r +
1
2

(σ̂r)2B̂T

rr

]
ds+ σ̂rB̂T

r dW̄
r(s), (2.45)

where we have used the same shorthand notations (2.17) and (2.18), but considering s instead of t. Now, we
�x (t, r), set

Y (s) = e−
∫ s
t
r(u)du, s ∈ [t, T ],

so that
dY (s) = −r(s)Y (s)ds, (2.46)

and de�ne the process Z as
Z(s) = Y (s)B̂T (s, r(s)), s ∈ [t, T ]. (2.47)

Then, by (2.46) and (2.45), we obtain

dZ(s) = Y (s)dB̂T (s, r(s)) + dY (s)B̂T (s, r(s)) = e−
∫ s
t
r(u)dudB̂T − r(s)e−

∫ s
t
r(u)duB̂Tds

= e−
∫ s
t
r(u)du

[
B̂T

s − r(s)B̂T + (µ̂r − ξ̂rσ̂r)B̂T

r +
1
2

(σ̂r)2B̂T

rr

]
ds

+e−
∫ s
t
r(u)duσ̂rB̂T

r dW̄
r(s).

or equivalently

Z(T ) = Z(t) +
∫ T

t

e−
∫ s
t
r(u)du

[
B̂T

s − r(s)B̂T + (µ̂r − ξ̂rσ̂r)B̂T

r +
1
2
B̂T

rr(σ̂
r)2

]
ds

+
∫ T

t

e−
∫ s
t
r(u)duσ̂rB̂T

r dW̄
r(s).

Since, by Theorem 2.2.3, B̂T (s, r(s)) satis�es equation (2.33) evaluated at the point (s, r(s)), the time integral
will vanish in the above expression and using B̂T (T, r) = 1 we obtain

e−
∫ T
t
r(s)ds = B̂T (t, r) +

∫ T

t

e−
∫ s
t
r(u)duσ̂r(s, r(s))B̂T

r (s, r(s))dW̄ r(s). (2.48)

Taking the expectation of (2.48), we have

EQt,r

(
e−

∫ T
t
r(s)ds

)
= B̂T (t, r),

the expected value of the stochastic integral being equal to zero. We have proved the announced result.

Rewriting formula (2.43) as

B̂T (t, r) = EQt,r

[
e−

∫ T
t
r(s)ds · 1

]
, (2.49)

we see that the value of a T -bond at time t is given as the expected value of one dollar (�nal payo�), discount
to present value. Thus formula (2.43) is exactly the risk-neutral pricing formula. The main di�erence between
the present situation and the risk-neutral pricing formula setting, is that in the latter model the martingale
measure is uniquely determined, while in our model we may have di�erent martingale measures for di�erent
choices of ξr.
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2.2.1 Cox-Ingersoll-Ross interest rate model

The �nancial literature on interest rate modelling is full of examples of a�ne processes: the Ornstein-Uhlenbeck
process, used by Vasicek (1977), and the so called CIR process, an extension of the Ornstein-Uhlenbeck process,
introduced by Cox, Ingersoll and Ross (1985). These models are popularized in �nance as Vasicek and Cox-
Ingersoll-Ross (CIR) model, respectively.

The Vasicek model speci�es that the instantaneous interest rate is a Ornstein-Uhlenbeck process, i.e.,

dX(t) = θ (µ−X(t)) dt+ σdW̄ r(t),

where θ, µ and σ are deterministic positive constants and W̄ r(t) is a Wiener process under a martingale measure
Q, while the CIR model speci�es that the instantaneous interest rate follows the stochastic di�erential equation
(also named the CIR process)

dr(t) = ar (br − r(t)) dt+ σ̄r
√
r(t)dW̄ r(t), (2.50)

where ar, br and σ̄r are deterministic positive constants and W̄ r(t) is a Wiener process under a martingale
measure Q. In particular if the initial condition is strictly positive, then r(t) ≥ 0, but if furthermore 2 ar br > σ̄2

r

then the process r(t) remains strictly positive, i.e., P (r(t) > 0) = 1, ∀t, as shown in Shreve [21].
The Vasicek model is often preferred in modelling interest rate since it allows for easy closed form solutions,

but the important di�erence between the Vasicek and CIR model is that in the latter the interest rate is positive,
while in the Vasicek model this is not the case, indeed the probability that the interest rate takes negative value
is strictly positive.

The convenience of adopting a�ne processes in modelling the interest rate lies in the fact that, under
technical conditions (see Du�e and Singleton [9]), for an a�ne process X(t) with values in D ⊂ Rd we have
that

Et,x

[
e−

∫ s
t

Λ(X(u))du+mX(s)
]

= eψ
0
X(s−t)+ψX(s−t)x, (2.51)

for any a�ne function Λ : D → R and any m ∈ Rd, where the deterministic coe�cients ψ0
X(·) and ψX(·) have

to be determined. Thanks to this property, we can derive an explicit formula for the price of a zero coupon
bond as a function of the interest rate, as shown in the following proposition.

Proposition 2.2.5. The term structure for the CIR model is given by

B̂T (t, r) = eψ
0
r(T−t)+ψr(T−t)r, (2.52)

where

ψr(s) =
1− eαrs

βr + γr eαrs
, (2.53)

ψ0
r(s) = −2 arbr

σ̄2
r

ln
(
βr + γr e

αrs

αr

)
+
arbr
βr

s (2.54)

and

αr = −
√
a2
r + 2σ̄2

r , βr =
αr − ar

2
, γr =

αr + ar
2

. (2.55)

Observe that this result is well known in literature, but for notational convenience we report the proof of
this classic result. To this end we refer to Shreve [21].

Proof. By property (2.51) and by formula (2.43), given r(t), we have that

B̂T (t, r) = EQt,r

[
e−

∫ T
t
r(u)du

]
= eψ

0
r(T−t)+ψr(T−t)r. (2.56)

Furthermore, under the usual regularity conditions for the Feynman-Ka�c approach, we can get the functions
ψ0
r(·) and ψr(·), by recalling that B̂T solves the partial di�erential equation{

B̂T
t (t, r) + ar (br − r) B̂T

r (t, r) + σ̄2
r

2 r B̂T
rr(t, r) = rB̂T (t, r),

B̂T (T, r) = 1.
(2.57)
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By the property (2.52) we obtain

B̂T

t = B̂T

(
−ψ̇0

r(T − t)− rψ̇r(T − t)
)
, (2.58)

B̂T

r (t, r) = B̂T (t, r)ψr(T − t), B̂T

rr(t, r) = B̂T (t, r)ψ2
r(T − t), (2.59)

where ψ̇0
r(u) = dψ0

r

du (u) and ψ̇r(u) = dψr
du (u). Substituting into the partial di�erential equation (2.57) and

dividing each term by the common factor B̂T , we have

−ψ̇0
r(T − t)− ψ̇r(T − t)r + ar(br − r)ψr(T − t) +

σ̄2
r

2
r ψ2

r(T − t) = r,

so that, grouping the terms multiplying r, we obtain(
ψ̇r(T − t) + arψr(T − t)−

σ̄2
r

2
ψ2
r(T − t) + 1

)
r + ψ̇0

r(T − t)− arbrψr(T − t) = 0. (2.60)

Since (2.60) holds for all r ≥ 0, we have that the terms multiplying r are equal to zero, as well as the other
term, so that we obtain two ordinary di�erential equations in T − t = s given by

ψ̇0
r(s) = arbrψr(s), (2.61)

ψ̇r(s) =
σ̄2
r

2
ψ2
r(s)− arψr(s)− 1, (2.62)

with the initial conditions
ψ0
r(0) = 0, ψr(0) = 0,

which are derived from the terminal condition B̂T (T, r) = 1. Observe that the equation (2.62) is called Riccati
equation and the solution is given by6 (2.53). Now substituting the expression for ψr(s) into (2.61), we obtain
the expression for ψ0

r(s) given by (2.54).

2.3 A two-dimensional market model: Bond and Stock

In this section we consider a market model consisting, besides the money market account G(t), of only two
assets, i.e. a zero coupon bond, de�ned as in Section 2.1, with price process B(t, T ), and one stock, with price
process S(t), where S(t) is only7 in�uenced by a 2-dimensional Wiener process,

(
W r,WS

) ′. We will shortly
write (G,B, S) to denote this market.

Accordingly to Section 2.1, we consider the riskless interest rate r(t), evolving as in (2.1), (2.2) and (2.3).
Recall that r(t) is modelled as an adapted process de�ned on a �ltered probability space (Ω,F ,F, P ), (see
De�nition 1.2.4), where in this setting, by Assumptions 1.2.1 and 1.2.2,

F = F̄W ,

with W =
(
W r,WS

)
. We need the following assumption.

6A method to solve the equation (2.62) is given by

y(s) = e−
∫ s
0

2
2 ψr(u) du.

Using the expression for ψ̇r(s), we obtain a homogeneous second order constant coe�cient linear ordinary di�erential equation for
y(s) 

ÿ + ar ẏ −
σ̄2
r
2
y = 0,

ẏ(0) = 0

y(0) = 1

whose the solution is given by

y(s) = −
ξ−

ξ+ − ξ−
eξ+ s +

ξ+

ξ+ − ξ−
eξ− s,

where ξ± are the characteristic polynomial solutions given by

ξ+ =
−ar +

√
a2
r + 2σ̄2

r

2
ξ− =

−ar −
√
a2
r + 2σ̄2

r

2
.

Substituting y(s) = e−
∫ s
0
σ̄2
r
2 ψr(u) du in the above expression, by taking logarithms and next deriving with respect to s, we obtain

the solution ψr(s).

7Observe that the stock S has its own risk source.
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Assumption 2.3.1. Assume that the market (G,B, S) is arbitrage free. Assume furthermore that B(t, T ) is
given by (2.7) and Lemma 2.2.1, while the price process S is given by

dS(t)
S(t)

= µSdt+ σSr dW
r(t) + σSSdW

S(t), (2.63)

where µS, σSr and σSS are deterministic constants.

From (2.63) we observe that the price process S is assumed to be a geometric Brownian motion. In particular
we have that the process S(t) is strictly positive, i.e., S(t) > 0, for all ω, t.

Since the dynamics of B(t, T ) are given by (2.9), we have the following market structure

dB(t, T )
B(t, T )

= µ(t, T )dt+ σ(t, T )dW r(t)

dS(t)
S(t)

= µSdt+ σSr dW
r(t) + σSSdW

S(t).

Then by Theorem 1.4.6, we know that there exists an adapted 2-dimensional process (ξr(t), ξS(t))
′
, such that

Σ(t) (ξr(t), ξS(t))
′

= (µ̂T (t), µS)
′
− r(t) ∀t a.s., (2.64)

where

Σ(t) =
(
σ̂T (t) 0
σSr σSS

)
.

From (2.64), we obtain that

ξr(t) =
µ(t, T )− r(t)

σ(t, T )
(2.65)

ξS(t) =
µS − σSr ξr(t)− r(t)

σSS
. (2.66)

From (2.65) we immediately have that ξr coincides exactly with the process given by (2.19), indeed ξr is a
market price for the riskless interest rate, while ξS is a market price for the stock.

Furthermore by (2.65) we obtain again (2.20), i.e. ξr(t) = ξ̂r(t, r(t)), while by (2.66) we have that ξS(t) can
be expressed as a deterministic function of t and r(t), namely

ξS(t) = ξ̂S(t, r(t)), (2.67)

but not of the process S(t). Then (2.66) becomes

ξ̂S(t, r(t)) =
µS − σSr ξ̂r(t, r(t))− r(t)

σSS
. (2.68)

Now, substituting (2.68) into (2.63) we obtain

dS(t)
S(t)

=
(
r(t) + σSr ξ̂r(t, r(t)) + σSS ξ̂S(t, r(t))

)
dt+ σSr dW

r(t) + σSSdW
S(t), (2.69)

i.e., the price process S can be expressed by mean of the market price
(
ξ̂r, ξ̂S

)′
.

Remark 2.3.1. In particular we observe that similar results hold also if µS, σSr and σr,SS depend on t, r(t) and
S(t). More precisely we have that

1. if µS, σSr and σSS depend on t and r(t), then ξS(t) may still be expressed as a deterministic function of t
and r(t), as in (2.67);

2. if µS(t) = µ̂S(t, r(t), S(t)), σSr = σ̂Sr (t, r(t), S(t)) and σSS = σ̂SS(t, r(t), S(t)), where µ̂S, σ̂Sr and σ̂SS are
deterministic functions, then ξS(t) may still be expressed as a deterministic function of t, r(t), and S(t),
i.e.,

ξS(t) = ξ̂S(t, r(t), S(t)), (2.70)
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where by slight abuse of notation we have used the same symbol ξ̂S to denote the deterministic function
in (2.70) and (2.67). In this case the dynamics of S(t) is described by the following stochastic di�erential
equation

dS(t)
S(t)

=
(
r(t) + σ̂Sr (t, r(t), S(t))ξ̂r(t, r(t)) + σ̂SS(t, r(t), S(t))ξ̂S(t, r(t), S(t))

)
dt

+ σ̂Sr (t, r(t), S(t))dW r(t) + σ̂SS(t, r(t), S(t))dWS(t). (2.71)

2.4 Discrete-time Rolling Bonds

In this section the aim is focused on the problem of modelling a discrete-time rolling bond price process,
and we refer to Rutkowski [20].

Now we �x a discrete set of times T = {tk}k≥0 such that tk ≤ tk+1 and consider a self-�nancing strategy
such that, its total wealth is reinvested at any �xed date t ∈ T in discount bonds maturing at time t+T (i.e., no
cash component is present). For a �xed T , the price process of this strategy is referred to as the discrete-time
rolling bond. In particular here we �x ∆ ∈ (0, T ) and take tk = k∆, for k = 0, 1, 2, . . ., and we denote U∆(t, T )
the corresponding price process.

Recalling that the price of a T -sliding bond is the price at time t of a T + t-bond, i.e., B(t, T + t), we observe
that, in contrast to the rolling bond, it is not possible to trade in arbitrage-free market a sliding bond, since it
does not represent a self-�nancing trading strategy, so that it cannot be considered as a tradable security in an
arbitrage-free market (see Rutkowski [20]).

Assume that at time t ∈ [t0, t1) = [0,∆) we hold 1 bond, so that U∆(0, T ) = B(0, T ) and

U∆(t, T ) = B(t, T ) = B̂T (t, r(t)) 0 ≤ t < ∆.

At time t1 = ∆, the wealth B(∆, T ) is reinvested in bonds maturing at time T + ∆ and we keep it until time
t2 = 2∆, so that

U∆(t, T ) =
B(∆, T )

B(∆, T + ∆)
B(t, T + ∆), ∆ ≤ t < 2∆.

Consequently, we have

U∆(t, T ) =
B(∆, T )

B(∆, T + ∆)
B(2∆, T + ∆)
B(2∆, T + 2∆)

B(t, T + 2∆) 2∆ ≤ t < 3∆,

and for k∆ ≤ t < (k + 1)∆ we have

U∆(t, T ) =
B(∆, T )

B(∆, T + ∆)
B(2∆, T + ∆)
B(2∆, T + 2∆)

· · · B
T+(k−1)∆(k∆, r(k∆))
B(k∆, T + k∆)

B(t, T + k∆)

=
B̂T (∆, r(∆))
B̂T+∆(∆, r(∆))

B̂T+∆(2∆, r(2∆))
B̂T+2∆(2∆, r(2∆))

· · · B̂
T+(k−1)∆(k∆, r(k∆))
B̂T+k∆(k∆, r(k∆))

B̂T+k∆(t, r(t)). (2.72)

Simple induction arguments show that, for any t ≥ 0, the price process of the discrete-time rolling bond satis�es

U∆(t, T ) =
bt/∆c∏
k=1

B(k∆, T + (k − 1)∆)
B(k∆, T + k∆)

B(t, T + bt/∆c∆) = U∆(bt/∆c∆) B̂T+bt/∆c∆(t, r(t)). (2.73)

The last formula leads to the following result.

Proposition 2.4.1. Let B(t, T ) be a zero coupon bond with price processes given by (2.37). For any �xed T ,
the price process U∆(·, T ) of the discrete-time rolling bond satis�es

dU∆(t, T )
U∆(t, T )

= µU∆(t, T )dt+ σU∆(t, T )dW r(t), (2.74)

where

µU∆(t, T ) = µ̂T
U∆(t, r(t)) = r(t) + ξ̂r(t, r(t))σ̂r(t, r(t))

B̂T+bt/∆c∆
r

B̂T+bt/∆c∆
(t, r(t)), (2.75)

σU∆(t, T ) = σ̂T
U∆(t, r(t)) = σ̂r(t, r(t))

B̂T+bt/∆c∆
r

B̂T+bt/∆c∆
(t, r(t)). (2.76)
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Proof. By the formula for the price process U∆ (2.73) we have that

dU∆(t, T ) = U∆(bt/∆c∆, T ) dB̂T+bt/∆c∆(t, r(t))

= U∆(bt/∆c∆) B̂T+bt/∆c∆(t, r(t))
dB̂T+bt/∆c∆(t, r(t))
B̂T+bt/∆c∆(t, r(t))

= U∆(t, T )
dB̂T+bt/∆c∆(t, r(t))
B̂T+bt/∆c∆(t, r(t))

,

so that

dU∆(t, T )
U∆(t, T )

=
dB̂T+bt/∆c∆(t, r(t))
B̂T+bt/∆c∆(t, r(t))

,

and, since B(t, T ) = B̂T (t, r(t)) satis�es the stochastic di�erential equation (2.37), we have proved the an-
nounced result.

In particular, let us consider the CIR model introduced in Section 2.2.1. By the explicit formula for bonds
(2.52) and the expression (2.73) we obtain the following explicit formula

U∆(t, T ) =
bt/∆c∏
k=1

eψ0(T−∆)+r(k∆)ψr(T−∆)

eψ0(T )+r(k∆)ψr(T )
eψ0(T+bt/∆c∆−t)+r(t)ψr(T+bt/∆c∆−t), t > 0 (2.77)

taking into account that (see 2.72) for k∆ ≤ t < (k + 1)∆

U∆(t, T ) =

eψ0(T−∆)+r(∆)ψr(T−∆)

eψ0(T )+r(∆)ψr(T )

eψ0(T−∆)+r(2∆)ψr(T−∆)

eψ0(T )+r(2∆)ψr(T )
· · · e

ψ0(T−∆)+r(k∆)ψr(T−∆)

eψ0(T )+r(k∆)ψr(T )
eψ0(T+k∆−t)+r(t)ψr(T+k∆−t). (2.78)

Furthermore, in this framework, µU∆(t, T ) and σU∆(t, T ) given by (2.75) and (2.76) become

µU∆(t, T ) = µ̂T
U∆(t, r(t)) = r(t) + ξ̂r(t, r(t))σ̂r(t, r(t))ψr(T + bt/∆c∆− t), (2.79)

σU∆(t, T ) = σ̂T
U∆(t, r(t)) = σ̂r(t, r(t))ψr(T + bt/∆c∆− t). (2.80)
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Chapter 3

Survival models

3.1 Introduction

In the last decades, signi�cant improvements in the duration of life have been experienced in most developed
countries. The mortality risk and, in particular, the longevity risk has been largely studied in recent years when
dealing with the pricing of insurance products. It is well known that the price of any insurance product on the
duration of life depends on two main basis: demographical and �nancial assumptions. Traditionally, actuaries
have been treating both the demographic and the �nancial assumptions in a deterministic way, by considering
available mortality tables for describing the future evolution of mortality.

More recently, stochastic models have been adopted to describe the uncertainty linked both to mortality
and to �nancial factors. In this chapter we focus on the mortality risk and on modelling the survival function
of the individual, leaving a stochastic approach of both mortality and �nancial risks to Chapter 4.

We refer to Brémaud [6] and Du�e [8], for basic theory of point processes with a stochastic intensity, and
modelling the dynamic mortality, respectively.

3.2 Mortality risk

We consider an individual aged x = 0, i.e., a new-born individual, and denote by τ the random variable
that describes his duration of life on a space probability (Ω,F , P ). The survival function, denoted by F̄ (t), is
de�ned as follows

F̄ (t) = P (τ > t) = 1− F (t), (3.1)

with
F̄ (0) = P (τ > 0) = 1, (3.2)

where F is the distribution function of τ .
Two indicators are typically used to describe the mortality of an individual: the survival function and the

mortality intensity. The survival function indicates the probability that a new-born individual will survive at
least t years.

Analogously we consider an individual aged x ≥ 0 and τx is the random variable that describe his future
lifetime. Then τx is the life's duration of an individual aged x, given that he is alive at that age, i.e.,

τx
L= τ − x|τ > x (3.3)

Via the survival function, we can derive the distribution function of τx, given that he/she is alive at that age,
as

Fx(t) = P (τx ≤ t) = P (τ ≤ t+ x |τ > x )

=
P (x < τ ≤ t+ x)

P (τ > x)
=
F (t+ x)− F (x)

1− F (x)
= 1− F̄ (x+ t)

F̄ (x)
.

As in (3.1) we have also that the survival function of an individual aged x is

F̄x(t) = 1− Fx(t).
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The (deterministic) mortality intensity (or1 mortality force) is de�ned as

µ(x) = lim
∆x→0

P (x ≤ τ < x+ ∆x |τ ≥ x )
∆x

, (3.4)

i.e., the probability of dying in a short period of time after x, between age x and age x+∆x, can be approximated
by µ(x)∆x, when ∆x is small. For large values of the age, the mortality force is increasing as x increases, as
the probability of imminent death increases when ageing2.

From (3.4), if there is the density function of τ , denoted by f , we have

µ(x)dx = P (x ≤ τ < x+ dx |τ ≥ x ) =
f(x)dx
F̄ (x)

,

or equivalently

µ(x)dx =
−F̄ ′(x)
F̄ (x)

= − d

dx
log F̄ (x).

Thus, since F̄ (0) = 1, we can write

F̄ (x) = e−
∫ x
0 µ(s)ds

or analogously

F̄x(t) = e−
∫ t
0 µx(s)ds, (3.5)

where µx(t) = µ(x+ t), t ≥ 0.

3.3 The mathematical framework

Before proceeding any further, in this section we focus on some necessary mathematical tools for a di�erent
and more appropriate approach to modelling the mortality risk, which includes the adoption of stochastic
models. Now we describe a brief review of the theory of counting process, doubly stochastic Poisson process
and their stochastic intensities. A realization of a point process over [0,∞) can be described by a sequence of
random variable {Tn : n ∈ N}, de�ned on a probability space (Ω,F , P ), with values in [0,∞], where

T0 = 0, (3.6)

and increasing in the following sense

Tn <∞ imply Tn < Tn+1. (3.7)

This realization is, by de�nition, nonexplosive if

T∞ = lim
n→∞

Tn =∞. (3.8)

To each realization Tn corresponds a counting function N(t) de�ned by

N(t) =
{
n if t ∈ [Tn, Tn+1 ),
+∞ if t ≥ T∞,

(3.9)

or analogously

N(t) =
∑
n≥1

1{Tn≤t}. (3.10)

N(t) is therefore a right-continuous step function such that N(0) = 0, and its jumps are upward jumps of
magnitude 1.

Thus we have the following de�nition.

1Mortality force is used particularly in demography and actuarial science.

2There are exceptions, like very small values of x (due to the infant mortality) and values around 20-25 (due to the young
mortality).
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De�nition 3.3.1 (Point Process). Let (Ω,F , P ) be a probability space. A sequence of increasing random variable
{Tn : n ∈ N} on a probability space (Ω,F , P ), satisfying (3.6) and (3.7), is called a point process. The associated
counting process N = (N(t) : t ≥ 0), de�ned as in (3.9), is also called a point process, by abuse of notation3.
The point process is also said to be nonexplosive if, for all t ≥ 0, N(t) < ∞ almost surely (or equivalently if
T∞ =∞ almost surely.). Moreover, when the condition

E [N(t)] <∞, t ≥ 0 (3.11)

holds, the point process N is said to be integrable.

Clearly one can consider Tn as the nth jump time of the process N , and N(t) as the number of jumps
occurred up to time t, including time t.

Now we introduce a particularly important class of models, the Poisson processes. There exist several
equivalent de�nitions of a Poisson process, the one adopted here is given in terms of counting process.

De�nition 3.3.2 (Poisson Process). Let (Ω,F , P ) be a probability space. Let λ(t) be a positive measurable
(deterministic) function such that ∫ t

0

λ(u)du <∞, t ≥ 0. (3.12)

The nonexplosive counting process N is called a Poisson process with the intensity function λ(t) if the following
conditions are satis�ed.

1. For all s and t > s, the random variable N(t)−N(s) has the Poisson distribution with parameter
∫ t
s
λ(u)du;

2. The process N has independent increments, i.e., for all n ∈ N, and for any choice of mutually disjoint
intervals (si, ti], (1 ≤ i ≤ n), the random variables N(ti)−N(si), (1 ≤ i ≤ n), are independent.

If in addition λ(t) = λ̄, N is called a homogeneous Poisson process with intensity λ̄.

Now it is important to make a distinction between an adapted process and a predictable process. Intuitively,
a process is predictable if, at any time t, it depends only on the information in the underlying �ltration that is
aviable up to, but not including, time t.

We have the following de�nition.

De�nition 3.3.3 (F-Predictable Process). Let (Ω,F ,F, P ) be a �ltered probability space4 satisfying the usual
conditions. A process Y is said to be predictable if Y : Ω× [0,∞]→ R is measurable with respect to the σ-algebra
on Ω × [0,∞] generated by the set of all left-continuous adapted processes. We will shortly write F-predictable
process.

In all practical applications, the predictable processes to be encountered are adapted processes and left-
continuous, in fact any left-continuous adapted process is predictable, as is, in particular, any continuous
adapted process (see Theorem T5 in Section I.3 of Brémaud [6]).

Now we are ready for the notion of the stochastic intensity, and in particular the stochastic intensity takes
into account the dynamics of a counting process. It is a local description that tells what is expected to happen
in the next in�nitesimal interval given the past of the point process. The e�cient formulation of this notion is
in terms of martingales.

De�nition 3.3.4 (F-Stochastic Intensity). Let (Ω,F ,F, P ) be a �ltered probability space satisfying the usual
conditions. Let λ be a positive F-predictable process such that for all t ≥ 0∫ t

0

λ(s)ds <∞ a.s. (3.13)

A nonexplosive F-adapted counting process N is said to admit the intensity λ if the compensator of N admits
the representation

∫ t
0
λ(s)ds, i.e., if

M(t) = N(t)−
∫ t

0

λ(s)ds, t ≥ 0, (3.14)

is a F-local martingale. We will shortly write F-stochastic intensity.

3An innocuous one, since N and {Tn : n ≥ 0} obviously carry the same information.

4We observe that in this chapter we consider a �ltered probability space (Ω,F ,F, P ), where F is a generic �ltration of sub-σ-
algebras of F , i.e., Assumption 1.2.2 is not a priori holds.
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We observe that the requirement of predictability allows us to consider the intensity as essentially unique (see
Theorem T12 in Section I.3 of Brémaud [6]) and, obviously, a counting process with a deterministic intensity is
a Poisson process.

Now we have the following result linking point processes and martingales.

Proposition 3.3.1. Suppose N is an F-adapted counting process and λ is a positive F-predictable process such
that for all t ≥ 0

E

[∫ t

0

λ(s)ds
]
<∞. (3.15)

Then the following results are equivalent

1. N is nonexplosive and λ is the F-stochastic intensity of N ;

2.
{
M(t) = N(t)−

∫ t
0
λ(s)ds : t ≥ 0

}
is a F-martingale.

Proof. From Theorems T8 and T9 in Section II.3 of Brémaud [6] we have that property 1. implies property 2.
and the converse respectively.

As a consequence of Proposition 3.3.1, when N is a nonexplosive point process with the intensity λ satisfying
(3.15), for all 0 ≤ s ≤ t, we have that

E [N(t)−N(s) |Fs ] = E [M(t)−M(s) |Fs ] + E

[∫ t

s

λ(v)dv |Fs
]

= E

[∫ t

s

λ(v)dv |Fs
]
,

M being a F-martingale, and so5

E [N(t)−N(s) |Fs ] = E

[∫ t

s

λ(v)dv |Fs
]
. (3.16)

In particular, if λ(t) is bounded and right-continuous from (3.16) we have that

lim
t→s+

1
t− s

E [N(t)−N(s) |Fs ] = λ(s) a.s., (3.17)

by application of the Lebesgue averaging theorem and the Lebesgue dominated-convergence theorem succes-
sively. Equation (3.17) (see the analogy with equation (3.4)) stresses the importance of the process λ in giving
information about the average number of jumps of the process under observation in a small period of future
time. The idea is that, at time t, the jump intensity λ(t) gives information about the expected number of jumps
in the next future or, in other words, about the likelihood of a jump in the immediate future. It cannot predict
the actual occurrence of a jump, that comes as a "sudden surprise".

The following type of point processes is very common in applications. It is a �doubly stochastic� Poisson
process, in the sense that it can be constructed in two steps. First one draws a random intensity function, that
is a real positive measurable locally stochastic process, λ = {λ(t) : t ≥ 0}, and having done so, one generates a
Poisson process N with the intensity function λ(t). Formally we have the following de�nition.

De�nition 3.3.5 (Doubly Stochastic Poisson Process). Let (Ω,F , P ) be a probability space. Let G be a σ-algebra
such that F ⊇ G ⊇ Fλ∞, where Fλ∞ = σ (λ(t) : t ≥ 0) and λ is a real positive measurable locally stochastic process
such that (3.15) holds. A point process N is called a doubly stochastic Poisson process (or Cox process) with
respect to G with the intensity function λ if, conditionally on G, N is a Poisson process with the intensity
function λ, i.e., for all 0 ≤ s ≤ t and all u ∈ R,

1. E
[
eiu(N(t)−N(s)) |G

]
= exp

{
(eiu − 1)

∫ t
s
λ(v)dv

}
;

2. The process N has, conditionally on G, independent increments, i.e., for all n ∈ N, and for any choice of
mutually disjoint intervals (si, ti], (1 ≤ i ≤ n), the random variables N(ti) − N(si), (1 ≤ i ≤ n), are,
conditionally on G, independent.

In the sequel we make the following assumption.

5This result reminds of a more classical de�nition of the intensity.
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Assumption 3.3.1. Let N be a doubly stochastic Poisson process with the intensity function λ on the �ltered
probability space (Ω,F ,F, P ). We assume that

FNt ∨ Fλt ⊆ Ft, ∀t. (3.18)

As we shall see later, from Proposition 3.3.4, under Assumption 3.3.1, a doubly stochastic Poisson process
with respect to G with the intensity function λ, admits λ as G ∨ FNt -stochastic intensity.

Before proceeding, we need the following lemmas.

Lemma 3.3.2. Let (Ω,A, P ) be a probability space, S ⊆ A be a σ-algebra and X0, X1, . . . , Xn be real random
variables such that, conditionally on S, are independent. Then

L (X0 |S ∨ σ (X1, . . . , Xn) ) = L (X0 |S ) . (3.19)

Proof. The random variables X0, X1, . . . , Xn are, conditionally on S, independent, i.e., for all n ≥ 0, for all
f0, f1, . . . , fn bounded borelian function

E [f0(X0)f1(X1) . . . fn(Xn) |S ] = E [f0(X0) |S ]E [f1(X1) |S ] · · ·E [fn(Xn) |S ] . (3.20)

Equality (3.19) can be rewritten as

E [f0(X0) |S ∨ σ (X1, . . . , Xn) ] = E [f0(X0) |S ] , ∀f0,

i.e., for all C ∈ S, for all g1, . . . , gn bounded borelian function

E [f0(X0)g1(X1) · · · gn(Xn)1C ] = E [E [f0(X0) |S ] g1(X1) · · · gn(Xn)1C ] . (3.21)

We obtain (3.21), and then the announced result, by using (3.20) and observing that

E [f0(X0)g1(X1) · · · gn(Xn)1C ] = E [E [f0(X0)g1(X1) · · · gn(Xn) |S ] 1C ]

= E

[
E [f0(X0) |S ]

n∏
i=1

E [gi(Xi) |S ] 1C

]

= E

[
(E [f0(X0) |S ] 1C)E

[
n∏
i=1

gi(Xi) |S

]]

= E

[
E [f0(X0) |S ] 1C

n∏
i=1

gi(Xi)

]
, (3.22)

where in the last step we have used that 1CE [f0(X0) |S ] is S-measurable.

Lemma 3.3.3. Let (Ω,F ,F, P ) be a �ltered probability space satisfying the usual conditions and M(t) be an
F-martingale. If A = {At : t ∈ [0, T ]} is a �ltration such that

FMt ⊆ At ⊆ Ft,∀t, (3.23)

then M(t) is an A-martingale.

Observe that Lemma 3.3.3 also extends to the local martingale.

Proof. It is easily seen that M is a A-martingale. In fact

- M is A-adapted, being FMt ⊆ At, for all t;

- M(t) is integrable for all t, M being a F-martingale;

- using (3.23) and M being a F-martingale, we have for all t2 > t1

E [M(t2) |At1 ] = E [E [M(t2) |Ft1 ] |At1 ] = E [M(t1) |At1 ] = M(t1).

Now we can show6 that De�nition 3.3.5 coincides with the de�nition of doubly stochastic Poisson process
as given in Du�e [8] with the following proposition.

6The de�nition of stochastic intensity is not uniform in the literature.
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Proposition 3.3.4. Let N be a doubly stochastic Poisson process with respect to G with intensity function λ.
Then we have the following results.

1. For all s and t > s, conditional on G ∨FNs , the random variable N(t)−N(s) has the Poisson distribution

with parameter
∫ t
s
λ(u)du, i.e., for all 0 ≤ s < t and all k ≥ 0,

P
[
N(t)−N(s) = k

∣∣FNs ∨ G ] = e−
∫ t
s
λ(u)du

(∫ t
s
λ(u)du

)k
k!

. (3.24)

2. If

E

[∫ t

0

λ(s)ds
]
<∞, ∀t (3.25)

then M(t) = N(t)−
∫ t

0
λ(u)du is a FNt ∨ G-martingale;

3. If H = {Ht : t ∈ [0, T ]} is a �ltration such that

Fλt ∨ FNt ⊆ Ht ⊆ FNt ∨ G, ∀t (3.26)

and λ is an H-predictable process, then N admits λ as H-stochastic intensity;

4. If A = {At : t ∈ [0, T ]} is a �ltration such that At is independent of FNt ∨ G, for all t, then M(t) is also
a Ht ∨ At-martingale.

Proof. (Proposition 3.3.4). First we prove 1. From Lemma 3.3.2, taking S = G, X0 = N(t) − N(s) and
Xi = N(si)−N(si−1) = ∆N(si), with 0 = s0 ≤ si ≤ sn ≤ s, for i = 1, . . . , n, we obtain

P
(
N(t)−N(s) = k

∣∣G ∨ FNs ) = P (N(t)−N(s) = k |G ) = e−
∫ t
s
λ(u)du

(∫ t
s
λ(u)du

)k
k!

,

where we use that N is a doubly stochastic Poisson process with respect to G, that

σ (X1, . . . , Xn) = σ (∆N(s1), . . . ,∆N(sn)) ,

and that
σ (∆N(s1), . . . ,∆N(sn) : 0 = s0 ≤ si ≤ sn ≤ s) = FNs . (3.27)

Secondly we prove 2. From (3.24) we observe that

E
[
N(t)−N(s)

∣∣FNs ∨ G ] =
∫ t

s

λ(u)du, (3.28)

then by (3.25) we obtain

E

[
N(t)−

∫ t

0

λ(u)du
∣∣FNs ∨ G ] = N(s)−

∫ s

0

λ(u)du, (3.29)

i.e., M(t) = N(t)−
∫ t

0
λ(u)du is a FNt ∨ G-martingale.

Now we prove 3. By Proposition 3.3.1, it is su�cient to prove that

M(t) = N(t)−
∫ t

0

λ(s)ds (3.30)

is a H-martingale. By result in 2. we have that M(t) is a FNt ∨ G-martingale. Then from Lemma 3.3.3 we
obtain that M is a H-martingale, since (3.26) hold.

Finally we prove 4. Since H is a �ltration such that (3.26) holds, we obtain that At is also independent of
FNt ∨ Fλt . Then by a property of conditional expectation we have that

E [M(t) |Hs ∨ As ] = E [M(t) |Hs ] = M(s), (3.31)

where we have used that M is a H-martingale (see property 3.). Thus M(t) is a Ht ∨ At-martingale.
We have proved the announced results.
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Observe that by result in 3. we obtain as in Du�e [8], for all 0 ≤ s < t,

E
[
N(t)−N(s)

∣∣FNs ∨ Fλt ] =
∫ t

s

λ(u)du, (3.32)

since FNs ∨ Fλs ⊆ FNs ∨ Fλt ⊆ FNs ∨ G. Summarizing, the idea of the doubly stochastic assumption is that,
conditional on λ, N is a Poisson process with intensity λ. In particular, from (3.24), we know for any time t > s,
conditional on the σ-algebra G ∨ FNt , generated by the events in G ∪ FNt , the number N(t) − N(s) of jumps

(or arrivals) between s and t is distributed as a Poisson random variable with parameter
∫ t
s
λ(u)du. Before

proceeding any further, now we want build an doubly stochastic Poisson process with respect to G ⊇ Fλ∞, with
the stochastic intensity λ, through a Poisson process independent of the intensity λ. Let N̂(t) be a homogeneous
Poisson process with intensity λ̄ = 1 independent of G, then we de�ne

N(t) = N̂

(∫ t

0

λ(u)du
)
. (3.33)

Note that by construction N̂ is independent of λ. Furthermore observe that

FNt ⊆ F N̂∞ ∨ Fλt , ∀t. (3.34)

Then we have that N(t) is an doubly stochastic Poisson process as we shown in the following proposition.

Proposition 3.3.5. Let N(t) be de�ned as in (3.33). Then N(t) is an doubly stochastic Poisson process with
respect to G, with the stochastic intensity λ.

Proof. By Lemma A.1.1 in Appendix A withM = G ⊇ Fλ∞, A = F N̂∞ and

Ψ(ω) = ψ(
∫ s

0

λ(u)du,
∫ t

0

λ(u)du, N̂(·)) = 1{N̂(
∫ t
0 λ(u)du)−N̂(

∫ s
0 λ(u)du)=k},

with k ∈ R, we have that

P [N(t)−N(s) = k |G ] = P

[
N̂

(∫ t

0

λ(u)du
)
− N̂

(∫ s

0

λ(u)du
)

= k |G
]

= P
[
N̂(x)− N̂(y) = k

] ∣∣∣∣
(x,y)=(

∫ t
0 λ(u)du,

∫ s
0 λ(u)du)

= e−
∫ t
s
λ(u)du

(∫ t
s
λ(u)du

)k
k!

. (3.35)

Then by De�nition 3.3.5 and Proposition 3.3.4, it is su�cient to prove that

P
[
N(t)−N(s) = k

∣∣G ∨ FNs ] = e−
∫ t
s
λ(u)du

(∫ t
s
λ(u)du

)k
k!

. (3.36)

We apply Lemma 3.3.2, with S = G, X0 = N(t) − N(s) and Xi = N(si) − N(si−1) = ∆N(si), where
0 = s0 ≤ si ≤ sn ≤ s, for i = 1, . . . , n, and A = F . Taking into account that N̂ is Poisson process and N(t)
satis�es (3.35), that σ (X1, . . . , Xn) = σ (∆N(s1), . . . ,∆N(sn)), and that

σ (∆N(s1), . . . ,∆N(sn) : 0 = s0 ≤ si ≤ sn ≤ s) = FNs , (3.37)

we obtain

P
(
N(t)−N(s) = k

∣∣G ∨ FNs ) = P (N(t)−N(s) = k |G ) = e−
∫ t
s
λ(u)du

(∫ t
s
λ(u)du

)k
k!

,

i.e., the announced result.

As we will see below, we model the death time of an individual as the �rst jump time T1 of a nonexplosive
counting process N(t), i.e., the counting process N is a process that jumps for the �rst time when the individual
dies. Furthermore, since the death time of an individual is �nite, a good model should have the property that
T1 is a.s. �nite. Finally, on the basis of demographic considerations, it could be desirable to assume that the
death time of an individual is uniformly bounded, i.e., the model should have the property that T1 ≤ L a.s., for
some constant L. To this end we state and prove the following results.
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Theorem 3.3.6. Under hypothesis of Proposition 3.3.4, let T1 be the �rst jump time of N(t). Then for each
0 ≤ s ≤ t

P
(
T1 > t

∣∣G ∨ FNs ) = 1{T1>s}e
−
∫ t
s
λ(u)du. (3.38)

If Fλt ∨ FNt ⊆ Ht ⊆ G ∨ FNt , then

P (T1 > t |Hs ) = 1{T1>s}E
[
e−

∫ t
s
λ(u)du |Hs

]
. (3.39)

Proof. Letting A be the event that N(t)−N(s) = 0, we have

P
(
T1 > t

∣∣G ∨ FNs ) = E
[
1{N(s)=0}1{N(t)−N(s)=0}

∣∣G ∨ FNs ]
= 1{N(s)=0}E

[
1A
∣∣G ∨ FNs ]

= 1{T1>s}E
[
1A
∣∣G ∨ FNs ] .

Now, using (3.24) with k = 0, we obtain

E
[
1A
∣∣G ∨ FNs ] = E

[
1A
∣∣G ∨ FNs ]

= E
[
P
(
Nt −Ns = 0|FNs ∨ G

)]
= e−

∫ t
s
λ(u)du.

Finally (3.39) is an obvious consequence of (3.38) and the iterated conditional expectations property.

We observe that
P (T1 > t |Hs ) = 1{T1>s}P (T1 > t |Hs ) ,

then (3.39) is equivalent to

P (T1 > t |Hs ) = E
[
e−

∫ t
s
λ(u)du |Hs

]
, on {T1 > s} , (3.40)

(analogously for (3.38)).

Lemma 3.3.7. Let T1 be the �rst jump time of a doubly stochastic Poisson process N(t) with intensity λ(t).

I The following conditions are equivalent.

I.1 T1 is �nite a.s., i.e.,
P
(
T1 <∞

)
= 1; (3.41)

I.2 The process λ(t) satis�es the following property

P

(∫ ∞
t0

λ(u)du =∞
)

= 1, for a �xed t0 ≥ 0. (3.42)

I.3 The process λ(t) satis�es the following property

P

(∫ ∞
t0

λ(u)du =∞
)

= 1, ∀t0 ≥ 0. (3.43)

II For any deterministic constant L <∞, the following conditions are equivalent.

II.1 T1 in bounded above by L a.s., i.e.,
P
(
T1 ≤ L

)
= 1; (3.44)

II.2 The process λ(t) satis�es the following property

P

(∫ L

t0

λ(u)du =∞

)
= 1, for a �xed t0 ∈ [0, L). (3.45)

II.3 The process λ(t) satis�es the following property

P

(∫ L

t0

λ(u)du =∞

)
= 1, ∀t0 ∈ [0, L). (3.46)

28



Proof. The process λ(t) being positive, conditions I.2 and I.3 are clearly equivalent. To prove the equivalence
of I.1 and I.3 observe that, by relation (3.38), for each 0 ≤ t0 ≤ t

P (T1 > t) = E

(
E
(
1T1>t

∣∣∣G ∨ FNt0 )) = E

(
1T1>t0E

(
e
−
∫ t
t0
λ(u)du

))
, (3.47)

and

P (T1 =∞) = lim
t→∞

P (T1 > t) = lim
t→∞

E

(
1T1>t0E

(
e
−
∫ t
t0
λ(u)du

))
= E

(
1T1>t0E

(
e
−
∫∞
t0
λ(u)du

))
. (3.48)

so that

P (T1 <∞) = 1− P (T1 =∞) = 1− E
(

1T1>t0E
(
e
−
∫∞
t0
λ(u)du

))
.

Then by the above expression we accomplish the proof of part I, i.e.

P (T1 <∞) = 1− E
(

1T1>t0E
(
e
−
∫∞
t0
λ(u)du

))
= 1

if and only if (3.43) holds.
The proof of part II being similar, we just observe that for each 0 ≤ t0 ≤ t

P (T1 > L) = E

(
E
(
1T1>L

∣∣∣G ∨ FNt0 )) = E

(
1T1>t0E

(
e
−
∫ L
t0
λ(u)du

))
= 0. (3.49)

As a �nal remark we note that by Proposition 3.3.5 and the previous Lemma 3.3.7, in order to model a
death time τ as the �rst time of a doubly stochastic Poisson process, it is su�cient to have a strictly positive
process λ(t) and an exponential variable E1, independent of Fλ∞, and de�ne τ = inf{t > 0 :

∫ t
0
λ(s)ds ≥ E1}.

More generally, in a probability space (Ω,F , P ) endowed with a �ltration G = {Gt} it is su�cient to have a
strictly positive, G-adapted process λ(t) and and exponential variable E1, independent of G ⊇ G∞, and de�ne

τ as above, i.e., as the �rst time such that the integral
∫ t

0
λ(s)ds reaches E1.

3.4 Modelling mortality risk

In this section, we focus on mortality risk and modelling the survival function of the individual of a given
population. In particular we present a model with a �nancial and mortality risk, where the interest rate r(t)
and the stochastic mortality intensity λ(t) are dependent, but with uncorrelated driving noises.

In �nancial literature, for a long time, usually only the deterministic mortality intensity has been considered,
while, more recently, the stochastic mortality intensity has been introduced using doubly stochastic Poisson
processes. In many �nancial applications a useful assumption is that the stochastic intensity is an a�ne process.
As already seen in Section 2.2.1, the convenience of adopting such processes in modelling the intensity is given
by the key property of a�ne processes, i.e., the property (2.51).

Turning to the problem of modelling adequately the mortality dynamics, we will now use some of the
mathematical tools presented in the previous section. We consider an individual aged x at time t = t0, and
model7 her/his death time τx as the �rst jump time of a nonexplosive counting process N(t), i.e., the counting
process N is a process that jumps whenever the individual dies. Thus{

N(t) = 0 if t0 ≤ t < τx
N(t) > 0 if t ≥ τx > t0.

Moreover if we assume that N(t) is a doubly stochastic Poisson process with respect to G, with H-stochastic
intensity λx(t), where G ⊃ Fλ∞ and Fλt ∨ FNt ⊆ Ht ⊆ G ∨ FNt , then, according to (3.39), the (conditional)
survival probability is given by

F̄x(t|t0) = P (τx > t |Ht0 ) = E
[
e
−
∫ t
t0
λx(u)du |Ht0

]
. (3.50)

7In this section we consider a counting process starting at time t = t0 instead of t = 0. The appropriate modi�cations due to
this fact are evident.
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The similarity with the survival probability until time t for an individual aged x, expressed in terms of the
mortality force, µx(t), is strong as we can see in (3.5). Nevertheless, comparing (3.5) and (3.50), we deduce8

that µx(t) 6= E[λx(t)]. We notice that, when t changes, the process λx describes the future mortality intensity
for any age x + t of an individual aged x at time t0. In other words, our process λx captures the mortality
intensity for a particular generation and a particular initial age. For notational convenience in the sequel we
omit the initial age x and the intensity is denoted by λ(t). Finally, the speci�cation of intensity process λ(t) is
obviously crucial for the solution of equation (3.50).

Generally, contrary to the interest rate, in modelling the stochastic intensity, the non negativity of the model
is necessary, since it is an intensity process. Furthermore, in the �nancial literature, the stochastic intensity is
usually assumed independent of the riskless interest rate, while the interest rate growth may a�ect the active
population mortality intensity (for instance, a large interest rate may diminish health care and prevention).
Thus we now present a stochastic intensity model depending on the interest rate.

We take the CIR model for the interest rate r(t), (see (2.50) of Section 2.2.1), and the stochastic intensity
λ(t) = λ(c)(t), where {

dλ(c)(t) = aλ
(
bλ − λ(c)(t) + c r(t)

)
dt+ σ̄λ

√
λ(c)(t)dWλ(t),

λ(c)(t0) = λ(c)
(3.51)

where Wλ is a 1-dimensional Wiener process independent of W r, aλ, bλ, σ̄λ are strictly positive deterministic
constants such that 2 aλ bλ > σ̄2

λ, c is a positive deterministic constant, and P (λ(c) > 0) = 1. Observe that the
process λ(c)(t) dependens on r(t), in the sense that the drift of λ(c)(t) is a function of r(t) (when c > 0), and
the processes r(t) and λ(t) = λ(c)(t) are uncorrelated since the driving noises W r and Wλ are independent.

Furthermore, (i) λ(c)(t) is strictly positive (as should be for a mortality intensity process), (ii) τ (c) is �nite
a.s., where τ (c) is the �rst jump time of a doubly stochastic Poisson process with intensity λ(c)(t). Before
proving this result (see Proposition 3.4.2) we consider the case c = 0{

dλ(0)(t) = aλ
(
bλ − λ(0)(t)

)
dt+ σ̄λ

√
λ(0)(t) dWλ(t),

λ(0)(t0) = λ(0)
(3.52)

The model λ(0)(t) is then a CIR process, which is the simplest positive model, (see Section ese.CIR.B). Moreover,
in this case the processes r(t) and λ(t) = λ(0)(t) are independent. Furthermore τ (0) is a.s. �nite, as shown in
the following proposition.

Proposition 3.4.1. Let τ (0) be the �rst jump time of a doubly stochastic Poisson process with intensity λ(0)(t)
given by (3.52). Then

P

(∫ ∞
t0

λ(0)(u)du =∞
)

= 1, ∀t0 ≥ 0. (3.53)

and
P
(
τ (0) <∞

)
= 1. (3.54)

Proof. We prove only (3.53), since (3.54) is equivalent to (3.53) (see Lemma 3.3.7). Since λ(0)(t) is a CIR model,
by the property of a�ne processes, i.e. (2.51), we have that

Et0,λ

(
e
−
∫ T
t0
λ(0)(u)du

)
= eψ

0
λ(T−t0)+ψλ(T−t0)λ,

where the functions ψλ(s) and ψ0
λ(s) solve the equations

ψ̇0
λ(s) = aλ bλψλ(s), (3.55)

ψ̇λ(s) = −aλψλ(s) +
σ̄2
λ

2
ψ2
λ(s)− 1 (3.56)

with the initial conditions ψ0
λ(0) = 0, ψλ(0) = 0, and are given by9

ψλ(s) =
1− eαλs

βλ + γλ eαλs
, (3.57)

ψ0
λ(s) = −2 aλbλ

σ̄2
λ

ln
(
βλ + γλ e

αλs

αλ

)
+
aλbλ
βλ

s (3.58)

8By applying the Jensen inequality to (3.50), and comparing with (3.5)
9The process λ(0) being a CIR model, to get ψ0

λ and ψλ we can use (2.53) and (2.54), with aλ, bλ, σ̄λ, αλ, βλ, γλ instead of
ar, br, σ̄r αr, βr, γr.
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with

αλ = −
√
a2
λ + 2 σ̄2

λ, βλ =
αλ − aλ

2
, γλ =

αλ + aλ
2

. (3.59)

Since

lim
s→∞

ψλ(s) = lim
s→∞

1− eαλs

βλ + γλ eαλs
=

1
βλ
, (3.60)

lim
s→∞

ψ0
λ(s) = lim

s→∞

[
−2 aλbλ

σ̄2
λ

ln
(
βλ + γλ e

αλs

αλ

)
+
aλbλ
βλ

s

]
= −2 aλbλ

σ̄2
λ

ln
(
βλ
αλ

)
− lim
s→∞

2 aλbλ√
a2
λ + 2 σ̄2

λ + aλ
s = −∞, (3.61)

we can conclude that

lim
T→∞

Et0,λ

(
e
−
∫ T
t0
λ(0)(u)du

)
= lim
T→∞

eψ
0
λ(T−t0)+ψλ(T−t0)λ = 0

so that

Et0,λ

(
e
−
∫∞
t0
λ(0)(u)du

)
= 0,

i.e., the process λ(0)(t) satis�es the property (3.53).

We now turn to the case c > 0.

Proposition 3.4.2. Let λ(c)(t) be a process with dynamics given by (3.51), with aλ, bλ, c and σ̄λ strictly
positive deterministic constants such that 2 aλ bλ > σ̄2

λ. Then

λ(c)(t) > 0 a.s. (3.62)

and

P

(∫ ∞
t0

λ(c)(u)du =∞
)

= 1, ∀t0 ≥ 0. (3.63)

As a consequence, if τ (c) is the �rst jump time of a doubly stochastic Poisson process with intensity λ(c)(t), then

P
(
τ (c) <∞

)
= 1. (3.64)

Observe that (3.51) is a particular case of the model studied by Deelstra and Delbaen [7]. In [7] the authors
suggest that extending comparison results as in Karatzas and Shreve [16], it is easy to check that the solution
of (3.51) remains positive a.s., i.e., P (λ(c)(t) ≥ 0) = 1. The slightly stronger condition (3.62) relies on the
following lemma.

Lemma 3.4.3. Let λ(c)(t) be a process with dynamics given by (3.51), and λ(0)(t) be the CIR process given by
(3.52). If

P
(
λ(0) ≤ λ(c)

)
= 1, (3.65)

then

P
(
λ(0)(t) ≤ λ(c)(t)

)
= 1, t ≥ t0. (3.66)

Proof of Lemma 3.4.3. Let h(s) =
√
s be the function in point 2. of Theorem B.2.1. Then condition (B.23) is

satis�ed, indeed

|√y −
√
x| ≤

√
|y − x| (3.67)

and h(s) is a strictly increasing function with h(0) = 0 and∫ ∞
0

1
(
√
u)2

du =∞. (3.68)

Setting b(t, x) = aλ (bλ − x), since

|b(t, x)− b(t, y)| = aλ |x− y| (3.69)

condition (B.24) holds. Therefore, since r(t) > 0 a.s., we have that also the condition 5. is satis�ed. Then by
comparison Theorem B.2.1 with X1(t) = λ(0)(t) and X2(t) = λ(c)(t), we obtain (3.66).
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Proof of Proposition 3.4.2. Observe that P (λ(0) > 0) = 1 and the condition 2 aλ bλ > σ̄2
λ ensures that P

(
λ(0)(t) > 0

)
=

1, for all t ≥ t0. Then by Lemma 3.4.3 we can conclude that

P
(
λ(c)(t) ≥ λ(0)(t) > 0

)
= 1, ∀t ≥ t0. (3.70)

Furthermore, since (3.66) holds, and λ(0)(t) satis�es (3.53), we have that the mortality intensity λ(c)(t) also
satis�es the same property

P
( ∫ ∞

t0

λ(c)(u)du =∞
)

= 1, (3.71)

i.e., τ (c) is �nite a.s. (see Lemma 3.3.7).

32



Chapter 4

Financial and mortality risk models

4.1 Introduction: The Longevity Bond

Longevity bonds are the �rst �nancial products to o�er longevity protection by hedging the trend in longevity.
Longevity bonds are needed because lifetime has been constantly increasing (medical improvements, better life
standards, etc) and so there is a demand for instruments hedging the longevity risk, i.e., the risk that members
of some reference population might live longer, on average, than anticipated, for example, in the life companies'
mortality tables (assuming constant longevity can lead to a bankrupt of a pension plan or a life insurer). The
uncertainty of longevity projections is illustrated by the fact that life expectancy for men aged 60 is more than
5 years' longer in 2005 than it was anticipated to be in mortality projections made in the 1980 (we refer to
Hardy [13]).

To meet this demand, the Capital markets o�er longevity bonds with coupons depending on the survival
rate of a given population. They can be used to hedge a big portion of the longevity risk. The longevity bonds
can take a large variety of forms which can vary enormously in their sensitivities to longevity shocks. This is the
ideal asset for hedging the longevity risk of a pension fund. In fact, while the population which subscribed to the
fund increases its longevity, the fund risks to have to pay pensions for longer and longer period. Nevertheless,
the increasing in longevity also means a lower decreasing rate in the longevity bond coupons. In this way, the
higher pensions can be faced through the less decreasing coupons.

Longevity bonds were �rst proposed by Blake and Burrows [3], and the �rst operational mortality-linked
bond appeared in 2003. A second mortality-linked bond was announced in 2004, the longevity bond o�ered
by European Investment Bank (EIB) and BNP Paribas (although it failed to come to market). In November
2004, the European Investment Bank (EIB) unveiled plans to issue the �rst longevity bond that o�ers a partial
longevity risk hedge to UK pension schemes and life insurers. For the longevity expertise and reinsurance
capacity, the EIB relies on PartnerRe1, while the �nancial component of the longevity bond is managed by the
BNP Paribas.

In Azzopardi-BNP Paribas [10], a longevity bond is de�ned as an asset paying a coupon which is strictly
proportional to the survival rate of a given population taken in a given moment. As its name suggests, the
survival rate is the proportion of some initial reference population aged x at time t who are still alive at some
future time s, with s > t. We will refer to it as the BNP-Paribas longevity bond. The main characteristics of
this bond are therefore:

• The bond was designed to be a hedge to the holder.

• The issuer gains if the survival rate is lower than anticipated (and conversely, the buyer gains if the survival
rate is higher than anticipated).

• The bond is a hedge against a portfolio dominated by annuity (rather than life insurance) policies.

• The bond is designed to protect the holder against any unanticipated improvement in mortality up to the
maturity date of the bond.

• The value of the survival rate between t and s (with s > t) involves a single national survivor index.

• All coupons are at risk longevity shocks, more precisely, the coupon payments are directly proportional
to the survival rate.

1PartnerRe Ltd. (PartnerRe) is an international reinsurance group. The Company provides reinsurance on a worldwide basis
through its wholly owned subsidiaries, Partner Reinsurance Company Ltd. (Partner Reinsurance), Partner Reinsurance Europe
Limited (PartnerRe Europe) and Partner Reinsurance Company of the United States (PartnerRe U.S.).
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Let (Ω,F ,F, P ) be a complete �ltered probability space and we denote by τ j , with j = 1, . . . ,m, the death
time of the jth element of the given population, m being the size of the population. We take the following
assumptions.

Assumption 4.1.1. We assume that there exists a strictly positive process λ and a σ-algebra G, with G ⊃ Fλ∞,
such that

• τ j, j = 1, . . . ,m, are, conditionally on G, independent and identically distributed random variables on
(Ω,F , P );

• τ j is, accordingly to Section 3.2 and 3.4, the �rst jump time of a doubly stochastic Poisson process N j(t)
with respect to G with the intensity function2 λ(t);

Finally, and without loss of generality, we assume that

• there exists a random time τ such that

LP
(
τ j |G

)
= LP (τ |G ) , j = 1, . . . ,m. (4.1)

In the sequel the process λ is referred to as the stochastic mortality intensity. Observe that τ j , for j =
1, . . . ,m ,share the same stochastic intensity λ(t), and that

LP
(
τ1, . . . , τm |G

)
=
(
LP (τ |G )

)m
, j = 1, . . . ,m. (4.2)

In the next sections we present the generalities of the �nancial-mortality risk models and face the problem
of modelling an arbitrage free family of zero coupon longevity bond price processes, respectively.

Finally, in the last section, we present another type of mortality-linked bonds, i.e., we take into account a
zero coupon longevity bond, de�ned as a �nancial security whose single payout occurs at maturity T if holder
is alive at time T . In this setting the payment at the time of maturity, known as the principal value or face
value, equals one if the holder is alive at time T , else zero. In this case we present the problem of modelling an
arbitrage free family of zero coupon longevity bond price processes.

In the last section, we introduce a new zero coupon longevity bond di�erent from the Azzopardi-BNP
Paribas [10], nevertheless, under suitable conditions (see Proposition 4.5.1), we obtain the arbitrage free price
process. The latter one coincides with the price process of the longevity bond under a special condition (see
Assumption 4.5.4). In the latter case the new bond is an alternative bond with respect to the previous one:
indeed, as it is easy to see, if both bonds are traded in the market, then there are arbitrage opportunities.

We refer to Azzopardi-BNP Paribas [10], Menoncin [18] for the longevity bond theory, and we follow the
methodological approach taken through the use and the construction of locally riskless portfolios as in Björk
[2] for �nding the arbitrage-free price process.
The death times are modelled as the �rst jump times of a doubly stochastic Poisson process, as is usual in the
literature (see, e.g., Bi�s [1], and Luciano and Vigna [17]).

4.2 Financial and mortality risk

In Chapter 2, we have studied the simplest possible incomplete market, namely a market where the only
randomness comes from a scalar stochastic process, i.e., short rate r, which is not the price of a traded asset.

In the setting proposed here, we also consider a stochastic process λ representing the stochastic mortality
intensity of the given population, and study a model with two non-priced underlying asset, i.e., r and λ.

In order to model the evolution of the stochastic mortality intensity, λ(t), let (Ω,F ,F, P ) be a complete
�ltered probability space (see Assumption 4.1.1). Furthermore, by Assumption 3.3.1, the �ltration F must
contains Fλt ∨ FNt , where N =

(
N1, . . . , Nm

)
.

To be consistent with Assumptions 1.2.1 and 1.2.2, as in Chapter 2, in the sequel, we assume that

F̄Wr ⊂ F, (4.3)

where F̄Wr
denotes the augmented �ltration associated to the process W r. Observe that if Fλt ⊂ Fλt0 ∨ F

Wλ

t ,
then we can take Ft = Fλt0 ∨ F

r
t0 ∨ F

Wz

t .

2We recall that in the literature the intensity is usually denoted by λx(t) when x is the age of each member of the population,
but for notational convenience we omit the initial age x.
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As already discussed in Chapter 3, the crucial point is the �ltration with respect to which the process λ is
a stochastic mortality intensity, i.e., thanks to Assumption 4.1.1 on the death time τ j ,

M j(t) = N j(t)−
∫ t

0

λ(s)ds, t ≥ 0, j = 1, . . . ,m

is a martingale. The same holds for the stopped martingales

Mτj (t) = M j(t ∧ τ j)

(
= 1{τj≤t} −

∫ t∧τj

0

λ(s)ds

)
, j = 1, . . . ,m. (4.4)

Usually, the stochastic intensity is considered with respect to a �ltration H satisfying the usual conditions
and such that Fλt ∨ FNt ⊆ Ht ⊆ Ft ⊆ Ft ∨ G, for all t ∈ [0, T ] and j = 1, . . . ,m. For example we can take
Ht = FNt ∨Frt ∨Fλt . By Proposition 3.3.4 we know that the H- stochastic intensity is still λ. Let us formulate
this as a formalized assumption.

Assumption 4.2.1. We assume that

FNt ∨ Frt ∨ Fλt ⊆ Ft, ∀t ∈ [0, T ] , j = 1, . . . ,m. (4.5)

As in Chapter 2, a natural starting point is to give an a priori speci�cation of the dynamics of r and λ. We
examine the general case of the riskless interest rate r(t) of Chapter 2, evolving as in (2.1), while we consider
the stochastic mortality intensity λ(t) evolving accordingly to

dλ(t) = µλ(t)dt+ σλ(t)dWλ(t), (4.6)

where Wλ is a 1-dimensional Wiener process independent of W r. The latter assumption implies that the
processes r(t) and λ(t) are uncorrelated, nevertheless in the sequel the stochastic mortality intensity λ is not
assumed to be independent of r, in the sense that µλ(t) and σλ(t) may depend also on r(t): similarly to
Section 1.2 (see Assumption 1.2.4) we assume that

µλ(t) =µ̂λ(t, r(t), λ(t)), (4.7)

σλ(t) =σ̂λ(t, r(t), λ(t)), (4.8)

for some measurable deterministic functions µ̂λ and σ̂λ such that the conditions for existence of a unique solution
are veri�ed (see (2.2) and (2.3)). In the sequel, for the sake of simplicity, we denote z = (r, λ)′. According to
(2.1), (2.2), (2.3), and (4.6), (4.7), (4.8), the dynamics of z are given by

dz(t) = µz(t)dt+ Σz(t)dW z(t), (4.9)

where W z =
(
W r,Wλ

) ′ is a 2-dimensional Wiener process, and

µz(t) = µ̃z(t, z(t)) =
(
µ̂r(t, r(t))
µ̂λ(t, z(t))

)
, (4.10)

Σz(t) = Σ̃z(t, z(t)) =
(
σ̂r(t, r(t)) 0

0 σ̂λ(t, z(t))

)
. (4.11)

Fixing z(s) = z̄, we will denote the unique solution z(t) of (4.9) also by z(t; s, z̄), t ≥ s. We observe that if
(4.10) and (4.11) are assumed, then z(t; s, z̄) is an Itô di�usion, which satis�es the important Markov property
with respect to the �ltration F (shortly z(t; s, z̄) is an Ft-Markov process), i.e., for all Borel measurable, bounded
functions f , we have

E [f(z(t′)|Ft] = E [f(z(t′))|z(t)] = g (z(t)) (4.12)

for �xed t, t′ such that s ≤ t ≤ t′, with3 g(y) := E [f(z(t; s, y))], y ∈ R2. Note that since Fzt ⊂ Ft this implies
that z(t) is also a Fzt -Markov process.

3In the sequel the equalities analogous to (2.5) and (2.6) hold, substituting r(t) with z(t), i.e.,

E [f(z(t; s, z̄))] = Es,z̄ [f(z(t))] ,

and
g(y) = Es,y [f(z(t))] .

More in general we will use the same kind of notation for functionals of the trajectory z(t; s, z̄), t ≥ s.
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In Chapter 2 we have studied a market where the only randnomness comes from a stochastic process r(t),
which is not the price of a traded asset, and we have discussed the problems which arise when pricing derivatives
written in terms of the underlying process r(t). In our setting there are two non priced underling assets, r(t) and
λ(t), and we will discuss the term structure of derivatives written in terms of these two underlying processes.
To this aim, we assume that r(t) and λ(t) are two objects given a priori, and the exogenously given assets are
the money account with price process G (see De�nition 1.2.4), and a benchmark bond, de�ned as in Section 2.2
(see Remark 2.2.1) plus a new benchmark longevity bond to be de�ne in the next sections. Apart from the
assumptions on the benchmark longevity bond, we summarize the assumptions as follows.

Assumption 4.2.2. The only objects which are a priori given are the following.

• An empirically observable 2-dimensional stochastic process z = (r, λ)′ with dynamics given by (4.9), (4.10)
and (4.11). Note that we assume that r and λ are not price processes of any traded asset.

• A money market account G(t), i.e., with dG(t) = r(t)G(t)dt, as in De�nition 1.2.4.

• Fixed T = T0, a benchmark bond B(t, T0), de�ned as in Section 2.2 (see Remark 2.2.1), whose price
process is given by (2.7).

4.3 Zero Coupon Longevity Bond: the term structure equation

In Azzopardi-BNP Paribas [10], a longevity bond is de�ned as an asset paying a coupon which is strictly
proportional to the (cumulative) survival rate of a population taken in a given moment.

As an example we recall that for the BNP-Paribas longevity bond a population of Welsh males, all with the
same age4 x.

Let (Ω,F ,F, P ) be a complete �ltered probability space and Assumption 4.1.1 holds. Let τ j , with j = 1, . . . ,m,
the death time of the jth element of the given population, m being the size of the population, and τ the random
time such that (4.1) holds. We consider ∑m

i=1 1{τ i>s}∑m
j=1 1{τj>t}

, (4.13)

and refer to it as the survival rate between t and s (with s > t), given by the number of survived people in s
with respect to the number of survived people in t, in the given population.

By BNP-Paribas longevity bond de�nition, a zero coupon longevity bond is a �nancial security that pays,
at time T , the value of the survival rate, given by (4.13) for s = T . The price process at time t of such longevity
bond, with maturity T , is denoted by L(m)(t, T ). The aim is to prove that, under suitable conditions, the price
L(m)(t, T ) converge to a price L(t, T ) (see the subsequent formula (4.18)). The latter price is the price of the
longevity bond considered here. From equation (4.18) one could get the term structure, nevertheless we will get
the term structure by the same method as in Chapter 2.

Now we will show that this bonds value can be well approximated by a T -zero coupon bond with the addition
that the holder of longevity bonds must pay costs due to the longevity risk.

From the risk-neutral pricing formula we have that

L(m)(t, T ) = EQ

[∑m
i=1 1{τ i>T}∑m
j=1 1{τj>t}

e−
∫ T
t
r(s)ds

∣∣Frt ∨ Fλt
]
, (4.14)

where Q is a risk neutral measure.
As a preliminary result, in the next proposition we will show that, conditionally on G, the joint law of τj ,

j = 1, ...,m is the same under P and Q, under the assumption that for every time T , there exists a G-measurable
random variable such that the risk-neutral measure restricted to FT , i.e. Q|FT , is given by

dQ|FT = Z(T ) dP |FT . (∗)

To be concrete note that the above assumption is satis�ed if

Z(T ) = e−
∫ T
0 ξz(t)dW z(t)− 1

2

∫ T
0 ξ′zξz(t)dt, (∗∗)

for some 2-dimensional G-measurable process ξz(t). In its turn the previous condition holds when ξz(t) is
Frt ∨ Fλt -adapted and

G ⊃ FWr
∞ ∨ FWλ

∞ ∨ σ(λ0) ∨ σ(r0) ⊃ Fr∞ ∨ Fλ∞. (4.15)

4In the �rst population considered by BNP-Paribas in 2003, the age was x = 65.
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Proposition 4.3.1. Assume that (∗) holds. Then, conditional to G, the random variables τ j, j = 1, . . . ,m,
have the same joint law under P and Q.

Proof. In order to prove it, �rst of all we introduce the processes Hj(t) = 1τi>t. The aim is to prove that for
every I ⊂ {1, ...,m} and Ei ∈ FHi∞

EQ

[∏
i∈I

1{Ei} |G

]
= EP

[∏
i∈I

1{Ei} |G

]
=
∏
i∈I

EP
[
1{Ei} |G

]
,

where the last equality is due to Assumption 4.1.1.
Since FH1,...,Hm

∞ = ∨T≥0FH1,...,Hm
T , it is su�cient to prove that the previous equality holds for every T , I ⊂

{1, ...,m} and Ei ∈ FHiT . For notational convenience we will considered only |I| ≤ 2, but the same proof holds

true if we consider |I| ≥ 2: Let Ei and Ej be such that Ei ∈ FNiT and Ej ∈ F
Nj
T . By the generalized Bayes

formula,

EQ
[
1{Ei}1{Ej} |G

]
=
EP

[
Z(T ) 1{Ei}1{Ej}

∣∣∣G]
EP [Z(T ) |G ]

(4.16)

Since Z(T ) is G-measurable, from (4.16) we have that

EQ
[
1{Ei}1{Ej} |G

]
= EP

[
1{Ei}1{Ej} |G

]
. (4.17)

Note that, when i = j, the expression (4.17) implies that

EQ
[
1{Ei}

∣∣∣G] = EP
[
1{Ei}

∣∣∣G] ,
while if i 6= j

EQ
[
1{Ei}1{Ej}

∣∣∣G] = EP
[
1{Ei}

∣∣∣G]EP [1{Ej}∣∣∣G]
= EQ

[
1{Ei}

∣∣∣G]EQ [1{Ej}∣∣∣G] .
We are now in a position to prove that the price process in the original de�nition of the BNP-Paribas

longevity bond, (see Azzopardi-BNP Paribas [10]), we can be well approximated by a price process L∞(t, T ),
called a limit zero coupon BNP-Paribas longevity bond, given by

L∞(t, T ) = EQ
[
e−

∫ T
t
r(s)dse−

∫ T
t
λ(u)du

∣∣Frt ∨ Fλt ] . (4.18)

Observe that, by Assumption 4.2.2, the process (r, λ) is a Markovian di�usion, and therefore L∞(t, T ) is a
function of z(t) = (r(t), λ(t)).

Proposition 4.3.2. Let L(m)(t, T ) and L∞(t, T ) be de�ned by (4.14) and (4.18), respectively. Assume the
same conditions of Proposition 4.3.1, together with condition (4.15). Then the sequence L(m)(t, T ) converges
a.s. to L∞(t, T ).

Proof. Using the iterated conditional expectations property, we obtain

L(m)(t, T ) = EQ

[∑m
i=1 1{τ i>T}∑m
j=1 1{τj>t}

e−
∫ T
t
r(s)ds

∣∣Frt ∨ Fλt
]

= EQ

[
EQ

[∑m
i=1 1{τ i>T}∑m
j=1 1{τj>t}

e−
∫ T
t
r(s)ds |G

] ∣∣Frt ∨ Fλt
]

= EQ

[
e−

∫ T
t
r(s)dsEQ

[∑m
i=1 1{τ i>T}∑m
j=1 1{τj>t}

|G

] ∣∣Frt ∨ Fλt
]

(4.19)

where G ⊃ Fλ∞ ∨ Fr∞.
By Assumption 4.1.1, the random variables τ j are, under P , independent and identically distributed, con-

ditionally on G and they are, conditionally on G, independent copies of a random time τ . As we have seen in
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the proof of Proposition 4.3.1, the same holds under Q, and furthermore LQ (τj |G ) = LP (τj |G ) = LP (τ |G )
(see Proposition 4.3.1). Then, for all u > 0

EQ

 1
m

m∑
j=1

1{τj>u} |G

 = P (τ > u |G ) = P
(
N(u) = 0

∣∣G ∨ FN0 ) = e−
∫ u
0 λ(s)ds. (4.20)

Then, the law of large numbers implies that the joint law

LQ
 1
m

m∑
j=1

1{τj>t},
1
m

m∑
i=1

1{τ i>T} |G

 −−−−→
m→∞

δ(P [τ>t|G ],P [τ>T |G ]), (4.21)

where δ(x1,x2) is the Dirac measure centered on (x1, x2).
Finally, from (4.19) and (4.21), we obtain that

L(m)(t, T ) = EQ

[
e−

∫ T
t
r(s)dsEQ

[
1
m

∑m
j=1 1{τj>T}

1
m

∑m
j=1 1{τj>t}

∣∣∣G ] ∣∣Frt ∨ Fλt
]

−−−−→
m→∞

EQ

[
e−

∫ T
t
r(s)ds e

−
∫ T
0 λ(u)du

e−
∫ t
0 λ(u)du

∣∣Frt ∨ Fλt
]

= EQ
[
e−

∫ T
t
r(s)dse−

∫ T
t
λ(u)du

∣∣Frt ∨ Fλt ] . (4.22)

As already said, we will now get again expression (4.18) for the longevity bond, but starting a di�erent
set of assumptions and with the method of Chapter 2. The above result suggests that we can view the price
process of the longevity bond as the price process of a T -zero coupon bond with a cost due to the longevity risk
depending to the stochastic mortality intensity λ(t). Formally, we have the following de�nition.

De�nition 4.3.1 (Limit Zero Coupon BNP-Paribas Longevity Bond). A limit zero coupon BNP-Paribas
longevity bond with maturity date T , also called a T -longevity bond, is a zero coupon bond, which guaran-
tees the holder 1 dollar to be paid on the date T ; furthermore, besides the riskless rate r(t), there is a cost,
due to the longevity risk, depending on the stochastic mortality intensity λ(t). The (random) price at time t of
such longevity bond, with maturity T , is denoted by L(t, T ), while the cumulative cost over the interval [t, T ] is
denoted by D(t, T ).

In order to simplify the notation, we will write �zero coupon longevity bond� instead of �limit zero coupon
BNP-Paribas longevity bond�.

The aim is focused on the problem of �nding an arbitrage-free price process of a T -zero coupon longevity
bonds starting by the De�nition 4.3.1. As we will see, following the approach of Chapter 2, we will obtain the
same formula (4.18).

Let us �rst describe brie�y the set of general assumptions imposed on our �nancial market models.

Assumption 4.3.1. In addition to the Assumptions 2.2.1 and 2.2.2 on the bond market, and the Assump-
tion 4.2.2, we assume that there exists a market for zero coupon T -longevity bonds for every value of T .

We thus assume that our market contains bonds and longevity bonds with all possible maturity times, but
we stress that only benchmark assets, besides the riskless asset, is exogenously given.

In the other words, in this setting, the benchmark asset B(t, T0) is considered as the underlying asset
whereas all the other bonds are uniquely determined in terms of the price of this benchmark and the dynamics
of �underlying� r(t), while all the longevity bonds are regarded as derivative of the �underlying� z(t). Clearly in
this market, since Assumptions 2.2.1 and 2.2.2 are valid, the relations (2.19) between two bonds with di�erent
maturities still hold. Analogously, we expect that similar relations hold for the longevity bonds. Therefore our
main goal is broadly to investigate the relations among the price processes of longevity bonds with di�erent
maturities in an free-arbitrage market. To this aim we will use the approach of Chapter 2 and therefore we
need a further assumption for the longevity bonds, which generalizes Assumption 2.2.1 for the T -bonds.

Assumption 4.3.2. In addition to Assumptions 2.2.1, 2.2.2, and 4.2.2, we assume that the market for T bonds
T -longevity bonds is arbitrage free. We assume furthermore that
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• for every T , the price of T -longevity bonds has the form

L(t, T ) = L̂T (t, z(t)), (4.23)

where L̂T is a deterministic function of three real variables; furthermore we assume that L̂ is smooth and
positive;

• the cumulative cost D(t, T ) of De�nition 4.3.1 has the form

dD(t, T ) = L(t, T )λ(t)dt. (4.24)

As in the case of T -bonds, L̂T is a function of only three variables, namely t and z = (r, λ)′, whereas T is
regarded as a parameter. Moreover, according to the condition L(T, T ) = 1, we have the following boundary

L̂T (T, z) = 1 ∀z, (4.25)

where z denotes a generic outcome of the process z(t).
By condition (4.23) of Assumption 4.3.2 and the multidimensional Itô formula, we have that the dynamics

of L(t, T ) has the following form

dL(t, T )
L(t, T )

= µL(t, T )dt+ σL(t, T )dW z(t), (4.26)

where σL(t, T ) = (σL,r(t, T ), σL,λ(t, T )) is a 2-dimensional row vector, and

µL(t, T ) = µ̂TL(t, z(t)) = µ̂TL(t, r(t), λ(t)), (4.27)

σL(t, T ) = σ̃TL(t, z(t)) =
(
σ̂TL,r(t, z(t)), σ̂

T

L,λ(t, z(t))
)
, (4.28)

for suitable deterministic function µ̂T and σ̃T . As in Lemma 2.2.1, the functions µ̂TL and σ̃TL can be expressed
by mean of the function L̂T as shown in the following Lemma 4.3.3.

Lemma 4.3.3. Under condition (4.23) of Assumption 4.3.2, the following equalities hold with probability 1, for
all t and for every maturity time T .

µ̂TL(t, z(t)) =
L̂Tt (t, z(t)) + L̂Tz (t, z(t))µ̃z(t, z(t)) + 1

2 tr

[(
Σ̃z
)′
L̂TzzΣ̃

z

] (
t, z(t)

)
L̂T (t, z(t))

(4.29)

σ̃TL(t, z(t)) =
L̂Tz (t, z(t))Σ̃z

L̂T (t, z(t))
=

(
L̂Tr σ̂

r

L̂T
,
L̂Tλσ̂

λ

L̂T

)(
t, z(t)

)
, (4.30)

where tr[A] denotes the trace of a square matrix A, µ̃z, Σ̃z are the functions in (4.10),(4.11) respectively, and,
where we have used the notation

L̂Tt (t, z) = ∂L̂T

∂t (t, z), L̂Tz (t, z) =
(
∂L̂T

∂r (t, z), ∂L̂
T

∂λ (t, z)
)
,

L̂Tzz(t, z) =

(
∂2L̂T

∂r2 (t, z) ∂L̂T

∂r∂λ (t, z)
∂L̂T

∂λ∂r (t, z) ∂2L̂T

∂λ2 (t, z)

)
In the sequel, when it is convenient, we will use the above notation.

Proof. After some reshu�ing the multidimensional Itô formula gives us (4.29) and (4.30), similar to the proof
of Lemma 2.2.1.

We can now apply the approach of Chapter 2 to this setting. As observed above, the a priori given market
consists of the benchmark bond B(t, T0) and the money market account G(t). Observe that in this market the
numberM of random sources equals two (the 2-dimensional Wiener process,W z), while the number N of traded
assets (besides G(t)) equals one. From Corollary 1.4.5, we may thus expect that the market is arbitrage-free,
but not complete5.

5Another way of seeing this problem appears if we try to price a certain T -longevity bond, using the technique in Chapter 2
generalized to the case where we have two underlying objects, i.e. z = (r, λ)′. This generalization is necessary since, as already
observed, all the longevity bonds are regarded as derivatives of the underlying process z, in other words a zero coupon longevity
bond can be thought of as a derivative on z.
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As recalled in Section 2.2, introducing the benchmark bond B(t, T0) in our market, allows us to replicate6 a
zero coupon bond. Analogously, given the presence of random source Wλ, if we would consider one benchmark
longevity bond, we might obtain a unique arbitrage-free price process also for longevity bonds.

Summarizing, in accordance to Chapter 2, we expect the following.

- We cannot say anything precise about the price process of any particular longevity bond, i.e., the price of a
particular longevity bond will not be completely determined by the z-dynamics and the requirement that
the market is arbitrage-free.

- Di�erent longevity bonds will, however, have to satisfy certain internal consistency requirements in order to
avoid arbitrage on the market.

- More precisely, since we now have on our market a 2-dimensional Wiener process, i.e. two random sources, we
can specify, besides the benchmark bond B(t, T0), the price processes of one benchmark longevity bond.
The price processes of all other longevity bonds will then be uniquely determined by the prices of this
benchmark. For the sake of simplicity of notation we will assume that the maturity of the benchmark
longevity bond is T0, but one could take any other time T ′0 > t.

The following central result is similar to Theorem 1.4.6, and extends Proposition 2.2.2 to this setting.

Proposition 4.3.4. Under Assumption 4.3.2, �x one benchmark bond, B(t, T0), with price processes given by
(2.9), (2.10) and (2.11) with T = T0, and one benchmark longevity bond, L(t, T0) with price processes given by
(4.26), (4.27) and (4.28), with T = T0. Assume furthermore that B(t, T0) and L(t, T0) are such that

σ̂T0(t, r(t)) 6= 0, σ̂T0
L,λ(t, z(t)) 6= 0, ∀t ≤ T0. (4.31)

Then there exists a process ξz(t) = (ξr(t), ξλ(t))′ such that the relations

σ(t, T )ξr(t) = µ(t, T )− r(t), (4.32)

σL(t, T )ξz(t) = µL(t, T )− λ(t)− r(t) (4.33)

hold for all t a.s. and for every maturity time T .

Observe that the condition (4.31) is the mathematical formulation of the requirement that the family of
benchmark derivatives is rich enough to span the entire derivative space, as we will see from proof of Proposi-
tion 4.3.4.

Observe that (4.32) and (4.33) are called market price of risk equations, and the process ξz is the market
price (vector) of risk due to W z. In particular the component ξr(t) is given by (4.32), exactly as in (2.19) of
Section 2.1, while the component ξλ(t) is given by

ξλ(t) =
µL(t, T )− λ(t)− r(t)− ξr(t)σrL(t, T )

σλL(t, T )
, (4.34)

i.e., analogously to ξr, the component ξλ has the dimension �risk premium per unit of λ-type volatility�, so that
we called ξλ the market price for the longevity risk due to Wλ, Finally, we observe that ξz(t) can be expressed
as a deterministic function of t and z(t), namely

ξz(t) = ξ̃z(t, z(t)) =
(
ξ̂r(t, z(t)), ξ̂λ(t, z(t))

)′
,

(see (4.29)-(4.30)).

Proof of Proposition 4.3.4. We have already proved (4.32) in Section 2.1 (see Proposition 2.2.2), then we turn
to prove (4.33). Fix one benchmark bond and one benchmark longevity bond with price process of the form

B(t, T0) = B̂T0(t, r(t)),

L(t, T0) = L̂T0(t, z(t)),

where B(t, T ) is a zero coupon bond of Section 2.1 (see (2.7) and Lemma 2.2.1). In order to simplify the
notation, we will write T instead of T0.

Considering a zero coupon longevity bond of maturity S 6= T , we have the corresponding equation for the
S-longevity bond

dL(t, S) = L(t, S) [µL(t, S)dt+ σL(t, S)dW z(t)] . (4.35)

6We obtain a unique arbitrage-free price process since we can replicate our derivative.
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where analogously to (4.27) and (4.28)

µL(t, S) = µ̂SL(t, z(t)), σL(t, S) = σ̃SL(t, z(t)) (4.36)

We now form a portfolio based only on B(t, T ), L(t, T ), and L(t, S), and as in the proof of Proposition 2.2.2,
(see also Section 1.3) let h(t) = (h0(t), h1(t), h2(t), h3(t)) be the portfolio associated to X = (X0, X1, X2), where

X0 = G(t), X1 = B(t, T ), X2 = L(t, T ), X3 = L(t, S), (4.37)

and

h0(t) = hG(t) = 0, (h1(t), h2(t), h3(t)) = (hT (t), hLT (t), hLS(t)) , (4.38)

i.e., nothing is invested in the bank or loaned by the bank. Similarly to Section 1.3, instead of specifying for
each asset the absolute number of shares held, i.e. h(t), it may be convenient to consider the corresponding
relative portfolio (UT (t)UL

T (t), UL
S (t)). Under Assumptions 2.2.2 and 4.3.2, setting u(t) = (uT (t), uLT (t), uLS(t))′,

by (1.16) and (1.17), we have

UT (t) = 1{B(t,T )>0}uT (t) = uT (t)
UL

T (t) = 1{L(t,T )>0}u
L

T (t) = uLT (t)
UL

S (t) = 1{L(t,S)>0}u
L

S(t) = uLS(t),

for the relative portfolio corresponding to B(t, T ), L(t, T ), and L(t, S), with

uT (t) + uLT (t) + uLS(t) = 1. (4.39)

The dynamics of the value process for the corresponding self-�nancing portfolio (see (1.24)) are given by

dV (t)
V (t)

= uT (t)
dB(t, T )
B(t, T )

+ uLT (t)
dL(t, T )− dD(t, T )

L(t, T )
+ uLS(t)

dL(t, S)− dD(t, S)
L(t, S)

, (4.40)

where the gain di�erential for the T -longevity bond is given by

dL(t, T )− dD(t, T ) = L(t, T )
((
µL(t, T )− λ(t)

)
dt+ σ̃L(t, T )dW z(t)

)
, (4.41)

and the same expressions applies to dL(t, S) − dD(t, S) replacing T with S. The price processes for T -bond,
(see (2.9), (2.10) and (2.11)), with respect to dW z are given by

dB(t, T )
B(t, T )

(
= µ̂T (t, r(t))dt+ σ̂T (t, r(t))dW r(t)

)
= µ̂T (t, r(t))dt+ σ̃T (t, r(t))dW z(t), (4.42)

with σ̃T (t, r(t)) = (σ̂T (t, r(t)), 0) (here we are using the same notations of Proposition 2.2.2).
Then, inserting in (4.40) the dynamics (4.41) and (4.42) of the price processes involved we get

dV (t)
V (t)

=
[
uT (t)µ̂T + uLT (t)

(
µ̂TL − λ(t)

)
+ uLS(t)

(
µ̂SL − λ(t)

)]
dt

+
[
uT (t)σ̃T + uLT (t)σ̃TL + uLS(t)σ̃SL

]
dW z(t),

where for the notational convenience, the arguments (t, r(t)) and (t, z(t)) �have been suppressed�, so that we
have used the shorthand notations of the form

µ̂T = µ̂T (t, r(t)), σ̃T = σ̃T (t, r(t)), (4.43)

for the process B(t, T ), and

µ̂TL = µ̂TL(t, z(t)), σ̃TL = σ̃TL(t, z(t)), (4.44)

for the process L(t, T ), and similarly for the process L(t, S). Here, when it is convenient, we will use the above
notations (4.43) and (4.44). We try to choose uT (t), uLT (t), and uLS(t) so that the market is arbitrage-free. By
Proposition 1.4.1 the portfolio rate of return and the short rate of interest must be equal, namely7

uT (t)µ̂T + uLT (t)
(
µ̂TL − λ(t)

)
+ uLN(t)

(
µ̂NL − λ(t)

)
+ uLS(t)

(
µ̂SL − λ(t)

)
= r(t), (4.45)

7For the notational convenience we are using the notations (4.43) and (4.44).
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necessarily holds for all t, with probability 1, and then, using (4.39), we obtain for all t

uT (t)
(
µ̂T (t, r(t))− r(t)

)
+ uLT (t)

(
µ̂TL(t, z(t))− λ(t)− r(t)

)
+ uLN(t)

(
µ̂NL (t, z(t))− λ(t)− r(t)

)
+ uLS(t)

(
µ̂SL(t, z(t))− λ(t)− r(t)

)
= 0. (4.46)

Moreover we look for a portfolio minimizing the risk associated to the derivative, i.e., such that the corresponding
value process has no driving Wiener process, W z. This means that we want to solve the equation

uT (t)σ̃T (t, r(t)) + uLT (t)σ̃TL(t, z(t)) + uLN(t)σ̃NL (t, z(t)) + uLS(t)σ̃SL(t, z(t)) = 0, (4.47)

In order to see some structure, let H be the following matrix

H(t, z) = H(t, r, λ) =

 µ̂T − r µ̂TL − λ− r µ̂SL − λ− r
σ̂T σ̂TL,r σ̂SL,r
0 σ̂TL,λ σ̂SL,λ

 (4.48)

so that we now write (4.46) and (4.47) in matrix form as

H
(
t, z(t)

)
u(t) = H

(
t, r(t), λ(t)

)
u(t) = 0, (4.49)

where we have used the notations (4.43) and (4.44). If H were invertible, then the system (4.49) would have a
unique solution, i.e., the null solution, but this solution does not satisfy the condition (4.39), then H must be
singular. For readability reasons, we study H

′
, the transpose of H, i.e.,

H ′ = H ′(t, r, λ) =

 µ̂T − r σ̂T 0
µ̂TL − λ− r σ̂TL,r σ̂TL,λ
µ̂SL − λ− r σ̂SL,r σ̂SL,λ

 . (4.50)

The matrix H ′ being singular, the columns are linearly dependent. Since under the conditions (4.31), i.e.,

σ̂T (t, r(t)) 6= 0, and σ̂λ,TL (t, z(t)) 6= 0, the matrix

σ =
(

σ̂T (t, r(t)) 0
σ̂TL,r(t, z(t)) σ̂TL,λ(t, z(t))

)
.

is invertible (with probability 1 for each t), the �rst column of H
′
can be written as a linear combination of

the other columns. We thus deduce the existence of the 2-dimensional process ξz = (ξr, ξλ)′ such that setting
1r = (1, 1)′, and 1λ = (0, 1)′

σξz = µ− λ1λ − r1r, i.e.,

{
σ̃T (t, r(t))ξz(t) = µ̂T (t, r(t))− r(t)
σ̃TL(t, z(t))ξz(t) = µ̂TL(t, z(t))− λ(t)− r(t) (4.51)

and taking into account (2.31) {
σ̃S(t, r(t))ξz(t) = µ̂S(t, r(t))− r(t)
σ̃SL(t, z(t))ξz(t) = µ̂SL(t, z(t))− λ(t)− r(t) (4.52)

Since the longevity bond L(t, S) was chosen arbitrarily, the risk premium, µ̂SL(t, z(t)) − λ(t) − r(t), of any
longevity bond, can be written as the linear combination σ̃SL(t, z(t))ξz(t) of is volatility components, ξz(t) being
the same for all longevity bonds. Thus equations (4.51) and (4.52) show that the process ξz does not depend
on the choice of either S or T , and that the process ξz is uniquely de�ned by (4.51).

In the next theorem which is the analogue for the longevity bonds L(t, T ) of Theorem 2.2.3 for the bonds
B(t, T ), we give the term structure for the longevity bonds.

Theorem 4.3.5. Assuming that the support of the process z(t) is entire set R2
+, ∀t ∈ [0, T ], in an arbitrage

free longevity bond market, the function L̂T (t, z) satis�es the term structure equation
L̂Tt (t, z) + L̂Tz (t, z)

(
µ̃z − Σ̃z ξ̃z

)(
t, z
)

+ 1
2 tr

[(
Σ̃z
)′
L̂TzzΣ̃

z

] (
t, z
)
− (r + λ)L̂T (t, z) = 0, (t, z) ∈ (0, T )× R2

+

L̂T (T, z) = 1, z ∈ R2
+

(4.53)

where ξz is universal, in the sense that ξr and ξλ do not depend on the speci�c choice of the maturity T .
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Now we generalize Remark 2.2.1 to this setting.

Remark 4.3.1. Similar to the benchmark B(t, T ) in Remark 2.2.1, if for a maturity time T , a longevity bond
price process L(t, T ) can be observed, then it is called a benchmark of the longevity bond market. If we assume
that also z(t) is observable, the obtained results can be interpreted by saying that all bond and longevity bond
prices will be determined in terms of z(t) and two di�erent benchmark, B(t, T ) and L(t, T ). Indeed once the
market has determined the dynamics of this benchmarks B(t, T ) and L(t, T ), then µ(t, T ), σ(t, T ), µL(t, T ),
and σL(t, T ) can be considered as known together with z(t), and there the market has implicitly speci�ed ξz
by equations (4.32) and (4.33). Once ξz is thus determined, all other bond and longevity bond prices will be
determined by the term structure equation (4.53), respectively.

Proof of Theorem 4.3.5. Taking into account the notations (4.27), (4.28), we can rewrite (4.33) in terms of
µ̂TL(t, z(t)) and σ̃TL(t, z(t)), the latter quantities being given by (4.29) and (4.30) (of Lemma 4.3.3). After
some reshu�ing, we obtain the equation (4.53), as in the proof of Theorem 2.2.3. Finally, we must also have
L̂T (T, z) = 1, so we have proved the result.

Before proceeding any further, we observe that the price dynamics of L̂(t, T ) can be expressed by mean of
the price market ξz. Indeed, by Itô formula and the term structure equations (4.53), we have the price dynamics
of the following form

dL̂T (t, z(t))
L̂T (t, z(t))

=

(
r(t) + λ(t) +

L̂Tz

L̂T
(t, z(t))Σ̃z(t, z(t))ξ̂z(t, z(t))

)
dt+

L̂Tr

L̂T
(t, z(t))σ̂r(t, r(t))dW r(t)

+
L̂Tλ
L̂T

(t, z(t))σ̂λ(t, z(t))dWλ(t), (4.54)

or in compact form

dL̂T (t, z(t))
L̂T (t, z(t))

=

(
r(t) + λ(t) +

L̂Tz

L̂T
(t, z(t))Σ̃z(t, z(t))ξ̂z(t, z(t))

)
dt+

L̂Tz

L̂T
(t, z(t))Σ̃z(t, z(t))dW z(t), (4.55)

The proof of (4.55) follows by observing that

dL̂T (t, z(t)) = L̂Tt (t, z(t))dt+ L̂Tz (t, z(t))dz(t) +
1
2
tr

[(
Σ̃z
)′
L̂TzzΣ̃

z

] (
t, z(t)

)
, (4.56)

and inserting the di�erential form (4.6), (4.7), (4.8) into (4.56), we obtain

dL̂T (t, z(t)) = L̂Tt (t, z(t))dt+ L̂Tz (t, z(t))dz(t) +
1
2
tr

[(
Σ̃z
)′
L̂TzzΣ̃

z

] (
t, z(t)

)
=
(
L̂Tt (t, z(t)) + L̂Tz (t, z(t))µ̃z(t, z(t)) +

1
2
tr

[(
Σ̃z
)′
L̂TzzΣ̃

z

] (
t, z(t)

))
dt

+ L̂Tz (t, z(t))Σ̃z(t, z(t))dW z(t)

=
((
r(t) + λ(t)

)
L̂T + L̂Tz (t, z(t))Σ̃z(t, z(t))ξ̂z(t, z(t))

)
dt+ L̂Tz (t, z(t))Σ̃z(t, z(t))dW z(t),

where in the last step we have used the following relation

L̂Tt + L̂Tz µ̃
z +

1
2
tr
[
Σ̃z′L̂TzzΣ̃

z
]

= L̂Tz Σ̃z ξ̂z + (r(t) + λ(t))L̂T ,

given by the term structure equation (4.53) when all terms are evaluated at the point (t, z(t)).

As in Section 2.2, in the present setting ξz is not determined within the model a less to benchmark bonds are
speci�ed as shown in Proposition 4.3.4. Alternatively, in order to solve (4.53), we have to specify ξz exogenously
just as we have to specify µz and Σz.

Again an application of the Feynman-Ka�c technique, (see Proposition 2.2.4), gives us a stochastic rep-
resentation formula. Now we can repeat the same steps as in Section 2.1. Summarizing, we assume that
ξz ∈ L2(0, T ; F̄Wz ) and that the measure Q, de�ned in Lemma 1.4.7, is a probability measure. We observe
that if ξz satis�es the Novikov condition (1.34), then Q is a probability measure. By Lemma 1.4.7, choosing
ξ(t) := ξz(t) and assuming (1.39), we have that
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• the equivalent martingale measure Q is given by

dQ = exp

(
−
∫ T

0

ξz(t)dW z(t)− 1
2

∫ T

0

ξ′z(t)ξz(t)dt

)
dP, (4.57)

• the process W̄ z(t) de�ned as

W̄ z(t) :=
∫ t

0

ξz(s)ds+W z(t), (4.58)

is a Wiener process with respect to Q.

Under Q, the process z solves the following equation

dz(u) = µ̃z(u, z(u)) + Σ̃z(u, z(u))
[
dW̄ z(u)− ξ̃z(u, z(u))du

]
. (4.59)

Finally we obtain the following stochastic representation formula.

Proposition 4.3.6. In an arbitrage free longevity bond market, let us assume that ξz ∈ L2(0, T ; F̄W z

) and that
(4.57) de�nes a probability measure Q. Then the function L̂T is given by the formula

L̂(t, z;T ) = EQt,z

(
e−

∫ T
t
r(s)dse−

∫ T
t
λ(s)ds

)
. (4.60)

As usual, the subscripts t and z denote that the expectation is taken using the dynamics given by (4.59), with
the initial condition z(t) = z,i.e.,{

dz(s) =
[
µ̃z(s, z(s))− Σ̃z(s, z(s))ξ̃z(s, z(s))

]
ds+ Σ̃z(s, z(s))dW̄ z(s), s ∈ [t, T ]

z(t) = z
(4.61)

where W̄ z is the Wiener process with respect to Q de�ned in (4.58).

From (4.60), we observe that the longevity bond prices processes are given by8

L(t, T ) = EQt,z

(
e−

∫ T
t
r(s)dse−

∫ T
t
λ(s)ds

) ∣∣
z=z(t) . (4.63)

Proof. We �x t and z = (r, λ), set P (s) = e−
∫ s
t

(r(u)+λ(u))du, so that

dP (s) = −(r(s) + λ(s))P (s)ds, s ∈ [t, T ]. (4.64)

By Itô's multidimensional formula, we have

dL̂T (s, z(s)) =L̂Ts ds+ L̂Tz dz +
1
2
tr
[
(Σ̃z)

′
L̂TzzΣ̃

z
]

=
[
L̂Ts + L̂Tz (µ̃z − Σ̃z ξ̃z) +

1
2
tr
[
(Σ̃z)

′
L̂TzzΣ̃

z
]]
ds+ L̂Tz Σ̃zdW̄ z(s), (4.65)

where we have used the same shorthand notations (4.43) and (4.44), but considering s instead of t. Now,
proceeding exactly as in to proof of Proposition 2.2.4 and �xing (t, z), we de�ne the process P̂ as

P̂ (s) = P (s)L̂T (s, z(s)), s ∈ [0, T ]. (4.66)

Then, by (4.64) and (4.65), we obtain

dP̂ (s)−
(
P (s)dL̂T (s, z(s)) + dP (s)L̂T (s, z(s))

)
= e−

∫ s
t

(r(u)+λ(u))dudL̂T (s, z(s))− (r(s) + λ(s))e−
∫ s
t

(r(u)+λ(u))duL̂T (s, z(s))ds

= e−
∫ s
t

(r(u)+λ(u))du

{[
L̂Ts − (r(s) + λ(s))L̂T + L̂Tz (µ̃z − Σ̃z ξ̃z) +

1
2
tr
(

(Σ̃z)
′
L̂TzzΣ̃

z
)]
ds

+ L̂Tz Σ̃zdW̄ z(s)
}
,

8Recall that by Markov property of z(t) with respect to the �ltration Ht, where Ht = FNt ∨ Frt ∨ Fλt , we have

EQ
(
e−

∫ T
t r(s)dse−

∫ T
t λ(s)ds |Ht

)
= EQt,z

(
e−

∫ T
t r(s)dse−

∫ T
t λ(s)ds

) ∣∣∣
z=z(t)

. (4.62)

.
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or equivalently

P̂ (T )− P̂ (t) = P (T )L̂T (T, z)− P (t)L̂T (t, z(t))

=
∫ T

t

e−
∫ s
t

(r(u)+λ(u))du

[
L̂Ts − (r(s) + λ(s))L̂T + L̂Tz (µ̃z − Σ̃z ξ̃z) +

1
2
tr
(

(Σ̃z)
′
L̂TzzΣ̃

z
)]
ds

+
∫ T

t

e−
∫ s
t

(r(u)+λ(u))duL̂Tz Σ̃zdW̄ z(s).

In the above expression the time integral vanishes, since L̂T (s, z(s)) satis�es equation (4.53) evaluated at
the point (s, z(s)) (see Theorem 4.3.5). Then, taking into account that L̂T (T, z) = 1 and P (t) = 1, we obtain

e−
∫ T
t

(r(s)+λ(s))ds = L̂T (t, z) +
∫ T

t

e−
∫ s
t

(r(u)+λ(u))duL̂Tz (s, z(s))Σ̃z(s, z(s))dW̄ z(s). (4.67)

Taking the expectation of (4.67), we have

EQt,z

(
e−

∫ T
t

(r(s)+λ(s))ds
)

= L̂(t, z;T ),

the expected value of the stochastic integral being equals to zero.
We have proved the announced result.

Rewriting formula (4.63) as

L(t, T ) = EQt,z

[
e−

∫ T
t

(r(s)+λ(s))ds · 1
] ∣∣
z=z(t) , (4.68)

we observe that the value of a T -longevity bond at time t is given as the expected value of one dollar (�nal
payo�), discount to present value at the interest rate given by r, with a cost due to the longevity risk depending
on λ. Thus formula (4.68) can be interpreted as the risk-neutral pricing formula for a T -bond at the interest
rate given by r with the cost rate given by λ, but in our model we may have di�erent martingale measures for
di�erent choices of ξz.

4.3.1 A bidimensional CIR model

In this section we take a model where the interest rate r(t) and the stochastic mortality intensity λ(t) are
dependent, but with uncorrelated driving noises, and we extend Proposition 2.2.5 to this setting, i.e., we want
to derive an explicit formula for the price of a zero coupon longevity bond as a function of the interest rate and
the stochastic intensity. In particular

We take a CIR model for the interest rate r(t), i.e.,

dr(t) = ar (br − r(t)) dt+ σ̄r
√
r(t)dW̄ r(t), (4.69)

r(t0) = r (4.70)

where ar, br, σ̄r and r are strictly positive deterministic constants such that 2 ar br > σ̄2
r , and W̄

r(t) is a Wiener
process under a martingale measure Q (see (2.50) of Section 2.2), while the stochastic intensity is given by
(3.51), i.e., {

dλ(c)(t) = aλ
(
bλ − λ(c)(t) + c r(t)

)
dt+ σ̄λ

√
λ(c)(t)dW̄λ(t),

λ(c)(t0) = λ(c)
(4.71)

where W̄λ is a 1-dimensional Wiener process under a martingale measure Q, independent of W̄ r, and aλ, bλ,
σ̄λ, c and λ

(c) are strictly positive deterministic constants such that 2 aλ bλ > σ̄2
λ. We call a term structure of

interest rate and mortality intensity model involving (2.50) and (3.51) a bidimensional CIR model.
Recalling that in this setting z(t) = (r(t), λ(t))′, with λ(t) = λ(c)(t), a zero coupon longevity bond is a

contract that pays o� 1 at time T , with price process L(t, T ) = L̂T (t, z(t)).
Following the similar approach of Section 2.2.1, we want extend the property (2.51) and the formula (2.43)

to this setting as shown in the following proposition.
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Proposition 4.3.7. The term structure for the bidimensional CIR model is given by

L̂T (t, z) = eψ
(c),0
z (T−t)+ψ(c)

r (T−t)r+ψλ(T−t)λ, (4.72)

where

ψ̇λ(s) = −aλψλ(s) +
σ̄2
λ

2
ψ2
λ(s)− 1 (4.73)

ψ̇(c)
r (s) = −arψ(c)

r (s) +
σ̄2
r

2
(
ψ(c)
r

)2(s) + aλ c ψλ(s)− 1 (4.74)

ψ̇(c),0
z (s) = ar br ψ

(c)
r (s) + aλ bλψλ(s) (4.75)

with the initial conditions

ψ(c),0
z (0) = 0, ψ(c)

r (0) = 0, ψλ(0) = 0. (4.76)

Furthermore ψλ and ψ
(c)
r are bounded functions, i.e.,

− 1
|βλ|

≤ ψλ(s) ≤ 0 and − 1
|β−|

≤ ψ(c)
r (s) ≤ 0, (4.77)

where, setting h = 1 + aλ c
|βλ| ,

βλ =
αλ − aλ

2
, β− =

α− − ar
h

2
,

with

αλ = −
√
a2
λ + 2σ̄2

λ, α− = −
√
a2
r

h2
+

2σ̄2
r

h
.

Remark 4.3.2. First we observe that by above bounds for ψλ and ψ
(c)
r and di�erential equation (4.75), obtain

immediately that

−
(
ar br
|β−|

+
aλ bλ
|βλ|

)
s ≤ ψ(c),0

z (s) ≤ 0. (4.78)

Then in order to solve the above di�erential system for ψλ, ψ
(c)
r and ψ

(c),0
z , we observe the following. In (4.72)

we should have written ψ
(c)
λ instead of ψλ, but as equation (4.73) does not depend on c, the solution ψλ(s) is the

same for both processes λ(0) and λ(c), i.e., the solution of the equation (4.73) is exactly the expression (3.57),
i.e.

ψλ(s) =
1− eαλs

βλ + γλ eαλs
,

where (see (3.59))

αλ = −
√
a2
λ + 2σ̄2

λ, βλ =
αλ − aλ

2
, γλ =

αλ + aλ
2

.

By results In order to compute ψ
(c),0
z we observe that, substituting ψλ(s) in (4.75) and recalling that

(see (3.58)) ∫ s

0

aλbλψλ(u)du = ψ0
λ(s) = −2 aλbλ

σ̄2
λ

ln
(
βλ + γλ e

αλs

αλ

)
+
aλbλ
βλ

s, (4.79)

we obtain

ψ(c),0
z (s) = −2 aλbλ

σ̄2
λ

ln
(
βλ + γλ e

αλs

αλ

)
+
aλbλ
βλ

s+ arbr

∫ s

0

ψ(c)
r (u)du, (4.80)

where the last term is determined using numerical procedures, such as, for example, the standard Euler methods,

since it does not seem possible to determine analytically the function ψ
(c)
r . Nevertheless, as shown in the proof
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of Proposition 4.3.7, we can represent ψ
(c)
r as ψ

(c)
r (s) = − 2

σ̄2
r

x2(s)
x1(s) (see (4.85)) where, x1 and x2 satisfy a

di�erential system (see (4.84)). Furthermore, as shown in Appendix C, x1 and x2 can be represented as

x1(t) = 1 +
∫ t

0

x2(s)ds

x2(t) =
∫ t

0

A(s) ds+
∫ t

0

A(s)
(∫ t

s

C(u1, t) du1

)
ds

+
∞∑
k=1

∫ t

0

A(s)
(∫ t

s

dum

(∫ t

um

dum−1...

∫ t

u3

du2

∫ t

u2

du1C(u1, t)
)
C(u2, u1) ... C(um, um−1)

))
ds,

with
C(u, t) = IA(t)− IA(u)−B, 0 ≤ u ≤ t,

where B = ar and

IA(t) =
σ̄2
r

2
(
aλ c

∫ t

0

ψλ(s) ds+ t
)

=
σ̄2
r

2
c

bλ
ψ0
λ(t) +

σ̄2
r

2
t.

Proof of Proposition 4.3.7. By the term structure equation (4.53), we have that L̂T is the solution to the fol-
lowing partial di�erential equation

L̂Tt (t, z) + ar (br − r) L̂Tr (t, z) + aλ (bλ − λ+ c r) L̂Tλ(t, z)

+ σ̄2
r

2 r L̂Trr(t, z) + σ̄2
λ

2 λ L̂Tλλ(t, z) = (r + λ)L̂T (t, z),
L̂T (T, z) = 1.

(4.81)

Now we consider

L̂T (t, z) = eψ
(c),0
z (T−t)+ψ(c)

r (T−t)r+ψλ(T−t)λ, (4.82)

as a guess function. By (4.72) we have

L̂Tt (t, r, λ) = −L̂T
(
ψ̇(c),0
z (T − t) + ψ̇(c)

r (T − t)r + ψ̇λ(T − t)λ
)
,

L̂Tr (t, r, λ) = L̂T (t, r, λ)ψ(c)
r (T − t), L̂Trr(t, r, λ) = L̂T (t, r, λ)

(
ψ(c)
r

)2(T − t),

L̂Tλ(t, r, λ) = L̂T (t, r, λ)ψλ(T − t), L̂Tλλ(t, r, λ) = L̂T (t, r, λ)
(
ψλ
)2(T − t),

where ψ̇
(c),0
z (u) = dψ(c),0

z

du (u), ψ̇(c)
r (u) = dψ(c)

r

du (u), and ψ̇λ(u) = dψλ
du (u). Substituting into the partial di�erential

equation (4.81) and dividing each term by the common factor L̂T , we have

−
(
ψ̇(c),0
z (T − t) + ψ̇(c)

r (T − t)r + ψ̇λ(T − t)λ
)

+ ar(br − r)ψ(c)
r (T − t) + aλ (bλ − λ+ c r)ψλ(T − t)

+
σ̄2
r

2
r
(
ψ(c)
r

)2(T − t) +
σ̄2
λ

2
λψ2

λ(T − t) = r + λ,

so that grouping the terms multiplying r and λ we obtain(
−ψ̇(c)

r (T − t)− arψ(c)
r (T − t) + aλ c ψλ(T − t) +

σ̄2
r

2
(
ψ(c)
r

)2(T − t)− 1
)
r

+
(
−ψ̇λ(T − t)− aλψλ(T − t) +

σ̄2
λ

2
ψ2
λ(T − t)− 1

)
λ

− ψ̇(c),0
z (T − t) + ar br ψ

(c)
r (T − t) + aλ bλψλ(T − t) = 0.

Since the above equality holds for all r ≥ 0 and λ ≥ 0, the terms multiplying r and λ are zero. Then setting
T − t = s we obtain (4.73), (4.74) and (4.75), with the initial conditions (4.76) from the terminal condition
L̂T (T, z) = 1. It follows that if (4.73), (4.74) and (4.75) are solved subject to the boundary conditions (4.76),
the function (4.72) provides the price of a zero coupon longevity bond maturing at time T .

To prove that ψλ is a bounded continuous function, we recall that, by its explicit expression (3.57) we have
that

ψ̇λ(s) =
−αλ(βλ + γλ)eαλs(
βλ + γλ eαλs

)2 =
−α2

λe
αλs(

βλ + γλ eαλs
)2 ≤ 0,
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and that (3.60) holds, i.e.,

lim
s→∞

ψλ(s) = lim
s→∞

1− e−|αλ|s

βλ + γλ e−|αλ|s
= − 1
|βλ|

.

Then, since ψλ(0) = 0, the bounds for ψλ in (4.77) immediately follow.
Now we turn to equation (4.74). Setting9

yr(s) = e−
∫ s
0
σ̄2
r
2 ψ(c)

r (u) du, (4.83)

and using equation (4.74), we obtain an inhomogeneous second order di�erential equation for yr(s)
ÿr(s) + arẏr(s)− σ̄2

r

2

(
aλ c ψλ(s) + 1

)
yr = 0,

ẏr(0) = 0
yr(0) = 1.

Setting
x1(s) = yr(s) and x2(s) = ẏr(s),

the above equation becomes 
ẋ1(s) = x2(s)
ẋ2(s) = A(s)x1(s)−Bx2(s)
x1(0) = 1; x2(0) = 0

(4.84)

where

A(s) =
σ̄2
r

2
(
aλ c ψλ(s) + 1

)
, B = ar,

so that

ψ(c)
r (s) = − 2

σ̄2
r

x2(s)
x1(s)

. (4.85)

The continuity and boundedness of A(s) guarantees existence and uniqueness of the solution of the di�erential
system (4.84) de�ning x1(t) and x2(t).

The boundedness property for A follows by noting that, by (4.77), i.e. − 1
|βλ| ≤ ψλ(s) ≤ 0, immediately

implies

σ̄2
r

2
(
1− c aλ

1
|βλ|

)
≤ A(s) =

σ̄2
r

2
(
aλ c ψλ(s) + 1

)
≤ σ̄2

r

2
, B = ar.

(Observe that for c su�ciently small, the function 0 < A(s) ≤ σ̄2
r

2 , for all s ≥ 0. Observe that even if c is not

small, there exists a constant A such that |A(s)| ≤ A, for all s ≥ 0. )
We now turn to the proof of the upper and lower bounds of the function ψ

(c)
r . To this end it is su�cient to

show that

H−(ψ(c)
r ) ≤ ψ̇(c)

r (s) ≤ H+(ψ(c)
r ), (4.86)

where

H+(y) := −ary +
σ̄2
r

2
y2(s)− 1

and

H−(y) := H+(y)− aλ c

|βλ|
= −ary +

σ̄2
r

2
y2(s)− h, with h = 1 +

aλ c

|βλ|
.

9The transformation is similar to the transformation used to solve a Riccati equation. (See Note 6 in Section 2.2.1).
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Indeed, if the bounds for ψλ in (4.86) hold, by using Gronwall's inequality we obtain

ψ−r,(c) ≤ ψ
(c)
r (s) ≤ ψ+

r,(c),

where the functions ψ±r,(c) are the solutions

ψ̇+
r,(c) = H+(ψ+

r,(c)), ψ̇−r,(c) = H−(ψ−r,(c)),

with ψ±r,(c)(0) = 0, i.e.,

ψ+
r,(c)(s) =

1− eα+ s

β+ + γ+ eα+ s
, ψ−r,(c)(s) =

1− eα− s

β− + γ− eα− s
(4.87)

where10

α+ = −
√
a2
r + 2σ̄2

r , β+ =
α+ − ar

2
, γ+ =

α+ + ar
2

,

α− = −
√
a2
r

h2
+

2σ̄2
r

h
, β− =

α− − ar
h

2
, γ− =

α− + ar
h

2
.

Then we immediately get (4.77) for ψ
(c)
r , since

1− eα− s

β− + γ− eα− s
≥ − 1
|β−|

and
1− eα+ s

β+ + γ+ eα+ s
≤ 0. (4.88)

It remains to prove (4.86). Using the expression of H+, equation (4.74) becomes

ψ̇(c)
r (s) = H+(ψ(c)

r ) + aλ c ψλ(s).

Then, taking into account (4.77), we immediately get (4.86), since

H−(ψ(c)
r )− aλ c

|βλ|
≤ H+(ψ(c)

r ) + aλ c ψλ(s) ≤ H+(ψ(c)
r ).

4.4 Discrete-time Rolling Longevity Bonds

Following the same approach of Section 2.4, in this section the aim is focused on the problem of modelling
a discrete-time rolling longevity bond price process.

Exactly as in Section 2.4, we �x a discrete set of times T = {tk}k≥0 such that tk ≤ tk+1 and consider a
self-�nancing strategy such that, its total wealth is reinvested at any �xed date t ∈ T in discount longevity
bonds maturing at time t + T (i.e., no cash component is present). For a �xed T , the price process of this
strategy is referred to as the discrete-time rolling longevity bond. As in the case of the rolling bond, we �x
∆ ∈ (0, T ) and take tk = k∆, for k = 0, 1, 2, . . ., and we denote O∆(t, T ) the corresponding price process.
Assume that at time t ∈ [t0, t1) = [0,∆) we hold 1 longevity bond, so that O∆(0, T ) = L(0, T ) and

O∆(t, T ) = L(t, T ) = L̂T (t, z(t)) 0 ≤ t < ∆.

10As it is well known, the general solution of the Riccati equation

ẇ(t) = bw2(t)/2− aw(t)− 1, w(0) = 0

is given by

w(t; a, b) =
1− eα s

β + γ eα s
, α = −

√
a2 + 2b, β =

α− a
2

, γ =
α+ a

2
.

Then the general solution of

v̇(t) = bv2(t)/2− av(t)− h, v(0) = 0

is v(t; a, b) = w(ht; a/h, b/h), as immediately follows by observing that, setting w̃(s) = w(hs; a′, b′),

˙̃w(s) = hẇ(hs) = +ha′w2(hs) + hb′w(hs)− h.
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At time t1 = ∆, the wealth L(∆, T ) is reinvested in longevity bonds maturing at time T + ∆ and we keep it
until time t2 = 2∆, so that

O∆(t, T ) =
L(∆, T )

L(∆, T + ∆)
L(t, T + ∆), ∆ ≤ t < 2∆.

and so on for other periods (see Section 2.4). Finally we have that for t ≥ 0, the price process of the discrete-time
rolling longevity bond satis�es

O∆(t, T ) =
bt/∆c∏
k=1

L(k∆, T + (k − 1)∆)
L(k∆, T + k∆)

L(t, T + bt/∆c∆) = O∆(bt/∆c∆) L̂T+bt/∆c∆(t, z(t)). (4.89)

The last formula leads to the following result.

Proposition 4.4.1. Let L(t, T ) be a zero coupon longevity bond with price processes given by (4.55). For any
�xed T , the price process O∆(·, T ) of the discrete-time rolling longevity bond satis�es

dO∆(t, T )
O∆(t, T )

= µO∆(t, T )dt+ σO∆(t, T )dW z(t), (4.90)

where

µO∆(t, T ) = µ̂T
O∆(t, z(t)) = r(t) + λ(t) +

L̂T+bt/∆c∆
z

L̂T+bt/∆c∆
(t, z(t))Σ̃z(t, z(t))ξ̂z(t, z(t)), (4.91)

σO∆(t, T ) = σ̃T
O∆(t, z(t)) =

L̂T+bt/∆c∆
z

L̂T+bt/∆c∆
(t, z(t))Σ̃z(t, z(t)) =

(
σ̂r
L̂T+bt/∆c∆
r

L̂T+bt/∆c∆
, σ̂λ

L̂T+bt/∆c∆
λ

L̂T+bt/∆c∆

)
. (4.92)

Proof. Similar to the proof of Proposition 2.4.1, after some reshu�ing, we obtain the announced result.

In particular, let us consider the CIR bidimensional model introduced in Section 4.3.1. By the explicit
formula for longevity bonds (4.72) and the expression (4.89) we obtain the following explicit formula for t > 0

O∆(t, T ) =
bt/∆c∏
k=1

eψ
(c),0
z (T−∆)+r(k∆)ψ(c)

r (T−∆)+λ(k∆)ψλ(T−∆)

eψ
(c),0
z (T )+r(k∆)ψ

(c)
r (T )+λ(k∆)ψλ(T )

· eψ
(c),0
z (T+bt/∆c∆−t)+r(t)ψ(c)

r (T+bt/∆c∆−t)+λ(t)ψλ(T+bt/∆c∆−t). (4.93)

Furthermore, in this framework, µO∆(t, T ) and σO∆(t, T ) given by (4.91) and (4.92) become

µO∆(t, T ) = µ̂T
O∆(t, z(t)) = r(t) + λ(t) + ξ̂r(t, r(t))σ̂r(t, r(t))ψ(c)

r (T + bt/∆c∆− t)

+ ξ̂λ(t, z(t))σ̂λ(t, z(t))ψλ(T + bt/∆c∆− t), (4.94)

σO∆(t, T ) = σ̃T
O∆(t, z(t)) =

(
σ̂r(t, r(t))ψ(c)

r (T + bt/∆c∆− t), σ̂λ(t, z(t))ψλ(T + bt/∆c∆− t)
)
. (4.95)

4.5 A new Zero Coupon Longevity Bonds: the term structure equa-
tion

In this section we present another type of mortality-linked bonds, i.e., we take into account a zero coupon
longevity bond, de�ned as �nancial security paying to holder one unit of cash at a �xed date T , if he/she is alive
at time T (and zero otherwise). In this setting the payment at the time of maturity, known as the principal
value or face value, equals one if holder is alive at time T , else zero, while in the BNP-Paribas longevity bonds
the principal value equals always 1.

As in Section 4.3, we denote by τ j , with j = 1, . . . ,m, the death time of the jth element of the given
population� m being the size of the population, and by τ the death time of the investor.

Let (Ω,F ,F, P ) be a complete �ltered probability space, and we take the following assumptions.

Assumption 4.5.1. We assume that there exists a strictly positive process λ and a σ-algebra G, with G ⊃
Fλ∞ ∨ Fr∞, such that
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• τ and τ j, j = 1, . . . ,m, are, conditionally on G, independent and identically distributed random variables
on (Ω,F , P ), so that

LP
(
τ j |G

)
= LP (τ |G ) , j = 1, . . . ,m; (4.96)

• τ is, accordingly to Section 3.2 and 3.4, the �rst jump time of a doubly stochastic Poisson process N(t) with
respect to G with the intensity function λ(t). Analogously for τ j and N j(t), all with the same stochastic
intensity λ(t).

The aim is focused on the problem of �nding an arbitrage-free price process of these new T -zero coupon
longevity bonds, and to this aim we will use the approach of Section 4.3. Formally, we have the following
de�nition.

De�nition 4.5.1 (New Zero Coupon Longevity Bond). A zero coupon longevity bond with maturity date T ,
also called a new T -longevity bond, is a zero coupon bond, which guarantees the holder 1 dollar to be paid on
the date T if he/she is alive at time T . The (random) price at time t of such longevity bond, with maturity T ,
is denoted by Lτ (t, T ).

Let us �rst extend brie�y the Assumptions 4.3.1 and 4.3.2 to this setting.

Assumption 4.5.2. In addition to the Assumptions 2.2.1 and 2.2.2 on the bond market, and the Assump-
tions 4.5.1 and 4.2.2, we assume that there exists a market for zero coupon T -longevity bonds for every value
of T . We assume furthermore that there exists a process L(t, T ) such that

Lτ (t, T ) = 1{τ>t}L(t, T ), (4.97)

where L(t, T ) is F-adapted, with L(T, T ) = 1.

Assumption 4.5.3. In addition to Assumptions 2.2.1, 2.2.2, 4.5.1 and 4.2.2, we assume that the market for
T -longevity bonds is arbitrage free. We assume furthermore that, for every T , L(t, T ) in (4.97) is a deterministic
function L̂ of t and z(t), where L̂ is smooth and strictly positive.

Note that we are using the same symbol L̂ used in the previous Section 4.3, but the function of this section
is, in general, di�erent from the one used in the previous section. The latter condition is formally equal to
condition (4.23), and therefore (formally) also (4.29) and (4.30) of Lemma 4.3.3 hold.

Obviously, under the above assumptions, the price process of a T -longevity bond has the form

Lτ (t, T ) = 1{τ>t}L̂T (t, z(t)). (4.98)

Moreover we have the following boundary condition:

Lτ (T, T ) = 1{τ>T}L̂T (T, z(T )) = 1{τ>T}, (4.99)

where in the last equality we have used the condition (4.23) according to the condition L(T, T ) = 1.
The aim now is to �nd the price dynamics for T -longevity bonds, dLτ (t, T ). From (4.97), we have that

dLτ (t, T ) = L(t, T )d 1{τ>t} + 1{τ>t}dL(t, T ), (4.100)

then we need to specify d 1{τ>t} and dL(t, T ). First observe that, the process λ being a stochastic intensity,
from Proposition 3.3.1 we obtain

d 1{τ>t} = d (1− 1{τ≤t}) = −d 1{τ≤t} = −1{τ>t}λ(t)dt− dMτ (t), (4.101)

where Mτ (t)

Mτ (t) = 1{τ≤t} −
∫ t

0

1{τ>u}λ(u)du (4.102)

is a martingale (see (4.4) with τ instead τ j).
Secondly, by Assumption 4.5.3 and the multidimensional Itô formula, we have that the dynamics of L(t, T )

has the same form as in (4.26), (4.27) and (4.28), and Lemma 4.3.3 holds.
Finally, returning to the dynamics of Lτ (t, T ), substituting (4.101) and (4.26) in (4.100), we obtain

dLτ (t, T ) =
(
−1{τ>t}λ(t)dt− dMτ (t)

)
L(t, T ) + 1{τ>t}dL(t, T )

= Lτ (t, T ) [(µL(t, T )− λ(t)) dt+ σL(t, T )dW z(t)]− L(t, T )dMτ (t),
= Lτ (t, T ) [µτL(t, T )dt+ στL(t, T )dW z(t)]− L(t, T )dMτ (t). (4.103)
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where we have set

µτL(t, T ) = µL(t, T )− λ(t), (4.104)

στL(t, T ) = σL(t, T ), (4.105)

and µL(t, T ), σL(t, T ) are deterministic functions of t and z(t) as in (4.27), (4.28) respectively (see also (4.29),
(4.30)).

We can now apply the approach of Section 4.3 to this setting. As observed above, the a priori given market
consists of the benchmark bond B(t, T0) and the money market account G(t). Observe that in this market the
number M of random sources equals three (the 2-dimensional Wiener process, W z, and the martingale, Mτ ),
while the number N of traded assets (besides G(t)) equals one. From Corollary 1.4.5, we may thus expect
that the market is arbitrage-free, but not complete. Another way of seeing this problem appears if we try to
price a certain T -longevity bond, using the technique in Section 4.3, i.e., all the longevity bonds are regarded
as derivatives of the underlying process z, in other words a zero coupon longevity bond can be thought of as a
derivative on z.

Since on our market there is the 2-dimensional Wiener process W z and the martingale Mτ , i.e. three
random sources, we can specify, besides the benchmark bond B(t, T0), for a �xed time T0, the price processes of
2 di�erent benchmark longevity bonds. The price processes of all other longevity bonds will then be uniquely
determined by the prices of this benchmarks.

According to Theorem 1.4.6, the following central result extends Proposition 4.3.4 to this setting.

Proposition 4.5.1. Assume that the bond and longevity bond market is arbitrage free. Fix two benchmarks
longevity bonds, Lτ (t, T0) and Lτ (t,N), the price processes of which are given by (4.103), (4.104) and (4.105),
with T = T0, N , and T0 6= N . Assume furthermore that Lτ (t, T0) and Lτ (t,N) are such that

σ̂T0
L,λ(t, z(t)) 6= σ̂NL,λ(t, z(t)), ∀t ≤ T0 ∧N. (4.106)

Then there exists a process ξz = (ξr, ξλ), and a process λ̄, such that the so called market price of risk equations

σ(t, T )ξr(t) = µ(t, T )− r(t), (4.107)

στL(t, T )ξz(t) = µτL(t, T )− λ̄(t)− r(t) (4.108)

hold for all t a.s. and for every choice of maturity time T .

Observe that the condition (4.106) is the mathematical formulation of the requirement that the family of
benchmark derivatives is rich enough to span the entire derivative space, as we will see from proof of Propo-
sition 4.5.1. Furthermore observe that the component ξr given by (4.107) is the same process computed in
Section 2.1.

Considering (4.104) and (4.105), we obtain immediately the following corollary of the previous proposition.

Corollary 4.5.2. Under same hypotheses of Proposition 4.5.1, we have that the relation

σL(t, T )ξz(t) = µL(t, T )−
(
λ(t) + λ̄(t)

)
− r(t). (4.109)

holds for all t a.s. and for every choice of maturity time T .

Taking into account that the coe�cients µ(t, T ), σ(t, T ), µτL(t, T ), στL(t, T ) are deterministic functions of t
and z(t), the same holds for ξz(t), namely

ξz(t) = ξ̃z(t, z(t)), (4.110)

and for λ̄(t): indeed equation (4.109) reads

σ̃TL(t, z(t))ξ̃z(t, z(t)) = µ̂TL(t, z(t))−
(
λ(t) + λ̄(t)

)
− r(t). (4.111)

Analogously to ξr (see Section 2.1), the component ξλ has the dimension �risk premium per unit of λ-type
volatility�, so that ξλ is called the market price for the longevity risk due to Wλ. Similarly, we call λ̄ the market
price for the longevity risk due to Mτ , so that if the process λ(t) + λ̄(t) is a.s. positive, the latter process is
characterized as the risk-neutral intensity11.

11The idea is the following. Assume that we can de�ne a measure Qτ such that the processes

W̄ r(t) = W r(t) +

∫ t

0
ξr(u) du, W̄λ(t) = Wλ(t) +

∫ t

0
ξλ(u) du,
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Proof of Proposition 4.5.1. We have already proved (4.107) in Section 2.1 (see 2.2.2), then we turn to prove
(4.108). By Assumption 4.2.2 and by hypotheses of Proposition 4.5.1, we have one benchmark bond and two
di�erent benchmark longevity bonds with price process of the form

B(t, T0) = B̂T0(t, r(t)),

Lτ (t, T0) = 1{τ>t}L̂T0(t, z(t)),

Lτ (t,N) = 1{τ>t}L̂N(t, z(t)),

where B(t, T ) is a zero coupon bond of Section 2.1 (see (2.7) and Lemma 2.2.1). In order to simplify the
notation, we will write T instead of T0.

Considering a zero coupon longevity bond of maturity S 6= T,N , we have the corresponding equation for
the S-longevity bond

dLτ (t, S) = Lτ (t, S) [µτL(t, S)dt+ στL(t, S)dW z(t)]− L(t, S)dMτ (t). (4.112)

where analogously to (4.104) and (4.105)

µτL(t, S) = µL(t, S)− λ(t), (4.113)

στL(t, S) = σL(t, S), (4.114)

and analogously to (4.29) and (4.30)

µ̂SL(t, z(t)) =
L̂St (t, z(t)) + L̂Sz (t, z(t))µ̃z(t, z(t)) + 1

2 tr

[(
Σ̃z
)′
L̂SzzΣ̃

z

] (
t, z(t)

)
L̂S(t, z(t))

(4.115)

σ̃SL(t, z(t)) =
L̂Sz (t, z(t))Σ̃z(t, z(t))

L̂S(t, z(t))
=

(
L̂Sr σ̂

r

L̂S
,
L̂Sλσ̂

λ

L̂S

)(
t, z(t)

)
. (4.116)

We now form a portfolio based only on B(t, T ), Lτ (t, T ), Lτ (t,N), and Lτ (t, S), and as in proof of Propo-
sition 4.3.4, in the present setting nothing will be invested in the bank or loaned by the bank. Thus (see

are Wiener standard processes under Qτ , and

M̄τ (t) = Mτ (t)−
∫ t

0
1{τ>u}λ̄(u) du = 1{τ≤t} −

∫ t

0
1{τ>u}

(
λ(u) + λ̄(u)

)
du

is a martingale under Qτ ,i.e., the mortality intensity under Qτ is λ(t) + λ̄(t).
It is important to note that the latter condition is possible if and only if the process λ(t) + λ̄(t) is a.s. positive. Unfortunately,

though the latter condition is intuitive, we were not able to prove this property using only the hypotheses of Proposition 4.5.1.
Then from (4.103), we get

dLτ (t, T ) = Lτ (t, T ) [µτL(t, T )dt+ στL(t, T )dW z(t)]− L(t, T )dMτ (t)

= Lτ (t, T )
[
µτL(t, T )dt+ στL(t, T )

(
dW̄ z(t)− ξz(t) dt

)]
− L(t, T )

(
dM̄τ (t) + 1{τ>t}λ̄(t) dt

)
= Lτ (t, T )

[(
µτL(t, T )− στL(t, T )ξz(t) dt

)
dt+ στL(t, T )dW̄ z(t)

]
− L(t, T )dM̄τ (t)− 1{τ>t} L(t, T ) λ̄(t) dt

= Lτ (t, T )
[(
µL(t, T )− λ(t)− λ̄(t)− στL(t, T )ξz(t)

)
dt+ στL(t, T )dW̄ z(t)

]
− L(t, T )dM̄τ (t)

and condition (4.111) is equivalent to require that, Qτ is a risk-neutral measure, since, under Qτ ,

dLτ (t, T ) = Lτ (t, T )
[
r(t) dt+ στL(t, T )dW̄ z(t)

]
− L(t, T )dM̄τ (t).

The measure Qτ is then de�ned as the unique probability measure such that, for all times t ≥ 0

dQτt
dPt

= Zt Zτt

where Qτt and Pt denote the restrictions of Qτ and P to FNt ∨ Frt ∨ Fλt ,

Zt = exp

(
−
∫ t

0
ξz(u)dW z(u)−

1

2

∫ t

0
ξ′z(u)ξz(u)du

)
and

Zτt =
∏
τ≤t

λ(τ−) + λ̄(τ−)

λ(τ−)
exp

(
−
∫ t

0
1{τ>u}λ̄(u) du

)
.

(Here we have used the convention that
∏
i∈∅ ai = 1.)
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Section 1.3) let h(t) = (h0(t), h1(t), h2(t), h3(t), h4(t)) be the portfolio associated to X = (X0, X1, X2, X3),
where

X0 = G(t), X1 = B(t, T ), X2 = Lτ (t, T ), X3 = Lτ (t,N), X4 = Lτ (t, S), (4.117)

and

h0(t) = hG(t) = 0, (h1(t), h2(t), h3(t), h4(t)) = (hT (t), hLT (t), hLN(t), hLS(t)) . (4.118)

Similar to Section 4.3, instead of specifying the absolute number of shares held of a certain asset, i.e. h(t), it
may be convenient to consider the corresponding relative portfolio (UT (t)UL

T (t), UL
N(t), UL

S (t)). Setting u(t) =
(uT (t), uLT (t), uLN(t), uLS(t))′, by (1.16) and (1.17), we have

UT (t) = 1{B(t,T )>0}uT (t) = uT (t)
UL

T (t) = 1{Lτ (t,T )>0}u
L

T (t) = 1{τ>t}uLT (t)
UL

N(t) = 1{Lτ (t,N)>0}u
L

N(t) = 1{τ>t}uLN(t)
UL

S (t) = 1{Lτ (t,S)>0}u
L

S(t) = 1{τ>t}uLS(t),

for the relative portfolio corresponding to B(t, T ), Lτ (t, T ), Lτ (t,N) and Lτ (t, S), with (4.39) holds.
The dynamics of the value process for the corresponding self-�nancing portfolio (see (1.18) and (2.26)) are

given by

dV (t)
V (t)

= uT (t)
dB(t, T )
B(t, T )

+ 1{τ>t}

(
uLT (t)

dLτ (t, T )
Lτ (t, T )

+ uLN(t)
dLτ (t,N)
Lτ (t,N)

+ uLS(t)
dLτ (t, S)
Lτ (t, S)

)
. (4.119)

The price processes for T -bond, (see (2.9), (2.10) and (2.11)), with respect to dW z are given by (4.42).
Then, inserting in (4.119) the dynamics (4.103) and (4.42) of the price processes involved, by (4.104), (4.105),

(4.113) and (4.114), we get

dV (t)
V (t)

=
[
uT (t)µ̂T + uLT (t)

(
µ̂TL − λ(t)

)
+ uLN(t)

(
µ̂NL − λ(t)

)
+ uLS(t)

(
µ̂SL − λ(t)

)]
dt

+
[
uT (t)σ̃T + uLT (t)σ̃TL + uLN(t)σ̃NL + uLS(t)σ̃SL

]
dW z(t)

−
[
uLT (t) + uLN(t) + uLS(t)

]
dMτ (t),

where for the notational convenience, the arguments (t, r(t)) and (t, z(t)) �have been suppressed�, so that we
have used the same shorthand notations (4.43) and (4.44) for the process B(t, T ), L(t, T ) and similarly for the
process L(t, S) and L(t,N). Here, when it is convenient, we will use the above notations (4.43) and (4.44).
We try to choose uT (t), uLT (t), uLS(t) and uLN(t), so that the market is arbitrage-free. Now, we can extend
Proposition 1.4.1 to our case, setting I = (0, τ). Indeed we have

P (|I| > 0) = P (τ > 0) = 1, (4.120)

thus the proof of Proposition 1.4.1 is valid even if I is a stochastic interval. Then, the portfolio rate of return
and the short rate of interest must be equal, namely12

uT (t)µ̂T + uLT (t)
(
µ̂TL − λ(t)

)
+ uLN(t)

(
µ̂NL − λ(t)

)
+ uLS(t)

(
µ̂SL − λ(t)

)
= r(t), (4.121)

necessarily holds for all t, with probability 1, and then, using (4.39), we obtain for all t

uT (t)
(
µ̂T (t, r(t))− r(t)

)
+ uLT (t)

(
µ̂TL(t, z(t))− λ(t)− r(t)

)
+ uLN(t)

(
µ̂NL (t, z(t))− λ(t)− r(t)

)
+ uLS(t)

(
µ̂SL(t, z(t))− λ(t)− r(t)

)
= 0. (4.122)

12For the notational convenience we are using the notations (4.43) and (4.44).
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Moreover we look for a portfolio minimizing the risk associated to the derivative, i.e., such that the corresponding
value process has no driving Wiener process, W z, and no martingale Mτ . This means that we want to solve
the equations

uT (t)σ̃T (t, r(t)) + uLT (t)σ̃TL(t, z(t)) + uLN(t)σ̃NL (t, z(t)) + uLS(t)σ̃SL(t, z(t)) = 0, (4.123)

uLT (t, z(t)) + uLN(t, z(t)) + uLS(t, z(t)) = 0. (4.124)

Observe that the equation (4.124) together with (4.39) implies that uT (t) = 1, i.e., we invest in the benchmark
bond B(t, T ), choosing hLT , h

L
N , and h

L
S such that hLT (t)L(t, T ) + hLN(t)L(t,N) + hLS(t)L(t, S) = 0. In order to

see some structure, let H be the following matrix

H(t, z) = H(t, r, λ) =


µ̂T − r µ̂TL − λ− r µ̂NL − λ− r µ̂SL − λ− r
σ̂T σ̂TL,r σ̂NL,r σ̂SL,r
0 σ̂TL,λ σ̂NL,λ σ̂SL,λ
0 1 1 1

 (4.125)

so that we now write (4.122)�(4.124) in matrix form as

H(t, z(t))u(t) = H(t, r(t), λ(t))u(t) = 0, (4.126)

where we have used the notations (4.43) and (4.44). If H were invertible, then the system (4.126) would have a
unique solution, i.e., the null solution, but this solution does not satisfy the condition (4.39), then H must be
singular. For readability reasons, we study H

′
, the transpose of H, i.e.,

H ′(t, z) = H ′(t, r, λ) =


µ̂T − r σ̂T 0 0

µ̂TL − λ− r σ̂TL,r σ̂TL,λ 1
µ̂NL − λ− r σ̂NL,r σ̂NL,λ 1
µ̂SL − λ− r σ̂SL,r σ̂SL,λ 1

 . (4.127)

The matrix H ′ being singular, the columns are linearly dependent. Since under the condition (4.106), i.e.,

σ̂λ,TL (t, z(t)) 6= σ̂λ,NL (t, z(t)), the matrix

σ =

 σ̂T (t, r(t)) 0 0
σ̂TL,r(t, z(t)) σ̂TL,λ(t, z(t)) 1
σ̂NL,r(t, z(t)) σ̂NL,λ(t, z(t)) 1

 .

is invertible (with probability 1 for each t), the �rst column of H
′
can be written as a linear combination of

the other columns. We thus deduce the existence of the 3-dimensional process ξ =
(
ξr, ξλ, λ̄

)′
such that setting

1 = (1, 1, 1)′ and 1λ = (0, 1, 1)′,

σξ = µ− λ1λ − r1, i.e.,


(
σ̃T (t, r(t)), 0

)
ξ(t) = µ̂T (t, r(t))− r(t)(

σ̃TL(t, z(t)), 1
)
ξ(t) = µ̂TL(t, z(t))− λ(t)− r(t)(

σ̃NL (t, z(t)), 1
)
ξ(t) = µ̂NL (t, z(t))− λ(t)− r(t)

(4.128)

and therefore (
σ̃SL(t, z(t)), 1

)
ξ(t) = µ̂SL(t, z(t))− λ(t)− r(t), (4.129)

or equivalently
σ̃SL(t, z(t))ξz(t) = µ̂SL(t, z(t))− (λ(t) + λ̄(t))− r(t). (4.130)

Since the longevity bond L(t, S) was chosen arbitrarily, the risk premium, µ̂SL(t, z(t))− (λ(t)+ λ̄(t))−r(t), of
any longevity bond, can be written as a linear combination of its volatility components, σ̃SL(t, z(t)), ξz(t) being
the same for all longevity bonds. Thus equations (4.128) and (4.129) show that the process ξ does not depend
on the choice of either S or T , and that the process ξ is uniquely de�ned by (4.128).

Observe that under suitable conditions we can �nd the same kind of results of Section 4.3. To this end we
make the following assumption.

Assumption 4.5.4. We assume that
λ̄ = 0.
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By Assumption 4.5.4 and by (4.109) we obtain that the market price ξz(t) is given exactly by (4.32) and
(4.33). Therefore the risk neutral measure Qτ is formally de�ned as the measure Q de�ned in (4.57) and the
doubly stochastic Poisson process N(t) de�ning τ has the intensity λ(t) also under Qτ . Therefore from now on
we will write Q instead of Qτ

Taking into account (4.97) and (4.98), we observe that our aim is to determine the function L̂T (t, z), then
by Theorem 4.3.5 and Proposition 4.3.6 (see (4.53), (4.60)) we obtain that the longevity bond price processes
Lτ (t, T ) are given by13

Lτ (t, T ) = 1τ>tL(t, T ) = 1τ>tE
Q
t,z

(
e−

∫ T
t
r(s)dse−

∫ T
t
λ(s)ds

) ∣∣
z=z(t) , (4.131)

where L(t, T ) is price process obtain in the previous Section 4.3.
Rewriting formula (4.131) as

Lτ (t, T ) = 1{τ>t}E
Q
t,z

[
e−

∫ T
t

(r(s)+λ(s))ds · 1
] ∣∣
z=z(t) , (4.132)

we observe that, if the holder is alive at time T , the value of a T -longevity bond at time t is given as the
expected value of one dollar (�nal payo�), discount to present value at the interest rate given by λ + r. Thus
formula (4.132) can be interpreted as the risk-neutral pricing formula for a T -bond at the interest rate given by
r + λ.

Remark 4.5.1. Observe that if we consider a �nancial market consisting of both assets L(t, T ) of Section 4.3
and Lτ (t, T ) with λ̄ = 0 (with τ > t), then we have an arbitrage on the �nancial market. Indeed, if we buy a
T -longevity bond L(t, T ) and we sell a new T -longevity bond Lτ (t, T ), then the net investment at time t is zero,
whereas our wealth at any time s > t will be positive with positive probability. Therefore the two longevity bonds
cannot be traded on the same market with the prices Lτ (t, T ) determined by λ̄ = 0.

13Recall that by Markov property of z(t) with respect to the �ltration Ht, where Ht = FNt ∨ Frt ∨ Fλt , we have

EQ
(
e−

∫ T
t r(s)dse−

∫ T
t λ(s)ds |Ht

)
. = EQt,z

(
e−

∫ T
t r(s)dse−

∫ T
t λ(s)ds

) ∣∣∣
z=z(t)

.
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Chapter 5

The Optimal Portfolio

5.1 Introduction

So far we have described a bonds market model, a bond-stock market model, and a bond-longevity bond market
model in Section 2.2, 2.3, and 4.3, respectively.

In many concrete applications, it is natural to consider an optimal control problem. In particular we study
the optimal consumption and asset allocation problem for an agent with a stochastic time horizon coinciding
with her/his death.

The object of the agent is to maximize the expected utility of her/his consumption in a market model with
a riskless asset, a stock, a T -bond, and a T -longevity bond, where T is a suitable deterministic time such that,
on the basis of demographic considerations, at time T the agent will be dead (for example, for an agent that at
time 0 is 65 years old, the time T should be taken greater than or equal to 35). Since in the real market a bond
and a longevity bond with such a maturity T do not exist, then we introduce a market model more realistic
than the previous model, introducing a rolling bond and a rolling longevity bond on the market.

In this chapter we focus on solving these optimal problems following the (stochastic) dynamic programming
approach via the so-called Hamilton-Jacobi-Bellman equation, which is a second order (in the stochastic case)
partial di�erential equation, and the veri�cation technique. Note that this approach actually gives solutions to
the whole family of problems (with di�erent initial times and states), and in particular, the original problem.

We refer to Fleming and Soner [12] for the optimal portfolio and (stochastic) dynamic programming theory,
to Menoncin [18] for the case of a market with longevity bonds, and to Rutkowski [20] for the rolling bond.

5.2 Financial Market with Longevity Bond (BLS market)

In this section we present a �nancial model on which we will work: we consider a market model which,
besides the money account G(t) and the risk asset with price process S(t), contains a (zero coupon) T -bond and
a (zero coupon) T -longevity bond, with price processes B(t, T ) and L(t, T ), where T is a suitable deterministic
time such that, on the basis of demographic considerations, at time T the agent will be dead. The latter bonds
are introduced in Sections 2.2 and 4.3, respectively. In the sequel we will shortly refer to this market as the
BLS market model.

Let (Ω,F , P ) be a complete probability space, let τ be the death time of the investor, and the vector process
z(t) = (r(t), λ(t)) be the state variables vector where the processes r(t) and λ(t) are referred to as the riskless
interest rate, and the stochastic mortality intensity of the investor, respectively. We will discuss later on the
conditions of the �ltration.

Summarizing, we assume that

P (τ ≤ T ) = 1 (5.1)

and that the market is described by two structures, i.e., the so called state variables described by the vector
process z(t) = (r(t), λ(t)), and the �nancial assets traded on the market. In details, using the notations
introduced in the previous chapters, the vector process z(t) evolves as follows

dz(t) = µz(t)dt+ Σz(t)dW z(t), (5.2)

(see (4.9), (4.10) and (4.11)), the money market account G(t) is given by (1.3), and the �nancial assets are

1. A zero coupon bond, with maturity T , with price process B(t, T );
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2. A zero coupon longevity bond, with maturity T , with price process L(t, T );

3. A risk asset with price process S(t).

Furthermore, since (5.1) holds, then (see Lemma 3.3.7) the process λ(t) satis�es the following condition

P

(∫ T

t0

λ(u)du =∞

)
= 1, ∀t0 ≥ 0.

By the results obtained in Chapters 2 and 4, let ξS be the market price for the stock given by (2.70), and let
ξz = (ξr, ξλ)′ be the market price for the riskless interest rate and the longevity risk given by (4.32) and (4.33).
In the sequel we denote by ξ the market price, where

ξ(t) = ξ̃(t, z(t), S(t)) =
(
ξ̂r(t, r(t)), ξ̂λ(t, z(t)), ξ̂S(t, r(t), S(t))

)′
. (5.3)

Then the processes B(t, T ), L(t, T ) and S(t) can be described by the di�erential equations (2.37), (4.54) and
(2.69), so that we can summarize the BLS market structures in the follow matrix form

dz(t) = µz(t)dt+ Π(t)dW (t), (5.4)

dA(t) = diag
[
A(t)

]
(µA(t)dt+ ΣA(t)dW (t)) , (5.5)

where

µz(t) = µ̃z(t, z(t)) =
(
µ̂r(t, r(t))
µ̂λ(t, z(t))

)
, W (t) =

 W r(t)
Wλ(t)
WS(t)

 , (5.6)

Π(t) = Π̃(t, z(t)) =
(
σ̂r(t, r(t)) 0 0

0 σ̂λ(t, z(t)) 0

)
, (5.7)

and

A(t) = Ã(t, z(t), S(t)) =

 B̂T (t, r(t))
L̂T (t, z(t))

S(t)

 , (5.8)

diag
[
A(t)

]
= diag

[
Ã(t, z(t), S(t))

]
=

 B̂T (t, r(t)) 0 0
0 L̂T (t, z(t)) 0
0 0 S(t)

 , (5.9)

µA(t) = µ̃A(t, z(t), S(t))

=


r(t) + ξ̂r(t, r(t))σ̂r(t, r(t))

B̂Tr
B̂T

(t, r(t))

r(t) + λ(t) + L̂Tz
L̂T

(t, z(t))Σ̃z(t, z(t))ξ̂z(t, z(t))

r(t) + σ̂Sr (t, r(t), S(t))ξ̂r(t, r(t)) + σ̂SS(t, r(t), S(t))ξ̂S(t, r(t), S(t))

 , (5.10)

ΣA(t) = Σ̃A(t, z(t), S(t))

=


σ̂r(t, r(t)) B̂

T
r

B̂T
(t, r(t)) 0 0

L̂Tr
L̂T

(t, z(t))σ̂r(t, r(t)) L̂Tλ
L̂T

(t, z(t))σ̂λ(t, z(t)) 0

σ̂Sr (t, r(t), S(t)) 0 σ̂SS(t, r(t), S(t))

 . (5.11)

Remark 5.2.1. Observe that µA(t) and ΣA(t) are deterministic functions of t, z(t), and S(t) since on the one
hand the drift and di�usion coe�cients of z(t) are deterministic functions of t and z(t), and on the other hand
the drift and di�usion coe�cients of S(t) are deterministic functions of t, r(t) and S(t) (see the condition 2. of
Remark 2.3.1), i.e, µS(t) = µ̂S(t, r(t), S(t)), σSr (t) = σ̂Sr (t, r(t), S(t)) and σSS(t) = σ̂SS(t, r(t), S(t)).

In the sequel we assume the following standing conditions.

Assumption 5.2.1. We assume that the matrix ΣA(t) is invertible, i.e., the �nancial market is complete (see
Corollary 1.4.5).
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Remark 5.2.2. Let ΣA(t) be given by (5.11). Then the BLS market is complete whenever

σ̂r(t, r(t))B̂T

r (t, r(t)) > 0, σ̂λ(t, z(t))L̂Tλ(t, z(t)) > 0, σ̂SS(t, r(t), S(t)) > 0 ∀(t, ω). (5.12)

Indeed, since the matrix ΣA(t) is lower triangular, the functions B̂T (t, r(t)) and L̂T (t, z(t)) are strictly pos-
itive (see Assumptions 2.2.1 and 4.3.2), the previous conditions implies that ΣA(t) is invertible and market
completeness follows by Corollary 1.4.5.

In order to model the evolution of the stochastic mortality intensity, λ(t), we assume that N(t) is a doubly
stochastic Poisson process respect to G as de�ned in (3.33), i.e.,

N(t) = N̂

(∫ t

0

λ(u)du
)
,

where the standard Poisson process N̂(t) is independent of the intensity process λ(t), with respect to a suitable
�ltration. Before specifying the �ltration we introduce a further process, the investor wealth process V (t), and
consider the multidimensional process (z(t), S(t), V (t)) (see the next Section 5.2.1). Section 5.2.2 is devoted to
the assumptions on the �ltration.

5.2.1 The investor's wealth in BLS market

We now form a portfolio (see Section 1.3) associated to G(t), B(t, T ), L(t, T ), and S(t), i.e., let h(t) =
(h0(t), h1(t), h2(t), h3(t)) be the portfolio associated to X = (X0, X1, X2, X3), where

X0 = G(t), X1 = B(t, T ), X2 = L(t, T ), X3 = S(t),

and

h0(t) = hG(t), (h1(t), h2(t), h3(t)) = (hBT (t), hLT (t), hS(t)) = hA(t).

Denoting the consumption rate by the process C(t), we assume that (h,C) is a self-�nancing portfolio-consumption
pair. Similarly to Section 1.3, instead of specifying h(t), the absolute number of shares held of a certain asset,
it may be convenient to consider (UG(t), UB

T (t), UL
T (t), US(t)), the corresponding relative portfolio. By (1.16)

and (1.17) we have

UG(t) = 1{G(t)>0} u
G(t) = uG(t)

UB

T (t) = 1{B(t,T )>0}u
B

T (t) = uBT (t)
UL

T (t) = 1{L(t,T )>0}u
L

T (t) = uLT (t)
US(t) = 1{S(t)>0} u

S(t) = uS(t)

for the relative portfolio corresponding to G(t), B(t, T ), L(t, T ), and S(t), with

uG(t) + uBT (t) + uLT (t) + uS(t) = 1. (5.13)

Since here T is �xed, from now on we will drop the subscript T in uBT (t) and uLT (t), and so we write uB(t)
and uL(t), respectively. Let uA(t) = (uB(t), uL(t), uS(t)) be the relative portfolio corresponding to hA(t). The
dynamics of the value process for the self-�nancing portfolio-consumption pair (see (1.21)) are given by{

dV (t) = V (t)
[
uG(t)dG(t)

G(t) + uB(t)dB(t,T )
B(t,T ) + uL(t)dL(t,T )−dD(t,T )

L(t,T ) + uS(t)dS(t)
S(t)

]
− C(t)dt,

V (t0) = V,

or in the compact form{
dV (t) = V (t)

[
uG(t)dG(t)

G(t) + uA(t)diag−1[A(t)]dA(t)− uL(t)dD(t,T )
L(t,T )

]
− C(t)dt,

V (t0) = V,

where
uA(t) = (uB(t), uL(t), uS(t)) . (5.14)

After substituting the expression for uG taken from (5.13), i.e.,

uG(t) = 1− (uBT (t) + uLT (t) + uS(t)) = 1− uA(t)1, (5.15)
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where 1 = (1, 1, 1)′, the dynamics of the process V (t) can be written as

dV (t) = V (t)
[
(1− uA(t)1)

dG(t)
G(t)

+ uA(t)diag−1
[
A(t)

]
dA(t)− uL(t)

dD(t, T )
L(t, T )

]
− C(t)dt,

so that, by the expression (5.5) for the di�erential form dA, and (4.24) for dD after some simpli�cations, we
obtain

dV (t) = V (t)
[(

1− uA(t)1
)
r(t)dt+ uA(t)

(
µA(t)dt+ ΣA(t)dW (t)

)
− uL(t)

dD(t, T )
L(t, T )

]
− C(t)dt

=
[
V (t)r(t) + V (t)uA(t)

(
µA(t)− r(t)1− λ(t)1λ

)
− C(t)

]
dt+ V (t)uA(t)ΣA(t)dW (t), (5.16)

where 1λ = (0, 1, 0)′.

Let us consider the agent at time t0 with a stochastic time horizon τ , coinciding with her/his death time, i.e.,
she/he will act in the time interval [t0, τ). At time t0 the agent has the initial wealth V , and her/his problem
is how to allocate investments and consumption over the time horizon. Since the admissible strategies involve
consumption, and we restrict the investment-consumption pair to be self-�nancing, the second fundamental
asset pricing theorem (see Theorem 1.4.3) is not valid. Then the objective of the agent is to choose a portfolio-
consumption strategy to maximizing her/his preferences. Formally we are considering a stochastic optimal
control problem. In Appendix D.1 we focus on some necessary mathematical tools for studying a general class
of optimal control problems.

5.2.2 Assumptions on the �ltration

Now we extend Assumption 4.2.1 and condition (4.15) on the σ-algebra G to this setting so that we have

Fλt ∨ Frt ∨ FSt ∨ FVt ∨ FNt ⊆ Ft, ∀t ∈ [0, T ] ,

G ⊃ Fr∞ ∨ Fλ∞ ∨ FS∞ ∨ FV∞.

As we will see below, in this setting it is necessary to distinguish FNt from all other �ltrations. To this end
we introduce a �ltration G containing Fλt ∨Frt ∨FSt ∨FVt . Recallind that in Section 2.3, by Assumptions 1.2.1
and 1.2.2, we have considered the augmented �ltration associated to the process W S, i.e., F̄WS

, in the sequel,
according to (4.3), we assume that

F̄W ⊂ G.

Summarizing we formalize the above assumptions as follows.

Assumption 5.2.2. We assume that on (Ω,F , P ) there exists a σ-algebra G and a �ltration G such that
∀t ∈ [0, T ]

F̄Wt ⊂ Gt, (5.17)

Frt ∨ Fλt ∨ FSt ∨ FVt ⊆ Gt, (5.18)

and

Fr∞ ∨ Fλ∞ ∨ FS∞ ∨ FV∞ ⊆ G. (5.19)

As already discussed, the crucial point is the �ltration with respect to which the process λ is a stochastic
mortality intensity. In particular we recall that, usually, the stochastic intensity is considered with respect to a
�ltration H satisfying the usual conditions and such that

Fλt ∨ FNt ⊆ Ht ⊆ G ∨ FNt , ∀t ∈ [0, T ] .

Furthermore, by Proposition 3.3.4 we know that the H-stochastic intensity is still λ. In particular we can take

Ht = Gt ∨ FNt . (5.20)
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5.3 Optimal control problem with a Longevity Bond

Consider the BLS market introduced in Section 5.2, where besides the money market account G(t), the
�nancial assets traded are a bond, a longevity bond and a stock with price process A(t) = (B(t, T ), L(t, T ), S(t))′

(see (5.4)-(5.98)).
As in Section 5.2.1 we denote the agent's relative portfolio weights at time t by

(uG(t), uB(t), uL(t), uS(t)) =
(
uG(t), uA(t)

)
,

for the riskless asset G(t) and the risk assets A(t), while her/his consumption rate at time t is denoted by C(t).
Depending upon the situation at hand, it may be convenient to introduce the relative consumption rate c(t),
i.e.,

C(t) = c(t)V (t), ∀t ≥ t0, (5.21)

for a suitable process c(t).
Now let us assume the consumer-investor's preferences can be represented through a utility function on the

consumption, U(C). The utility function U : (0,∞) → (0,∞) is taken to be twice di�erentiable on (0,∞),
strictly increasing and concave in its argument, and the concavity represents an investor who is risk averse.
This means that she/he is willing to pay in order to avoid a risk. Furthermore the function U(C) is assumed
to satisfy one of the standard assumptions of economic growth theory, Inada conditions1. Thus we have that
U(C) is such that

U̇(C) > 0, Ü(C) < 0 and lim
C→0

U̇(C) =∞, lim
C→+∞

U̇(C) = 0. (5.22)

The objective of the agent is to choose a portfolio-consumption strategy (uA(t), c(t)) in such a way as to
maximize her/his expected utility over [t0, τ) (see Section 5.2.1), where τ is a stochastic time horizon coinciding
with her/his death time. According to Sections 3.2 and 3.4, and de�nition (3.33), let τ be the �rst jump

time of the process N(t) = N̂
( ∫ t

0
λ(s)ds

)
, where N̂(t) is a standard Poisson process, independent of G = G∞.

The objective of the agent is to choose a portfolio-consumption strategy (uA(t), c(t)) based on the information
available until time t, for t < τ , i.e., until the agent is still alive. The information available is represented by Ht,
and we have assumed in (5.152) that Ht = Gt ∨ FNt . Therefore it is natural2 to consider strategies (uA(t), c(t))
that are G-adapted and virtually de�ned for all times t, i.e., without the restriction t < τ . Finally we assume
that the agent's expected utility is3

EP
[∫ ∞

t0

1{τ>t}e−ρtU(c(t)V (t))dt
∣∣∣Ht0] , (5.23)

where the constant parameter ρ, that measures the subjective discount factor4, is assumed to be strictly positive
(ρ ∈ (0,∞)).

Summarizing, the aim is to maximize, over a suitable set of admissible strategies, the functional (5.23), i.e.,

sup
c(·),uA(·)∈Adm

EP
[∫ ∞

t0

1{τ>t}e−ρtU
(
c(t)V (t)

)
dt
∣∣∣Ht0] , (5.24)

1We say that a strictly concave increasing function f : (0,∞)→ (0,∞) that is di�erentiable on (0,∞) satis�es Inada conditions,
named after the economist Ken-Ichi Inada, if

(i) the limit of the derivative towards 0 is positive in�nity,

(ii) the limit of the derivative towards positive in�nity is 0.

2Observe that until t < τ the information coming from FNt is simply given by the event {t < τ}.

3Equivalently, we could consider

EP
[∫ τ

t0

e−ρtU(c(t)V (t))dt
∣∣∣Ht0] ,

but then we should add the condition on τ > t0, while the latter condition is not necessary if we write the agent's expected utility
as in (5.23).
Furthermore, since we have assumed that τ is bounded above by T , (see condition (5.1)) it would be natural to write

EP
[∫ T

t0

1{τ>t}e
−ρtU(c(t)V (t))dt

∣∣∣Ht0]
instead of (5.23). Nevertheless we prefer the formulation (5.23) since it is possible to consider also the case of random times τ that
do not satisfy condition (5.1), as we will do in the subsequent Section 5.5.

4The positive subjective discount factor ρ ≥ 0 means that the consumer takes less satisfaction from delayed consumption. In
some economic models the subjective discount factor may be chosen negative, meaning that future consumption is evaluated more
than present one.
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where Adm has to be speci�ed.
A natural constraint is that the consumption rate C(t) is a positive process, and it may be reasonable

to require the consumer's wealth V (t) never becomes negative or null, so that a constraint on the relative
consumption rate is given by

c(t) ≥ 0, ∀t ≥ t0. (5.25)

Furthermore to avoid arbitrage the admissible strategies are subject to the so-called budget constraint

V = V (t0) = EQ

[∫ T ′∧τ

t0

c(t)V (t)
G(t)

dt+
V (T ∧ τ)
G(T ∧ τ)

∣∣∣Ht0
]
, ∀ T ′ > 0 (5.26)

where the measure Q is de�ned on H∞ as the unique measure such that, for each T ′ > 0, QT ′ = Q|HT ′ is the
risk-neutral measure on HT ′ , i.e.,

dQT ′

dPT ′
= exp

{
− 1

2

∫ T ′

0

|ξ(s)|2 ds+
∫ T ′

0

ξ(s) dWs

}
, (5.27)

with PT ′ = P |HT ′ . Since the consumption rate is given by c(t)V (t),∫ T ′∧τ

t0

c(t)V (t)
G(t)

dt

represents the discounted5 consumption up to time T ′ ∧ τ , while

V (T ′ ∧ τ)
G(T ′ ∧ τ)

represents the discounted wealth at time T ′ ∧ τ . Letting T ′ go to ∞, the above quantities converge6 to the

total discounted consumption
∫ τ
t0

c(t)V (t)
G(t) dt and the discounted heredity V (τ)

G(τ) . Then the budget constraint has

the satisfying interpretation that the sum of the expected total discounted consumption plus the expected
discounted heredity equals the initial endowment V and each of them cannot exceed V . In other words, the
agent does not want to leave debts to her/his heirs.

Since we restrict the consumer's investment-consumption strategies to be self-�nancing, the dynamics of the
corresponding value process are given by (5.16) with V (t0) = V . Now inserting (5.21) into (5.16) we obtain{

dV (t) = V (t)
[(
r(t) + uA(t)

(
µA(t)− r(t)1− λ(t)1λ

)
− c(t)

)
dt+ uA(t)ΣA(t)dW (t)

]
V (t0) = V,

(5.28)

so that we have an explicit solution given by

V (t) =V exp
{∫ t

t0

(
r(s) + uA(s)

(
µA(s)− r(s)1− λ(s)1λ

)
− c(s)− 1

2
|uA(t)ΣA(t)|2

)
ds

+
∫ t

t0

uA(s)ΣA(s)dW (s)
}
. (5.29)

The above expression will be essential to prove that the above optimal control problem with budget constraint
is equivalent to a problem with simpler constraints, as shown in the following theorem.

Theorem 5.3.1. Let Pτ be the optimization problem (5.24) over the set of admissible strategies, with constraints
(5.25) and (5.26). De�ne ZA(t) as follows

ZA(t) = exp
{
− 1

2

∫ t

0

|ξA(s)|2 ds−
∫ t

0

ξA(s) dWs

}
, (5.30)

where

ξA(s) := ξ(s)− uA(s)ΣA(s). (5.31)

5In this setting the discounting is accomplished by the price process G (see Section 1.1).

6In the case τ ≤ T with probability 1, then the above quantities are equal to
∫ τ
t0

c(t)V (t)
G(t)

dt and
V (τ)
G(τ)

, for all T ′ ≥ T .
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Then Pτ is equivalent to the following problem7

1{τ>t0} sup
c(·),uA(·)∈Adm

EP
[∫ ∞

t0

e
−
∫ t
t0
λ(u)du

e−ρtU
(
c(t)V (t)

)
dt
∣∣∣Gt0] , (5.32)

where8

Adm = {c(·), uA(·) : c and uA are G-adapted, c ≥ 0 and uA such that (5.30) is a G-martingale}.

Before proceeding with the proof, we need the following preliminary results.

Lemma 5.3.2. For any G-adapted consumption-investment strategy (c, uA) such that (5.25) hold, we have that

EP
[∫ ∞

t0

1{τ>t}e−ρtU(c(t)V (t))dt
∣∣∣Ht0] = 1{τ>t0}E

P

[∫ ∞
t0

e
−
∫ t
t0
λ(u)du

e−ρtU
(
c(t)V (t)

)
dt
∣∣∣Gt0] , (5.33)

Proof of Lemma 5.3.2. To show (5.33), we start by recalling that, besides being a stochastic intensity for the
doubly stochastic process N(t) with respect to the �ltration Ht = FNt ∨ Gt, the process λ(t) is a stochastic
intensity for N(t) also with respect to the larger �ltration FNt ∨G. Then, by the iterated conditional expectations
property and (3.40) with T1 = τ , the conditional expectation in (5.23) can be written as

1{τ>t0}E
P

[∫ ∞
t0

1{τ>t}e−ρtU
(
c(t)V (t)

)
dt
∣∣∣Ht0]

= 1{τ>t0}

∫ ∞
t0

EP
[
1{τ>t}e−ρtU

(
c(t)V (t)

)∣∣∣Ht0] dt
= 1{τ>t0}

∫ ∞
t0

EP
[
EP

[
1{τ>t}e−ρtU

(
c(t)V (t)

)∣∣∣FNt0 ∨ G] ∣∣∣Ht0] dt
= 1{τ>t0}

∫ ∞
t0

EP
[
EP

[
1{τ>t}

∣∣∣FNt0 ∨ G] e−ρtU(c(t)V (t)
)∣∣∣Ht0] dt

= 1{τ>t0}

∫ ∞
t0

EP
[
P
(
τ > t

∣∣∣FNt0 ∨ G) e−ρtU(c(t)V (t)
)∣∣∣Ht0] dt

= 1{τ>t0}

∫ ∞
t0

EP
[
e
−
∫ t
t0
λ(u)du

e−ρtU
(
c(t)V (t)

)∣∣∣Ht0] dt (5.34)

where we have used Lemma A.1.2 of Appendix A, the inclusion Ht0 ⊆ FNt0 ∨ G, and, for t > t0, FNt0 ∨ G
measurability of U

(
c(t)V (t)

)
(the latter property follows since c(t) and uA(t) are G-adapted). To obtain the

announced result, we �nally observe that Ht0 ⊆ Gt0 ∨ F N̂∞, Gt0 ⊆ Gt ⊆ G, the sigma-algebras G and F N̂∞ are

independent (under P ), the random variables e
−
∫ t
t0
λ(u)du

e−ρtU
(
c(t)V (t)

)
are Gt-measurable9 (and therefore

independent of F N̂∞). Then the redundant conditioning property implies that∫ ∞
t0

EP
[
e
−
∫ t
t0
λ(u)du

e−ρtU
(
c(t)V (t)

)∣∣∣Ht0] dt
=
∫ ∞
t0

EP
[
EP

[
e
−
∫ t
t0
λ(u)du

e−ρtU
(
c(t)V (t)

)∣∣∣F N̂∞ ∨ Gt0] ∣∣∣Ht0] dt
=
∫ ∞
t0

EP
[
EP

[
e
−
∫ t
t0
λ(u)du

e−ρtU
(
c(t)V (t)

)∣∣∣Gt0] ∣∣∣Ht0] dt
=
∫ ∞
t0

EP
[
e
−
∫ t
t0
λ(u)du

e−ρtU
(
c(t)V (t)

)∣∣∣Gt0] dt
= EP

[∫ ∞
t0

e
−
∫ t
t0
λ(u)du

e−ρtU
(
c(t)V (t)

)
dt
∣∣∣Gt0] .

7Since we have assumed that τ is bounded above by T , (see condition (5.1)) it would be natural to write

1{τ>t0} sup
c(·),uA(·)∈Adm

EP
[∫ T

t0

e
−
∫ t
t0
λ(u)du

e−ρtU
(
c(t)V (t)

)
dt
∣∣∣Gt0]

instead of (5.32). Nevertheless we prefer the formulation (5.32) since it is possible to consider also the case of random times τ that
do not satisfy condition (5.1), as we will do in the subsequent Section 5.5.

8We recall that the other constraint (5.13) is automatically satis�ed when uG(t) is given by (5.15).

9Since we consider only G-adapted strategies (c(t), uA(t)), also V (t) is a G-adapted process and the random variables

e
−
∫ t
t0
λ(u)du

e−ρtU
(
c(t)V (t)

)
are Gt-measurable, which is essential to apply Lemma A.1.2.
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Proposition 5.3.3. Let uA be a H-adapted strategy. Assume that

ZA(t) = exp
{
− 1

2

∫ t

0

|ξA(s)|2 ds−
∫ t

0

ξA(s) dWs

}
, (5.35)

where

ξA(s) := ξ(s)− uA(s)ΣA(s), (5.36)

is a H-martingale under the measure P . Then for each positive valued H-adapted strategy c the constraint (5.26)
holds, i.e.,

V = V (t0) = EQ

[∫ T ′∧τ

t0

c(t)V (t)
G(t)

dt+
V (T ′ ∧ τ)
G(T ′ ∧ τ)

∣∣∣Ht0
]
, ∀ T ′ > 0,

where the measure Q is given by (5.27).

Before giving the proof of the above proposition we note that the de�nitions (5.30) and (5.31) di�er from
the de�nitions (5.35) and (5.36) only in that the control uA(t) is G-adapted.

Proof of Proposition 5.3.3. Since the measure Q is given by (5.27), the constraint (5.26) becomes

V = EP

[∫ T ′

0

dQt
dPt

1{τ>t}
c(t)V (t)
G(t)

dt+
dQT ′∧τ
dPT ′∧τ

V (T ′ ∧ τ)
G(T ′ ∧ τ)

∣∣∣Ht0
]

(5.37)

Letting c(t) be a positive strategy and taking into account G(t), V (t) and dQt
dPt

given by (1.3), (5.28) and (5.27),
we obtain

log
(
dQt
dPt

V (t)
V G(t)

)
= −1

2

∫ t

0

|ξ(s)|2 ds−
∫ t

0

ξ(s) dWs

+
∫ t

0

(
r(s)− c(s) + uA(s)

(
µA(s)− r(s)1− λ(s)1λ

))
ds

−
∫ t

0

1
2
|uA(s)ΣA(s)|2 ds+

∫ t

0

uA(s)ΣA(s)dW (s)−
∫ t

0

r(s) ds,

so that recalling that
µA(s)− r(s)1− λ(s)1λ = ΣA(s)ξ(s)

we obtain

log
(
dQt
dPt

V (t)
V0G(t)

)
= −

∫ t

0

c(s) ds− 1
2

∫ t

0

|ξ(s)|2 ds−
∫ t

0

ξ(s) dWs +
∫ t

0

uA(s) ΣA(s)ξ(s)ds

−
∫ t

0

1
2
|uA(s)ΣA(s)|2 ds+

∫ t

0

uA(s)ΣA(s)dW (s)

= −
∫ t

0

c(s) ds−
∫ t

0

1
2
|ξ(s)− uA(s)ΣA(s)|2 ds−

∫ t

0

(
ξ(s)− uA(s)ΣA(s)

)
dW (s)

= −
∫ t

0

c(s) ds− 1
2

∫ t

0

|ξA(s)|2 ds−
∫ t

0

ξA(s) dWs.

Thanks to the assumption that (5.35) is a martingale, we can de�ne QA as the unique measure such that, for
each t > 0, QA|Ht := QA

t , where

dQA
t

dPt
= exp

{
− 1

2

∫ t

0

|ξA(s)|2 ds−
∫ t

0

ξA(s) dWs

}
. (5.38)

Then we obtain that

EP

[∫ T ′

t0

dQt
dPt

1{τ>t}
c(t)V (t)
G(t)

dt
∣∣∣Ht0

]
= EP

[∫ T ′

0

dQA
t

dPt
1{τ>t}V c(t) e−

∫ t
0 c(s) ds dt

∣∣∣Ht0
]

= V EQ
A
T ′

[∫ T ′

0

1{τ>t} c(t) e−
∫ t
0 c(s) ds dt

∣∣∣Ht0
]

= V EQ
A
T ′

[∫ T ′∧τ

0

c(t) e−
∫ t
0 c(s) ds dt

∣∣∣Ht0
]

= V EQ
A
T ′
[
1− e−

∫ T ′∧τ
0 c(s) ds

∣∣∣Ht0] , (5.39)
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and that

EP
[
dQT ′∧τ
dPT ′∧τ

V (T ′ ∧ τ)
G(T ′ ∧ τ)

∣∣∣Ht0] = EP
[
dQA

T ′∧τ
dPT ′∧τ

V e−
∫ T ′∧τ
0 c(s) ds

∣∣∣Ht0] = V EQ
A
T ′
[
e−

∫ T ′∧τ
0 c(s) ds

∣∣∣Ht0] . (5.40)

Then by (5.39) and (5.40) we obtain the announced result.

Remark 5.3.1. Letting T ′ go to ∞ in the constraint (5.26), we obtain also a convergence result, i.e.,

V = lim
T ′→∞

EP

[∫ T ′

0

dQt
dPt

1{τ>t}
c(t)V (t)
G(t)

dt+
dQT ′∧τ
dPT ′∧τ

V (T ′ ∧ τ)
G(T ′ ∧ τ)

∣∣∣Ht0
]
. (5.41)

Indeed, by (5.39) and (5.40) in the proof of Proposition 5.3.3, letting T ′ go to ∞, we obtain that

EP

[∫ T ′

t0

dQt
dPt

1{τ>t}
c(t)V (t)
G(t)

dt
∣∣∣Ht0

]
= V EQ

A
T ′
[
1− e−

∫ T ′∧τ
0 c(s) ds

∣∣∣Ht0]
−→
T ′→∞

V EQ
A
[
1− e−

∫ τ
0 c(s) ds

∣∣∣Ht0] ,
and that

EP
[
dQT ′∧τ
dPT ′∧τ

V (T ′ ∧ τ)
G(T ′ ∧ τ)

∣∣∣Ht0] = V EQ
A
T ′
[
e−

∫ T ′∧τ
0 c(s) ds

∣∣∣Ht0]
−→
T ′→∞

V EQ
A
[
e
−
∫ τ
t0
c(s) ds

∣∣∣Ht0] ,
respectively.

Proof of Theorem 5.3.1. The proof follows by Lemma 5.3.2 and Proposition 5.3.3 with G-adapted consumption-
investment strategy (c, uA). Indeed, by Lemma 5.3.2 we have that for any G-adapted consumption-investment
strategy (c, uA) (and without requiring that (5.30) is a martingale) the agent's expected utility (5.23) can be
written in terms of the conditional expectation with respect to Gt0 instead of Ht0 .

Furthermore, by Proposition 5.3.3, we can replace the budget constraint with the requirement that the
strategy uA has the property that (5.30) is a H-martingale. The process (5.30) being G-adapted, and the

σ-algebras F N̂∞ and G∞ being independent under P , the property that Gt ⊆ Ht ⊆ Gt ∨ F N̂∞ implies that the
process (5.30) is a G-martingale if and only if is a H-martingale.

Finally, in order to solve the problem (5.24) with the budget constraint (5.26), we proceed as follows. We
start by solving the problem (5.32) disregarding the budget constraint, and �nd the optimal (unconstrained)
controls. Then the (uncostrained) optimal controls are also optimal for the problem with the budget constraint,
if the corresponding process (5.30) is a martingale. Next section is devoted to the unconstrained optimization
problem.

5.3.1 Optimal Markov control problem without the budged constraint

In this section the aim is focused on the problem (5.32) without considering 1{τ>t0}, i.e.,

sup
c(·),uA(·)∈Adm

EP
[∫ ∞

t0

e
−
∫ t
t0
λ(u)du

e−ρtU
(
c(t)V (t)

)
dt
∣∣∣Gt0] . (5.42)

Since in most concrete case it is natural to require that the control processes are adapted to the state processes,
the purpose of this section is to study an optimal Markov control problem. The idea is that if we restrict to
admissible consumption-portfolio strategies (c(t), uA(t)) which are deterministic functions of (z(t), S(t), V (t))′,
then the latter process is Markovian with respect to Gt, so that

EP
[∫ ∞

t0

e
−
∫ t
t0
λ(u)du

e−ρtU
(
c(t)V (t)

)
dt
∣∣∣Gt0]

= EP
[∫ ∞

t0

e
−
∫ t
t0
λ(u)du

e−ρtU
(
c(t)V (t)

)
dt
∣∣∣z(t0), S(t0), V (t0)

]
.
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These consumption-portfolio strategies can be considered as Markov control policies and, denoting by Uad the
set of such strategies, instead of the problem (5.42), we consider the optimal control problem

J(t0, z, S, V )

= sup
c(·),uA(·)∈Uad

EP
[∫ ∞

t0

e
−
∫ t
t0
λ(u)du

e−ρtU
(
c(t)V (t)

)
dt
∣∣∣z(t0) = z, S(t0) = S, V (t0) = V

]
. (5.43)

Due to the integrand e
−
∫ t
t0
λ(u)du

the above control problem cannot be considered in the framework of optimal
Markov control problems.

Nevertheless, if we set z0(t) = z0e
−
∫ t
t0
λ(u)du

, or equivalently

dz0(t) = −λ(t)z0(t)dt, (5.44)

and
G0
t = Fz0t ∨ Gt,

then the above problem can be formulated in a optimal Markov control problem setting.
In this section we consider control processes that, besides depending on z(t), S(t), and V (t), may depend

also on z0(t), i.e.,

uA(t) = ūA(t, z0(t), z(t), S(t), V (t)), (5.45)

c(t) = c̄(t, z0(t), z(t), S(t), V (t)), (5.46)

for some measurable deterministic function ūA, and c̄, where ūA, c̄ ∈ Ūad, with value in Uad = R3 × [0,∞). We
will denote the class of admissible Markov control processes as

Ūad = {uA(·), c(·) : uA(t) = ūA(t, z0(t), z(t), S(t), V (t)), c(t) = c̄(t, z0(t), z(t), S(t), V (t))}.

Note that if (c(t), uA(t)) ∈ Ūad, then (i) the constraint on consumption

c(t) ≥ 0. (5.47)

is automatically satis�ed; (ii) there is no constraint on the portfolio uA(t), except Markovianity. When consider-
ing such strategies, (z0(t), z(t), S(t), V (t))′ is a Markovian process with respect to G0

t , as shown in the following
proposition.

Proposition 5.3.4. Under Assumption 5.2.2, for all strategies in Ūad the process (z0(t), z(t), S(t), V (t))′, de-
�ned in (5.44), (5.4), (5.28), and (5.52), respectively, is Markovian with respect to G0

t .

Proof. Observe that (z0(t), z(t), S(t))′ is a Markovian process with respect to Fz0t ∨Fzt ∨FSt , while V (t) is not
a Markovian process with respect to FVt , since in (5.28), for example, we have the dependence on the process
z(t). Since (5.45) and (5.46) hold, the process (z0(t), z(t), S(t), V (t)) is a Markovian process with respect to
Fz0t ∨Fzt ∨FSt ∨FVt . Due to the independence of F

z0
t ∨Fzt ∨FSt ∨FVt and F N̂∞ the process (z0(t), z(t), S(t), V (t))

is a Markovian process also with respect to Fz0t ∨Frt ∨Fλt ∨FSt ∨F N̂∞. On the one hand, by (3.34) we have that

G0
t ⊆ F

z0
t ∨ Frt ∨ Fλt ∨ FSt ∨ FVt ∨ FNt ⊆ F

z0
t ∨ Frt ∨ Fλt ∨ FSt ∨ F N̂∞, ∀t, (5.48)

on the other hand Fz0t ∨ Fzt ∨ FSt ∨ FVt ⊆ G0
t , for all t, and, by Lemma A.1.3, the result follows.

Now we consider the following optimal Markov control problem

J̄(t0, z0, z, S, V ) = sup
uA,c∈Ūad

EP
[∫ ∞

t0

e−ρtz0(t)U
(
c(t)V (t)

)
dt
∣∣∣z0, z, S, V

]
, (5.49)

with dynamics of state processes given by

dz0(t) = −λ(t)z0(t)dt (5.50)

dz(t) = µz(t)dt+ Π(t)dW (t) (5.51)

dS(t) = S(t) [(r(t) + σSr (t)ξr(t) + σSS(t)ξS(t)) dt+ σS(t)dW (t)] , (5.52)

dV (t) = V (t) [(r(t) + uA(t) (µA(t)− r(t)1− λ(t)1λ)− c(t)) dt+ uA(t)ΣA(t)dW (t)] , (5.53)
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where ΣA(t) and µA(t) are given by (5.10) and (5.11) respectively, and σS(t) =
(
σSr (t), 0, σSS(t)

)
is given by

σS(t) = σ̃S(t, r(t), S(t)) =
(
σ̂Sr (t, r(t), S(t)), 0 , σ̂SS(t, r(t), S(t))

)
, (5.54)

with initial conditions

z0(t0) = z0, z(t0) = z, S(t0) = S, V (t0) = V, (5.55)

under the constraint that the strategies (c(t), uA(t)) ∈ Ūad.

In the sequel we denote the above optimal Markov control problem as (P̄).

Finally, we turn to the relations between the problem (5.43), with value function J(t0, z, S, V ), and prob-
lem (P̄). As we will see in the sequel (see (5.91)) the value function for the problem (5.43) is given by

J(t0, z, S, V ) = J̄(t0, 1, z, S, V ), (5.56)

and, if there exists an optimal control policy

c̄sup
(
t, z0(t), r(t), λ(t), S(t), V (t)

)
,

ūAsup
(
t, z0(t), r(t), λ(t), S(t), V (t)

)
,

for (P̄), then the corresponding optimal control (csup(t), uAsup(t)) is given by

csup(t) = c̄sup
(
t, 1, r(t), λ(t), S(t), V (t)

)
,

uAsup(t) = ūAsup
(
t, 1, r(t), λ(t), S(t), V (t)

)
,

provided that the process

ZAsup(t) = exp
{
− 1

2

∫ t

0

|ξAsup(s)|2 ds+
∫ t

0

ξAsup(s) dWs

}
, (5.57)

where

ξAsup(s) := uAsup(s)Σ
A(s) + ξ(s), (5.58)

is a G-martingale under the measure P .

The rest of this section is devoted to problem (P̄).

In the sequel, for the notational convenience, we use the following notation

Z(t) =


z0(t)
z1(t)
z2(t)
z3(t)
z4(t)

 =


z0(t)
r(t)
λ(t)
S(t)
V (t)

 , (5.59)

with the dynamics given by {
dZ(t) = µ(t)dt+ Γ(t)dW (t),
Z(t0) = Z,

(5.60)

where Z = (z0, r, λ, V, S)′, and

µ(t) = µ̂(t, uA(t), c(t), Z(t)) (5.61)

Γ(t) = Γ̂(t, uA(t), c(t), Z(t)), (5.62)
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with, as already recalled, uA(t) and c(t) given by (5.45) and (5.46), and µ̂(t, uA, c, Z) and Γ̂(t, uA, c, Z) given by

µ̂ =


−λz0

µ̂r

µ̂λ

S
(
σ̂Sr ξ̂r + σ̂SS ξ̂S

)
V (r + uA (µ̃A − r1− λ1λ)− c)

 , (5.63)

Γ̂ =


0 0 0
σ̂r 0 0
0 σ̂λ 0
Sσ̂Sr 0 Sσ̂SS

V
(
uBσ̂r

B̂Tr
B̂T

+ uLσ̂r
L̂Tr
L̂T

+ uSσ̂Sr

)
V uLσ̂λ

L̂Tλ
L̂T

V uSσ̂r,SS

 . (5.64)

Denoting the conditional expectation given Z(t0) = Z as EPt0,Z , the value function for (P̄) can be rewritten as

J̄(t0, Z) = sup
uA(·),c(·)∈Ūad

EPt0,Z

[∫ ∞
t0

e−ρtz0(t)U
(
c(t)V (t)

)
dt

]
. (5.65)

By using the stochastic dynamic programming technique (see Appendix D.1), and recalling that c(t) and
uA(t) are given by (5.45) and (5.46), the corresponding Hamilton-Jacobi-Bellman equation for the problem is
given by10

∂J

∂t0
(t0, Z) + sup

uA,c∈Uad

{
e−ρt0z0U

(
V c
)

+Au
A,cJ(t0, Z)

}
= 0, (5.66)

where Uad = R3 × [0,∞), and

Au
A,cJ(t0, Z) =

4∑
i=0

µ̂i(t0, uA, c, Z)
∂J

∂zi
(t0, Z) +

1
2

4∑
i,j=1

[(
Γ̂Γ̂′
)

(t0, uA, c, Z)
]
i,j

∂2

∂zi∂zj
(t0, Z),

F (t0, uA, c, Z) = e−ρt0z0U
(
V c
)
.

Following the scheme at the end of Appendix D.1 (see points 1− 4), now we consider point 1. In the sequel
for the notational convenience11 we denote t0 by t.

Fixed an arbitrary point (t, Z) ∈ (0,∞) × (0, 1] × (0,∞)4 and any function J(t, Z) su�ciently smooth, we
now have to solve the optimization problem

sup
uA,c∈Uad

{
e−ρtz0U

(
V c
)

+Au
A,cJ(t, Z)

}
. (5.67)

We remember that uA and c are the only variables, whereas t and Z are considered to be �xed parameters (see
(D.17) at point 2 with v = (uA, c)).

As usual we use the following notations

Jz0 =
∂J

∂z0
, Jr =

∂J

∂r
, Jλ =

∂J

∂λ
, JS =

∂J

∂S
, JV =

∂J

∂V
(5.68)

Jrr =
∂2J

∂r2
, Jλλ =

∂2J

∂λ2
, Jrλ =

∂J

∂r∂λ
, JrS =

∂J

∂r∂S
, JλS =

∂J

∂λ∂S
, JrV =

∂J

∂r∂V
, JλV =

∂J

∂λ∂V
, (5.69)

JSS =
∂2J

∂S2
, JV S =

∂J

∂V ∂S
, JV V =

∂J

∂V ∂V
, (5.70)

10Note that, with a little abuse of notation in the sequel we will denote by J a generic function of (t, Z). The reader should not
be confused with the value function of the Markov optimal control problem (5.43) since the function J used here depends also on
z0, while the value function does not.

11Here we denote by J the function denoted by H in Appendix D.1.
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and also

Jz =
(
Jr
Jλ

)
, JzV =

(
JrV
JλV

)
, Jzz =

(
Jrr Jrλ
Jλr Jλλ

)
JZV =


Jz0V
JrV
JλV
JSV
JV V

 . (5.71)

Then we have the following proposition.

Proposition 5.3.5. Under the completeness Assumption 5.2.1, let J(t, Z) be a regular function12, i.e., J ∈ C1,2,
and let c̄sup(t, Z; J) and ūAsup(t, Z; J) be the functions such that for each �xed choice of (t, Z) and any function
J ∈ C1,2 are the solutions of the optimization problem (5.67). Then13

c̄sup(t, Z; J) =
1
V
U̇−1

(
JV

e−ρtz0

)
, (5.72)

ūBsup(t, Z; J) =
1
B̂Tr
B̂T

1
V

(
− JV
JV V

ξ̂rσ̂
S
S − ξ̂Sσ̂Sr
σ̂r σ̂SS

− JrV
JV V

)
−

L̂Tr
L̂T

B̂Tr
B̂T

1
V

− JV
JV V

ξ̂λ
L̂Tλ
L̂T
σ̂λ
− 1

L̂Tλ
L̂T

JV λ
JV V

 (5.73)

ūLsup(t, Z; J) =
1
V

− JV
JV V

ξ̂λ
L̂Tλ
L̂T
σ̂λ
− 1

L̂Tλ
L̂T

JV λ
JV V

 (5.74)

ūSsup(t, Z; J) =
1
V

(
− JV
JV V

ξ̂S
σ̂SS
− S JV S

JV V

)
, (5.75)

where the argument (t, Z) �has been suppressed� for the notational convenience.

Theorem 5.3.6. Let us consider the following HJB equation for (P̄)

∂H

∂t
(t, Z) + e−ρ tz0U

(
U̇−1

(
∂H
∂V (t, Z)
e−ρ tz0

))
+ Lū

A
sup(·;H),c̄sup(·;H)H(t, Z) = 0, (5.76)

with the boundary condition given by
lim
t→∞

H(t, z0, z, S, V ) = 0, (5.77)

and assume that (5.76) admits a unique classical solution J . Then J coincides with the value function J̄ for
problem (P̄) (see e.g. (5.65)) and the optimal controls are

csup(t) = c̄sup
(
t, z0(t), r(t), λ(t), V (t), S(t); J

)
, (5.78)

uBsup(t) = ūBsup
(
t, z0(t), r(t), λ(t), V (t), S(t); J

)
, (5.79)

uLsup(t) = ūLsup
(
t, z0(t), r(t), λ(t), V (t), S(t); J

)
, (5.80)

uSsup(t) = ūSsup
(
t, z0(t), r(t), λ(t), V (t), S(t); J

)
, (5.81)

where c̄sup, ū
B
sup, ū

L
sup, and ū

S
sup are given by (5.72)-(5.75).

Proof of Proposition 5.3.5. We now have to solve the optimization problem (5.67). To this end we need to write

the explicit form of AuA,cJ(t, Z), i.e.,

Au
A,cJ = −z0 λJz0 + µ̂rJr + µ̂λJλ + S

(
σ̂Sr ξ̂r + σ̂SS ξ̂S

)
JS + V

(
r + uA (µ̂A − r1− λ1λ)− c

)
JV

+
1
2

[
(σ̂r)2Jrr + (σ̂λ)2Jλλ + S2 |σ̃S|2 JSS + V 2

∣∣∣uAΣ̃A

∣∣∣2 JV V ]+ σ̂λ
(
uLσ̂λL̂Tλ

)
JλV

+ V σ̂r

(
uBσ̂r

B̂T
r

B̂T
+ uLσ̂r

L̂Tr

L̂T
+ uSσ̂Sr

)
JrV + Sσ̂Sr σ̂

rJrS + SV uAΣ̃Aσ̃S,′JV S , (5.82)

12We recall that here J is not necessarily a value function.

13Observe that c̄sup and ūAsup are the corresponding function u∗J of point 2 in the scheme at the end of Appendix D.1.
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or in compact form with z(t) = (r(t), λ(t))′,

Au
A,cJ = −z0 λJz0 + µ̂z′Jz + S

(
σ̂Sr ξ̂r + σ̂SS ξ̂S

)
JS + V

(
r + uAM − c

)
JV +

1
2
tr[Π̃Π̃′Jzz]

+ V uAΣ̃AΠ̃′JzV +
1
2
S2 |σ̃S|2 JSS + Sσ̂Sr σ̂

rJrS + SV uAΣ̃Aσ̃S′JV S +
1
2
V 2
∣∣∣uAΣ̃A

∣∣∣2 JV V . (5.83)

Let us decompose AuA,cJ as follows

Au
A,cJ = Ac1J +Au

A

2 J +A3J,

where, setting Q = Σ̃AΣ̃A′, M = µ̂A − r1− λ1λ,

Ac1J = −cV JV ,

Au
A

2 J = V uAMJV + V uAΣ̃AΠ̃′JzV + V SuAΣ̃Aσ̃S′JV S +
1
2
V 2uAQuA′JV V ,

and A3J is implicitely de�ned. Note that A3J does not depend neither on c nor on uA. Then, solve the
maximization problem (5.67), is equivalent to

sup
uA,c∈Uad

{
e−ρtz0U

(
V c
)

+Ac1J +Au
A

2 J
}

+A3J. (5.84)

The �rst order condition on consumption is given by

e−ρ tz0V U̇(cV )− V JV = 0, (5.85)

thus (5.72) follows. Indeed we get c̄sup by setting the partial derivative of (5.84) with respect to c equal to zero.
Analogously, we have the �rst order condition on the portfolio composition. Indeed we get ūAsup by setting the
partial derivative of (5.84) with respect to uA equal to zero, but in this case the calculation of the derivative is

not immediate. Considering in (5.84) only the terms depending on uA, i.e., Au
A

2 J , and setting

w = uA′, m = V
(
MJV + Σ̃AΠ̃′JzV + V SΣ̃Aσ̃S′JV S

)
, d = V 2JV V , (5.86)

we can rewrite Au
A

2 J as

f(w) = w′m+
1
2
dw′Qw =

3∑
`=1

w`m` +
1
2
d

3∑
`=1

w`

3∑
k=1

Q`kwk.

Then taking into account that Qik = Qki, the partial derivative of f with respect to wi is given by14

∂f

∂wi
= mi + d (Qw)i (5.87)

where (v)i denotes the ith component of the vector v. Finally we obtain ūAsup by setting (5.87) equal to zero,
thus giving us the equation

(Qw)i = −mi

d
,

i.e.,

QuA′ = −MJV + Σ̃AΠ̃′JzV + SΣ̃Aσ̃S′JV S
V JV V

, (5.88)

14Observe that

f(w) =

3∑
k=1

3∑
`=1

w`Q`kwk = w2
iQii +

∑
k 6=i

wiQikwk +
∑
` 6=i

w`Q`iwi = w2
iQii + 2

∑
k 6=i

wiQikwk,

then

∂f

∂wi
= 2wiQii + 2

∑
k 6=i

Qikwk = 2(Qw)i.
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which gives us the compact form of (5.72)-(5.75):

ūA′sup(t, Z) = −
∂J
∂V (t, Z)

V ∂2J
∂V 2 (t, Z)

Q−1M − 1
V ∂2J
∂V 2 (t, Z)

Q−1Σ̃AΠ̃′
∂2J

∂z∂V
(t, Z)−

S ∂2J
∂V ∂S (t, Z)

V ∂2J
∂V 2 (t, Z)

Q−1Σ̃Aσ̃S′. (5.89)

Indeed the matrix Q is invertible, since Σ̃A is invertible (see Assumption 5.2.1),

Q−1 =
(

Σ̃AΣ̃A′
)−1

=
(

Σ̃A′
)−1 (

Σ̃A

)−1

=
((

Σ̃A

)−1
)′ (

Σ̃A

)−1

, (5.90)

and

((Σ̃A)−1)′ =



1
B̂Tr
B̂T

σ̂r
−

L̂Tr
L̂T

B̂Tr
B̂T

L̂T
λ

L̂T
σ̂λ

− 1
B̂Tr
B̂T

σ̂r

σ̂Sr
σ̂SS

0 1
L̂T
λ

L̂T
σ̂λ

0

0 0 1
σ̂SS


,

and �nally, taking into account Σ̃Aξ̃ = M , after some reshu�ing, we have the announced result15.

Proof of Theorem 5.3.6. By (5.72) and (5.75) we see clearly (compare point 3 in the scheme in the end of
Appendix D.1) that c̄sup and ūAsup =

(
ūBsup, ū

L
sup, ū

S
sup

)
will of course depend on our choice of t and Z, but it

will also depend on the function J and its partial derivatives. As already discussed in same scheme (see point
4.), inserting (5.72)-(5.75) into the partial di�erential equation (5.66), we get the HJB equation (5.76) with
boundary condition (5.77). Then by the Veri�cation Theorem (see Theorem D.1.2) we obtain the announced
results.

In particular turning to the problem (5.43) and taking into account the results of Theorem 5.3.6, the
corresponding value function J is given by the value function J̄ with z0 = 1, i.e.,

J(t0, z, S, V ) = J̄(t0, 1, z, S, V ), (5.91)

15To obtain the announced results we need to compute

Q−1M = ((Σ̃A)−1)′ ξ̃ =



ξ̂r σ̂
S
S−ξ̂S σ̂

S
r

B̂Tr
B̂T

σ̂r σ̂S
S

−
L̂Tr
L̂T

B̂Tr
B̂T

ξ̂λ
L̂T
λ

L̂T
σ̂λ

ξ̂λ
L̂T
λ

L̂T
σ̂λ

ξ̂S
σ̂S
S


,

Q−1Σ̃AΠ̃′JzV = ((Σ̃A)−1)′Π̃′JzV ,=


JrV

1
B̂Tr
B̂T

− JλV
L̂Tr
L̂T

B̂Tr
B̂T

L̂T
λ

L̂T

JλV
1
L̂T
λ

L̂T

0


,

Q−1Σ̃Aσ̃S′ = ((Σ̃A)−1)′σ̃S′ =


1
B̂Tr
B̂T

(
σ̂Sr
σ̂r
− σ̂Sr

σ̂r

)
0

1

 =

 0
0
1

 .

and substitute the above expressions in (5.89).
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and the optimal controls are

csup(t) = c̄sup
(
t, 1, r(t), λ(t), S(t), V (t); J̄

)
, (5.92)

uBsup(t) = ūBsup
(
t, 1, r(t), λ(t), S(t), V (t); J̄

)
, (5.93)

uLsup(t) = ūLsup
(
t, 1, r(t), λ(t), S(t), V (t); J̄

)
, (5.94)

uSsup(t) = ūSsup
(
t, 1, r(t), λ(t), S(t), V (t); J̄

)
, (5.95)

where c̄sup, ū
B
sup, ū

L
sup, and ū

S
sup are given by (5.72)-(5.75).

Remark 5.3.2. First of all observe that in a market without longevity bonds, the results are similar, but instead
of the functions c̄sup, ū

B
sup, ū

L
sup, ū

S
sup, and ū

G
sup = 1− ūBsup − ūLsup − ūSsup, one would get functions c̄0sup, ū

B,0
sup,

ūS,0sup, and ū
G,0
sup = 1− ūB,0sup − ūS,0sup, which do not depend on λ. Namely, setting

¯̄uBsup(t, Z;H) =
1
B̂Tr
B̂T

1
V

(
− HV

HV V

ξ̂rσ̂
S
S − ξ̂Sσ̂Sr
σ̂r σ̂SS

− HrV

HV V

)
,

then, for any function H(t, r, S, V ), which does not depend on λ, one gets

c̄0sup(t, r, S, V ;H) = c̄sup(t, 1, r, λ, S, V ;H) (= c̄sup(t, 1, r, 0, S, V ;H))

ūB,0sup(t, r, S, V ;H) = ¯̄uBsup(t, 1, r, λ, S, V ;H)
(
= ¯̄uBsup(t, 1, r, 0, S, V ;H)

)
ūS,0sup(t, r, S, V ;H) = ūSsup(t, 1, r, λ, S, V ;H)

(
= ūSsup(t, 1, r, 0, S, V ;H)

)
,

and therefore

ūG,0sup(t, r, S, V ;H) = 1− ¯̄uBsup(t, 1, r, λ, S, V ;H)− ūSsup(t, 1, r, λ, S, V ;H)(
= 1− ¯̄uBsup(t, 1, r, 0, S, V ;H)− ūSsup(t, 1, r, 0, S, V ;H)

)
.

Furthermore, observe that

ūBsup(t, 1, r, λ, S, V ; J̄) = ¯̄uBsup(t, 1, r, λ, S, V ; J̄)−
L̂Tr
L̂T

B̂Tr
B̂T

ūLsup(t, 1, r, λ, S, V ; J̄)

and therefore

ūGsup(t, 1, r, λ, S, V ; J̄) = 1− ¯̄uBsup(t, 1, r, λ, S, V ; J̄)− ūSsup(t, 1, r, λ, S, V ; J̄)

−

1−
L̂Tr
L̂T

B̂Tr
B̂T

 ūLsup(t, 1, r, λ, S, V ; J̄).

Finally, as remarked in Menoncin [18], we observe that, the previous expression may be interpreted as follows:
in a certain sense, uLsup(t)V (t), the optimal amount of money to be invested in the longevity bond, is taken from

both the amounts of money ¯̄uBsup(t, Z(t); J̄)V (t) and ūGsup(t, Z(t); J̄)V (t), that one would invest in the ordinary

bond and the riskless asset (i.e., the liquidity) proportionally to
LTr
LT
/
BTr
BT

and 1− LTr
LT
/
BTr
BT

, respectively.

5.3.2 Optimal Markov control problem with the risk asset given by a Geometric

Brownian motion

The model considered in Section 5.2 is slightly more general than the original model considered by Menoncin
in [18], the di�erence being that the risk asset S(t) is a Geometric Brownian motion, i.e., the drift and di�usion
coe�cients are constants: µS(t) = µS and σS(t) = σS. In this section we specialize to this setting and �nd again
the same results of Menoncin [18], but using a slightly di�erent approach. Moreover (see Remark 5.3.3) we
observe that this approach can be easily generalized to the case when the drift and di�usion coe�cients µS(t)
and σS(t) are deterministic functions of time and the interest rate, but do not depend on the risk asset.

As in Section 5.2, let (Ω,F , P ) be a complete probability space, let τ be the death time of the investor, and
the vector process z(t) = (r(t), λ(t)) be the state variables vector. Taking into account that in this setting the
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process S(t) is a geometric Brownian motion (see (2.63)), let ξS(t) be the market price for the stock given by
(2.66), then the expression (5.3) for the market price ξ(t) becomes

ξ(t) = ξ̃(t, z(t)) =
(
ξ̂r(t, r(t)), ξ̂λ(t, z(t)), ξ̂S(t, r(t))

)′
. (5.96)

In this setting we have that the market structure is given by (5.4) and (5.5), i.e.,

dz(t) = µz(t)dt+ Π(t)dW (t),

dA(t) = diag
[
A(t)

]
(µA(t)dt+ ΣA(t)dW (t)) ,

where µz(t), W (t), Π(t), A(t) and diag
[
A(t)

]
are given by (5.6), (5.7), (5.8) and (5.9), while

µA(t) = µ̃A(t, z(t))

=


r(t) + ξ̂r(t, r(t))σ̂r(t, r(t))

B̂Tr
B̂T

(t, r(t))

r(t) + λ(t) + L̂Tr
L̂T

(t, z(t))σ̂r(t, r(t))dW r(t) + L̂Tλ
L̂T

(t, z(t))σ̂λ(t, z(t))dWλ(t)

r(t) + σSr ξ̂r(t, r(t)) + σSS ξ̂S(t, r(t))

 , (5.97)

ΣA(t) = Σ̃A(t, z(t))

=


σ̂r(t, r(t)) B̂

T
r

B̂T
(t, r(t)) 0 0

σ̂r(t, r(t)) L̂
T
r

L̂T
(t, z(t)) σ̂λ(t, z(t)) L̂

T
λ

L̂T
(t, z(t)) 0

σSr 0 σSS

 , (5.98)

and σSr , σ
S
S are deterministic constants.

Remark 5.3.3. We observe that σSr and σSS are constants (see (5.97) and (5.98)), then µA(t) and ΣA(t) are
deterministic functions of t and z(t). As we will see below, this property of µA(t) and ΣA(t) is crucial for the
results that we get at the end of this section. This property holds also under the condition 1. of Remark 2.3.1
that the drift and di�usion coe�cients of S(t) depend on t, r(t), i.e., µS(t) = µ̂S(t, r(t)), σSr (t) = σ̂Sr (t, r(t)) and
σSS(t) = σ̂SS(t, r(t)). As observed in in Remark 2.3.1, then also ξS(t) is also a deterministic function of t and
r(t).

The purpose of this section is to specialize the optimal Markov control problem of Section 5.3.1 to this
setting. To this end we consider control processes that depend on z0(t), z(t), and V (t), (see (5.44)-(5.46))

uA(t) = ûA(t, z0(t), z(t), V (t)) (5.99)

c(t) = ĉ(t, z0(t), z(t), V (t)), (5.100)

for some measurable deterministic function ûA and ĉ, where ûA, ĉ ∈ Ûad with value in Uad = R3 × [0,∞). We
will denote the class of admissible Markov control processes as

Ûad = {uA(·), c(·) : uA(t) = ûA(t, z0(t), z(t), V (t)), c(t) = ĉ(t, z0(t), z(t), V (t))}.

Then we consider the following optimal Markov control problem

J̄(t0, z0, z, V ) = sup
uA,c∈Ûad

EP
[∫ ∞

t0

e−ρ tz0(t)U
(
c(t)V (t)

)
dt
∣∣∣z0, z, V

]
, (5.101)

with dynamics of state processes given by

dz0(t) = −λ(t)z0(t)dt (5.102)

dz(t) = µz(t)dt+ Π(t)dW (t) (5.103)

dV (t) = V (t) [(r(t) + uA(t) (µA(t)− r(t)1− λ1λ)− c(t)) dt+ uA(t)ΣA(t)dW (t)] , (5.104)

where ΣA(t) and µA(t) are given by (5.97) and (5.98) respectively, and initial conditions

z0(t0) = z0, z(t0) = z, V (t0) = V, (5.105)
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under the constraint

c(t) ≥ 0. (5.106)

In the sequel we denote the above optimal Markov control problem as (P̂).
Observe that the di�erence between the problem (P̄) and the problem (P̂) is that in (P̄) the process S(t) is

the state process, while here is not, and µA(t) and ΣA(t) in (P̄) depend on t, z(t), and S(t), while here depend
only on t and z(t), but do not depend on S(t).

In the sequel, for the notational convenience, we use the following notation

Ž(t) =


ž0(t)
ž1(t)
ž2(t)
ž3(t)

 =


z0(t)
r(t)
λ(t)
V (t)

 , (5.107)

with the dynamics given by {
dŽ(t) = µ(t)dt+ Γ(t)dW (t),
Ž(t0) = Ž,

(5.108)

where Ž = (z0, r, λ, V )′, and

µ(t) = µ̂(t, uA(t), c(t), Z(t)) (5.109)

Γ(t) = Γ̂(t, uA(t), c(t), Z(t)), (5.110)

with, as already recalled, uA(t) and c(t) given by (5.99) and (5.100), and µ̂(t, uA, c, Z) and Γ̂(t, uA, c, Z) given
by

µ̂ =


−λz0

µ̂r

µ̂λ

V (r + uA (µ̃A − r1− λ1λ)− c)

 , (5.111)

Γ̂ =


0 0 0
σ̂r 0 0
0 σ̂λ 0

V
(
uBσ̂r

B̂Tr
B̂T

+ uLσ̂r
L̂Tr
L̂T

+ uSσSr

)
V uLσ̂λ

L̂Tλ
L̂T

V uSσSS

 . (5.112)

Observe that the di�erence between (5.111)-(5.112) and (5.63)-(5.64) is that µ̃A in (5.63) may depend also on
S(t), while here µ̃A depends only on t and z(t), and σSr (t) and σSS(t) in (5.64) are functions depending on t, S(t)
and r(t), while here are constants16, i.e., are equal to σSr and σSS .

Denoting the conditional expectation given Ž(t0) = Ž as EP
t0,Ž

, the value function for (P̂) can be rewritten
as

Ĵ(t0, Ž) = sup
uA(·),c(·)∈Ûad

EP
t0,Ž

[∫ ∞
t0

e−ρtz0(t)U
(
c(t)V (t)

)
dt

]
. (5.113)

By using the stochastic dynamic programming technique (see Appendix D.1), and recalling that c(t) and
uA(t) are given by (5.99) and (5.100), the corresponding Hamilton-Jacobi-Bellman equation is given by

∂J

∂t0
(t0, Ž) + sup

uA,c∈Uad

{
e−ρt0z0U

(
V c
)

+Au
A,cJ(t0, Ž)

}
, (5.114)

where
Uad = R3 × [0,∞),

and

Au
A,cJ(t0, Ž) =

3∑
i=0

µ̂i(t0, uA, c, Ž)
∂J

∂zi
(t0, Ž) +

1
2

3∑
i,j=1

[ (
Γ̂Γ̂′
) (
t0, u

A, c, Ž
) ]
i,j

∂2J

∂zi∂zj
(t0, Ž),

F (t0, uA, c, Ž) = e−ρt0z0U
(
V c
)
.

16Similar considerations hold when we are in the case considered in Remark 5.3.3.
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Following the scheme at the end of Appendix D.1 (see points 1− 5), now we consider point 1. In the sequel
for the notational convenience we denote t0 = t and by a little abuse of notation we denoted the function H of
Appendix D.1 with J .

Fixed an arbitrary point (t, Ž) ∈ (0,∞) × (0, 1] × (0,∞)3 and any function J(t, Z) su�ciently smooth, we
now have to solve the optimization problem

sup
uA,c∈Ûad

{
e−ρtz0U

(
V c
)

+Au
A,cJ(t, Ž)

}
. (5.115)

We remember that here uA and c are the only variables, whereas t and Ž are considered to be �xed parameters
(see (D.17) at point 2 with v = (uA, c)).

Using the notations (5.68)-(5.70), we have the following proposition.

Proposition 5.3.7. Under the completeness Assumption 5.2.1, let J(t, Ž) be a regular function17, i.e., J ∈ C1,2,
and let ĉsup(t, Ž; J) and ûAsup(t, Ž; J) be the functions such that for each �xed choice of (t, Ž) and any function
J ∈ C1,2 are the solutions of the optimization problem (5.115). Then18

ĉsup(t, Ž; J) =
1
V
U̇−1

(
JV

e−ρ tz0

)
, (5.116)

ûBsup(t, Ž; J) =
1
B̂Tr
B̂T

1
V

(
− JV
JV V

ξ̂rσ̄
S
S − ξSσ̄Sr
σ̂r σ̄SS

− JrV
JV V

)
−

L̂Tr
L̂T

B̂Tr
B̂T

1
V

− JV
JV V

ξ̂λ
L̂Tλ
L̂T
σ̂λ
− 1

L̂Tλ
L̂T

JV λ
JV V

 (5.117)

ûLsup(t, Ž; J) =
1
V

− JV
JV V

ξ̂λ
L̂Tλ
L̂T
σ̂λ
− 1

L̂Tλ
L̂T

JV λ
JV V

 (5.118)

ûSsup(t, Ž; J) = − 1
V

JV
JV V

ξS
σ̄SS
, (5.119)

where the argument (t, Z̆) �has been suppressed� for the notational convenience.

Theorem 5.3.8. Let us consider the following HJB problem for (P̂)

∂H

∂t
(t, Ž) + e−ρtz0U

(
U̇−1

(
∂H
∂V (t, Ž)
e−ρtz0

))
+ Lû

A
sup(·;H),ĉsup(·;H)H(t, Ž), (5.120)

with the boundary condition given by
lim
t→∞

H(t, z0, z, V, S) = 0, (5.121)

and assume that (5.120) admits a unique classical solution J . Then J coincides with the value function Ĵ for
problem (P̂) (see e.g. (5.113)) and the optimal controls are

csup(t) = ĉsup
(
t, Ž(t); J

)
, (5.122)

uBsup(t) = ûBsup
(
t, Ž(t); J

)
, (5.123)

uLsup(t) = ûLsup
(
t, Ž(t); J

)
, (5.124)

uSsup(t) = ûSsup
(
t, Ž(t); J

)
, (5.125)

where ĉsup, û
B
sup, û

L
sup, and û

S
sup are given by (5.116)-(5.119).

Obviously also in this setting Remark 5.3.2 holds with suitable adjustments such as, for example, ĉsup and
ûAsup instead of c̄sup and ū

A
sup, respectively.

Proof of Proposition 5.3.7. The �rst order condition on consumption is exactly as in the proof of Proposi-
tion 5.3.5. For the �rst order condition on the portfolio composition we proceed as in the proof of Proposi-
tion 5.3.5 without the terms depending S(t), and by using the same notations we have

Au
A

2 J = V uAMJV +
1
2
V 2uAQuA′JV V + V uAΣ̃AΠ̃′JzV , (5.126)

17We recall that here J is not necessarily a value function.

18Observe that ĉsup and ûAsup are the corresponding function u∗J of point 2 in the scheme in the end of Appendix D.1.
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where Q = Σ̃AΣ̃A′, and M(t) = (µA(t)− r(t)1− λ1λ). Setting

w = uA′, m = V
(
MJV + Σ̃AΠ̃′JzV

)
, d = V 2JV V , (5.127)

we obtain

(Qw)i = −mi

d
, (5.128)

i.e.,

QuA′ = −MJV + Σ̃AΠ̃′JzV
V JV V

, (5.129)

which gives us the compact form of (5.116)-(5.119):

ûA′sup(t, Ž) = −
∂J
∂V (t, Ž)

V ∂2J
∂V 2 (t, Ž)

Q−1M − 1
V ∂2J
∂V 2 (t, Ž)

Q−1Σ̃AΠ̃′
∂2J

∂z∂V
(t, Ž). (5.130)

Finally, after some reshu�ing, (see the proof of Proposition 5.3.5 with ûAsup(t) instead of ūAsup(t)), we obtain the
announced result.

Proof of Theorem 5.3.8. By (5.116) and (5.130) we see clearly (compare point 3 in the scheme in the end of
Appendix D.1) that ĉsup and û

A
sup =

(
ûBsup, û

L
sup, û

S
sup

)
will of course depend on our choice of t and Ž, but it will

also depend on the function J , and its partial derivatives. As already discussed in the same scheme (see point
4.), inserting (5.116)-(5.130) into the partial di�erential equation (5.114), we get the HJB equation (5.120) with
boundary condition (5.121). Then by the Veri�cation Theorem (see Theorem D.1.2) we obtain the announced
results.

In particular turning to the problem considered by Menoncin in [18], and taking into account the results of
Theorem 5.3.6, we �nd the same results of Menoncin [18]. Indeed, the corresponding value function the problem
considered by Menoncin, denoted by J , is given by the value function Ĵ with z0 = 1, i.e.,

J(t0, z, V ) = Ĵ(t0, 1, z, V ),

and the optimal controls are

csup(t) = ĉsup
(
t, 1, r(t), λ(t), V (t); Ĵ

)
, (5.131)

uBsup(t) = ūBsup
(
t, 1, r(t), λ(t), V (t); Ĵ

)
, (5.132)

uLsup(t) = ūLsup
(
t, 1, r(t), λ(t), V (t); Ĵ

)
, (5.133)

uSsup(t) = ūSsup
(
t, 1, r(t), λ(t), V (t); Ĵ

)
, (5.134)

where ĉsup, û
B
sup, û

L
sup, and û

S
sup are given by (5.116)-(5.130).

5.4 Financial Market with Rolling (UOS market)

In this section we present another �nancial model on which we will work: we consider a market model which,
besides the money account G(t) and the risk asset with price process S(t), contains a (discrete-time) rolling
bond and a (discrete-time) rolling longevity bond, with price processes U∆(t, T ) and O∆(t, T ), where T is a
�xed maturity time. The latter (zero coupon) bonds are introduced in Sections 2.4 and 4.4, respectively. In the
sequel we will shortly refer to this market as the UOS market model.

We will extend the results of Section 5.2 to this setting and, to keep this section self-contained, we will
repeat also some of the notations and assumptions already introduced in Section 5.2.

Let (Ω,F , P ) be a complete probability space, let τ be the death time of the investor, and the vector process
z(t) = (r(t), λ(t)) be the state variables vector where the processes r(t) and λ(t) are referred to as the riskless
interest rate, and the stochastic mortality intensity of the investor, respectively.

Summarizing, we assume that

P (τ <∞) = 1 (5.135)
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and that the market is described by two structures, i.e., the so called state variables described by the vector
process z(t) = (r(t), λ(t)), and the �nancial assets traded on the market. In details, using the notations
introduced in the previous chapters, the vector process z(t) evolves as follows

dz(t) = µz(t)dt+ Σz(t)dW z(t), (5.136)

(see (4.9), (4.10) and (4.11)), the money market account G(t) is given by (1.3), and the �nancial assets are

1. A discrete-time rolling bond, with maturity T , with price process U∆(t, T );

2. A discrete-time longevity rolling bond, with maturity T , with price process O∆(t, T );

3. A risk asset with price process S(t).

Furthermore, since (5.135) holds, then (see Lemma 3.3.7) the process λ(t) satis�es the following condition

P

(∫ ∞
t0

λ(u)du =∞
)

= 1, ∀t0 ≥ 0.

By the results obtained in Chapters 2 and 4, let the process ξS(t) be the market price for the stock given
by (2.70), and let ξz(t) = (ξr(t), ξλ(t))′ be the market price for the riskless interest rate and the longevity risk
given by (4.32) and (4.33). In the sequel we denote by ξ(t) the market price, where

ξ(t) = ξ̃(t, z(t), S(t)) =
(
ξ̂r(t, r(t)), ξ̂λ(t, z(t)), ξ̂S(t, r(t), S(t))

)′
. (5.137)

Then the processes U∆(t, T ), O∆(t, T ) and S(t) can be described by the di�erential equations (2.74), (4.90),
and (2.71), respectively, so that we can summarize the UOS market structures in the follow matrix form

dz(t) = µz(t)dt+ Π(t)dW (t), (5.138)

dA∆(t) = diag
[
A∆(t)

]
(µA,∆(t)dt+ ΣA,∆(t)dW (t)) , (5.139)

where

µz(t) = µ̃z(t, z(t)) =
(
µ̂r(t, r(t))
µ̂λ(t, z(t))

)
, W (t) =

 W r(t)
Wλ(t)
WS(t)

 , (5.140)

Π(t) = Π̃(t, z(t)) =
(
σ̂r(t, r(t)) 0 0

0 σ̂λ(t, z(t)) 0

)
, (5.141)

and

A∆(t) =

 U∆(t, T )
O∆(t, T )
S(t)

 , diag
[
A∆(t)

]
=

 U∆(t, T ) 0 0
0 O∆(t, T ) 0
0 0 S(t)

 ,

µA,∆(t) = µ̃A,∆(t, z(t), S(t))

=


r(t) + ξ̂r(t, r(t))σ̂r(t, r(t))

B̂T+bt/∆c∆
r

B̂T+bt/∆c∆ (t, r(t))

r(t) + λ(t) + L̂T+bt/∆c∆
z

L̂T+bt/∆c∆ (t, z(t))Σ̃z(t, z(t))ξ̂z(t, z(t))

r(t) + σ̂Sr (t, r(t), S(t))ξ̂r(t, r(t)) + σ̂SS(t, r(t), S(t))ξ̂S(t, r(t), S(t))

 , (5.142)

ΣA,∆(t) = Σ̃A,∆(t, z(t), S(t))

=


σ̂r(t, r(t)) B̂

T+bt/∆c∆
r

B̂T+bt/∆c∆ (t, r(t)) 0 0

σ̂r(t, r(t)) L̂
T+bt/∆c∆
r

L̂T+bt/∆c∆ (t, z(t)) σ̂λ(t, r(t)) L̂
T+bt/∆c∆
λ

L̂T+bt/∆c∆ (t, z(t)) 0

σ̂Sr (t, r(t), S(t)) 0 σ̂SS(t, r(t), S(t))

 , (5.143)

Remark 5.4.1. Observe that µA,∆(t) and ΣA,∆(t) are deterministic functions of t, z(t), and S(t) since on
the one hand the drift and di�usion coe�cients of z(t) are deterministic functions of t and z(t), and on the
other hand the drift and di�usion coe�cients of S(t) are deterministic functions of t, r(t) and S(t) (see the
condition 2. of Remark 2.3.1), i.e, µS(t) = µ̂S(t, r(t), S(t)), σSr (t) = σ̂Sr (t, r(t), S(t)) and σSS(t) = σ̂SS(t, r(t), S(t)).
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In the sequel we assume the following standing condition.

Assumption 5.4.1. We assume that the matrix ΣA,∆ is invertible, i.e., the �nancial market is complete (see
Corollary 1.4.5).

Remark 5.4.2. Let ΣA,∆(t) be given by (5.143). Then the UOS market is complete whenever

σ̂r(t, r(t))B̂T+bt/∆c∆
r > 0, σ̂λ(t, r(t))L̂T+bt/∆c∆

λ > 0, σ̂SS(t, r(t), S(t)) > 0 ∀(t, ω).

Indeed, since the matrix ΣA,∆(t) is lower triangular, the functions B̂T+bt/∆c∆(t, r(t)) and L̂T+bt/∆c∆(t, z(t)) are
striclty positive (see Assumptions 2.2.1 and 4.3.2), the previous conditions implies that ΣA,∆(t) is invertible and
market completeness follows by Corollary 1.4.5.

In order to model the evolution of the stochastic mortality intensity, λ(t), we assume that N(t) is a doubly
stochastic Poisson process respect to G as de�ned in (3.33), i.e.,

N(t) = N̂

(∫ t

0

λ(u)du
)
,

where the standard Poisson process N̂(t) is independent of the intensity process λ(t), with respect to a suitable
�ltration. Before specifying the �ltration we introduce a further process, the investor wealth process V (t), and
consider the multidimensional process (z(t), S(t), V (t)) (see the next Section 5.4.1). Section 5.4.2 is devoted to
the assumptions on the �ltration.

5.4.1 The investor's wealth in UOS market

We now form a portfolio (see Section 1.3) associated to G(t), U∆(t, T ), O∆(t, T ) and S(t), i.e., let h(t) =
(h0(t), h1(t), h2(t), h3(t)) be the portfolio associated to X = (X0, X1, X2, X3), where

X0 = G(t), X1 = U∆(t, T ), X2 = O∆(t, T ), X3 = S(t),

and

h0(t) = hG(t), (h1(t), h2(t), h3(t)) = (hU,∆T (t), hO,∆T (t), hS(t)) = hA,∆(t).

Denoting the consumption rate by the process C(t), we assume that (h,C) is a self-�nancing portfolio-consumption
pair. Similarly to Section 1.3, instead of specifying h(t), the absolute number of shares held of a certain asset, it
may be convenient to consider (UG(t), UU,∆

T (t), UO,∆
T (t), US(t)), the corresponding relative portfolio. By (1.16)

and (1.17) we have

UG(t) = 1{G(t)>0} u
G(t) = uG(t)

UU,∆
T (t) = 1{U∆(t,T )>0}u

U,∆
T (t) = uU,∆T (t)

UO,∆
T (t) = 1{O∆(t,T )>0}u

O,∆
T (t) = uO,∆T (t)

US(t) = 1{S(t)>0} u
S(t) = uS(t)

for the relative portfolio corresponding to G(t), U∆(t, T ), O∆(t, T ), and S(t), with

uG(t) + uU,∆T (t) + uO,∆T (t) + uS(t) = 1. (5.144)

Since here T is �xed, from now on we will drop the subscript T in uU,∆T (t) and uO,∆T (t), and so we write uU,∆(t) and
uO,∆(t), respectively. Let uA,∆(t) = (uU,∆(t), uO,∆(t), uS(t)) be the relative portfolio corresponding to hA,∆(t).
The dynamics of the value process for the self-�nancing portfolio-consumption pair (see (1.21)) are given by{

dV (t) = V (t)
[
uG(t)dG(t)

G(t) + uU,∆(t)dU
∆(t,T )

U∆(t,T ) + uO,∆(t)dO
∆(t,T )−dD(t,T )
O∆(t,T ) + uS(t)dS(t)

S(t)

]
− C(t)dt,

V (t0) = V,

or in the compact form{
dV (t) = V (t)

[
uG(t)dG(t)

G(t) + uA,∆(t)diag−1[A∆(t)]dA∆(t)− uO,∆(t)dD(t,T )
O(t,T )

]
− C(t)dt,

V (t0) = V,

where
uA,∆(t) = (uU,∆(t), uO,∆(t), uS(t)) . (5.145)
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After substituting the expression for uG taken from (5.13), i.e.,

uG(t) = 1− (uU,∆T (t) + uO,∆T (t) + uS(t)) = 1− uA,∆(t)1, (5.146)

where 1 = (1, 1, 1)′, the dynamics of the process V (t) can be written as

dV (t) = V (t)
[
(1− uA,∆(t)1)

dG(t)
G(t)

+ uA,∆(t)diag−1
[
A∆(t)

]
dA∆(t)− uO,∆(t)

dD(t, T )
L(t, T )

]
− C(t)dt,

so that, by the expression (5.139) for the di�erential form dA∆, and (4.24) for dD after some simpli�cations,
we obtain

dV (t) = V (t)
[(

1− uA,∆(t)1
)
r(t)dt+ uA,∆(t)

(
µA,∆(t)dt+ ΣA,∆(t)dW (t)

)
− uO,∆(t)

dD(t, T )
O(t, T )

]
− C(t)dt[

V (t)r(t) + V (t)uA,∆(t)
(
µA,∆(t)− r(t)1− λ(t)1λ

)
− C(t)

]
dt+ V (t)uA,∆(t)ΣA,∆(t)dW (t), (5.147)

where 1λ = (0, 1, 0)′.

Let us consider the agent at time t0 with a stochastic time horizon τ , coinciding with her/his death time, i.e.,
she/he will act in the time interval [t0, τ). At time t0 the agent has the initial wealth V , and her/his problem
is how to allocate investments and consumption over the time horizon. Since the admissible strategies involve
consumption, and we restrict the investment-consumption pair to be self-�nancing, the second fundamental
asset pricing theorem (see Theorem 1.4.3) is not valid. Then the objective of the agent is to choose a portfolio-
consumption strategy to maximizing her/his preferences. Formally we are considering a stochastic optimal
control problem. In Appendix D.1 we focus on some necessary mathematical tools for studying a general class
of optimal control problems.

5.4.2 Assumptions on the �ltration

Now we extend Assumption 4.2.1 and condition (4.15) on the σ-algebra G to this setting so that we have

Fλt ∨ Frt ∨ FSt ∨ FNt ∨ σ(V ) ⊆ Ft, ∀t ∈ [0, T ] ,

G ⊃ Fr∞ ∨ Fλ∞ ∨ FS∞ ∨ σ(V ).

As we will see below, in this setting it is necessary to discern FNt from all other �ltrations. To this end we
introduce another �ltration G such that, according to the above, the �ltration G contains Fλt ∨Frt ∨FSt ∨σ(V ).
However, in Section 2.3, by Assumptions 1.2.1 and 1.2.2, we have considered the augmented �ltration associated
to the process W S, i.e., F̄WS

. Then, in the sequel, according to (4.3), it is necessary to assume that

F̄W ⊂ G.

Let us formulate this as a formalized assumption.

Assumption 5.4.2. We assume that on (Ω,F , P ) there exists a σ-algebra G and a �ltration G such that
∀t ∈ [0, T ]

F̄Wt ⊂ Gt, (5.148)

Frt ∨ Fλt ∨ FSt ∨ σ(V ) ⊆ Gt, (5.149)

and

Fr∞ ∨ Fλ∞ ∨ FS∞ ∨ σ(V ) ⊆ G. (5.150)

As already discussed, the crucial point is the �ltration with respect to which the process λ is a stochastic
mortality intensity. In particular we recall that, usually, the stochastic intensity is considered with respect to a
�ltration H satisfying the usual conditions and such that

Fλt ∨ FNt ⊆ Ht = Gt ∨ FNt ⊆ G ∨ FNt , ∀t ∈ [0, T ] . (5.151)

Furthermore, by Proposition 3.3.4 we know that the H-stochastic intensity is still λ. In particular we can take

Ht = Gt ∨ FNt . (5.152)
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5.5 Optimal control problem with Rolling

5.5.1 Optimal Markov control problem without the budged constraint
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Chapter 6

The Optimal Portfolio: the CRRA utility

case

6.1 Introduction

In Section 5.3, we have considered two di�erent problem respect to the classes of admissible control processes,
i.e., control processes such that depend on the processes z0, z, V and S, (see (P̄)) or only through the processes
z0, z and V (see (P̂)).

In this chapter we take into account the case of a complete market with a CRRA investor, i.e., we consider
the CRRA (Constant Relative Risk Aversion) utility function, and we solve the control problems (P̄) and (P̂)
taking into account a particular factorization for the corresponding value function.

Finally, in the last section we present a speci�c model which allows us to compute the exact amount of wealth
that must be allocated to the �nancial assets. In particular we present a model where the stochastic mortality
λ(t) dependent on the interest rate r(t), and we take as assets traded on the market a rolling bond, a T -zero
coupon longevity and a stock, where T is a suitable deterministic time such that, on the basis of demographic
considerations, at time T the investor will be dead.

We refer to Fleming and Soner [12] for the optimal portfolio and (stochastic) dynamic programming theory,
and to Rutkowski [20] for the case of a market with rolling bonds.

6.2 The Optimal Consumption and Portfolio for (P̄) in BLS market

Let (5.65) be the value function for the control problem (P̄), i.e.,

J(t0, Z) = sup
uA,c∈Ūad

EP
[∫ ∞

t0

e−ρ tz0(t)U
(
V (t)c(t)

)
dt
∣∣∣Z(t0) = Z

]
, (6.1)

where Z(t) = (z0(t), r(t), λ(t), V (t), S(t))′ with dynamics given by (5.60)-(5.64). According to the results of
Section 5.3.1, now we solve the partial di�erential equation (5.76). Let the utility function be the CRRA
function, i.e.,

U(C) =
1

1− δ
C1−δ, (6.2)

with δ > 1, so that

U̇−1(y) = y−
1
δ and U

(
U̇−1(y)

)
=

1
1− δ

y1− 1
δ , (6.3)

then the partial di�erential equation (5.76) becomes

∂H

∂t
(t, Z) +

δ

1− δ
e−

ρ
δ tz

1
δ
0

(
∂H

∂V
(t, Z)

)1− 1
δ

+ Lū
A
sup(·;H),c̄sup(·;H)H(t, Z). (6.4)

On the other hand, substituting the CRRA function given by (6.2) in (6.1) we obtain

J(t0, Z) =
1

1− δ
sup

uA,c∈Ūad

EP
[∫ ∞

t0

e−ρ tz0(t)
(
V (t)c(t)

)1−δ
dt
∣∣∣Z(t0) = Z

]
, (6.5)
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and using the explicit form of V (t) given by (5.29), we have that

J(t0, z0, z, V, S) =
V 1−δ

1− δ
F δ(t0, z0, z, V, S) (6.6)

where

F δ(t0, z0, z, V, S)

= sup
uA,c∈Ūad

EPz0,z,S,V

[∫ ∞
t0

e−ρt z0(t)c(t)1−δe
(1−δ)

∫ t
t0

(
r(s)+uA(s)M(s)−c(s)− 1

2 |u
A(s)ΣA(s)|2ds

)
ds

e
(1−δ)

∫ t
t0
uA(s)ΣA(s)dW (s)

dt
]

withM = µA−r1−λ1λ, and c(t), uA(t), µA(t) and ΣA(t) given by (5.45), (5.46), (5.10) and (5.11), respectively.
Now we may proceed to solve directly the above problem, but we observe that the function F (t0, z0, z, V, S)

has to be determined in order that J̄(t0, z0, z, V, S) satis�es the Hamilton-Jacobi-Bellman equation (6.4). To
this end we need to calculate the following derivatives1

Jt = Jδ
Ft
F
, (6.7)

JV = J

(
1− δ
V

+ δ
FV
F

)
, JV V = J

[(
1− δ
V

+ δ
FV
F

)2

− 1− δ
V 2

+ δ
FV VF − F 2

V

F 2

]
, (6.8)

and, denoting (z0, r, λ, V, S)′) = (z0, z1, z2, z3, z4)′ (similarly to the notations (5.59)), for i 6= 3 (i.e.zi 6= V ),

Jzi = Jδ
Fzi
F
, Jzizj = J

(
δ2
FziFzj
F 2

+ δ
Fzizj − FziFzj

F 2

)
(6.9)

JV zi = J

[
δ
Fzi
F

(
1− δ
V

+ δ
FV
F

)
+ δ

FV ziF − FVFzi
F 2

]
. (6.10)

Substituting the value function J(t0, z0, z, V, S) and its partial derivatives in Hamilton-Jacobi-Bellman equa-
tion (6.4), we obtain that the function F (t0, z0, z, V, S) also solves a partial di�erential equation, but in general
we do not know how to solve it explicitly. Nevertheless we can �nd a solution independent of V , i.e.,

F (t0, z0, z, V, S) = F̌ (t0, z0, z, S). (6.11)

With a little abuse of notation in the sequel we will continue to denote F̌ as F .
If (6.11) holds, then

J(t0, z0, z, V, S) =
V 1−δ

1− δ
F δ(t0, z0, z, S) (6.12)

is our candidate value function for the optimal Markov control problem.
Furthermore, since the market is complete, (see Assumption 5.2.1) the function F (t0, z0, z, S) can be repre-

sented through the Feynman-Ka�c theorem as shown in the following proposition.

Proposition 6.2.1. If the market is arbitrage free and complete, then the function F in (6.12) has the repre-
sentation

F (t0, z0, z, S) = EQ̄t0,z0,z,S

(∫ ∞
t0

e−
ρ
δ sz

1
δ
0 (s)e−

δ−1
δ

∫ s
t0

(r(u)+ 1
2δ ξ
′(u)ξ(u))duds

)
, (6.13)

where the measure Q̄ and the subscripts t0, z0, z and S denote that the expectation are taken using the following
dynamics

dz0(s) = −λ(s)z0(s)ds (6.14)

dz(s) =
(
µz(s) +

1− δ
δ

Π(s)ξ(s)
)
ds+ Π(s)dW Q̄(s) (6.15)

dS(s) = S(s)
[(
r(s) + σSr (s)ξr(s) + σSS(s)ξS(s) +

1− δ
δ

σS(s)ξ(s)
)
ds+ σS(s)dW Q̄(s)

]
(6.16)

with the initial conditions given by z0(t0) = z0, z(t0) = z, and S(t0) = S.

1For the notational convenience, the argument (t0, z0, z, V, S) �have been suppressed� so that we have used the shorthand notation
of the form

J = J(t0, z0, z, V, S), F = F (t0, z0, z, V, S)

and similarly for the partial derivatives terms.
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Proof. As already discussed, the function F (t0, z0, z, S) must solve the partial di�erential equation (6.4). Con-
sidering the value function J(t0, z0, z, V, S) given by (6.12), we have that the partial derivative in (6.8) and
(6.10) becomes

JV = J
1− δ
V

, JV V = Jδ
δ − 1
V 2

, (6.17)

and for zi 6= V

JV zi = J
δ(1− δ)

V

Fzi
F
. (6.18)

For the notational convenience, in the sequel we denote t0 by t. After substituting (6.7), (6.9), (6.17) and (6.18)
into (6.4) we obtain

Ft + e−
ρ
δ tz

1
δ
0 − z0λFz0 + (µ′z +

1− δ
δ

M ′Q−1ΣAΠ′)Fz +
1− δ
δ

(
r +

1
2δ
M ′Q−1M

)
F

+
1
2
tr[Π Π′Fzz] +

1− δ
2

1
F
F ′zΠ(ΣA′Q−1ΣA − I)Π′Fz +

1− δ
2

1
F
S2 F 2

Sσ
S(ΣA′Q−1ΣA − I)σS

′

+ S(r + σSr ξr + σSSξS +
1− δ
δ

M ′Q−1ΣAσS
′
)FS +

1
2
S2
∣∣σS∣∣2 FSS + S(σSrσ

r)FrS

+ (1− δ)SFS
F
F ′zΠ(ΣA′Q−1ΣA − I)σS′ = 0, (6.19)

where we have already simpli�ed the common term δ JF .
By the arbitrage free and complete market assumptions, we have that2

ΣA′Q−1ΣA = I, and ΣAξ = M, (6.20)

taking into account (5.90). Then we obtain

M ′Q−1ΣA = ξ′, and M ′Q−1M = ξ′ξ,

so that, taking into account that ξ′Π′ = (Πξ)′ and ξ′(σS)′ = (σSξ)′, the equation (6.19) becomes

Ft + e−
ρ
δ tz

1
δ
0 − z0λFz0 + (µ′z +

1− δ
δ

(Πξ)′)Fz +
1− δ
δ

(
r +

1
2δ
ξ′ξ

)
F +

1
2
tr[Π Π′Fzz]

+ S(r + σSr ξr + σSSξS +
1− δ
δ

(σSξ)′)FS +
1
2
S2
∣∣σS∣∣2 FSS + S(σSrσ

r)FrS = 0. (6.21)

Then by applying the Feynman-Ka�c representation to the function F (t, z0, z, S) satisfying the partial di�erential
equation (6.21), we obtain the announced result.

In such a case we are able to compute a solution in a quasi-explicit form only when the �nancial market is
complete. The results are shown in the following proposition. In the sequel for the notational convenience we
denote t0 = t.

Proposition 6.2.2. Under the completeness Assumption 5.2.1, let F be the function given by (6.13). If

F ∈ C1,2(R+, (0, 1)×R3), then J = V 1−δ

1−δ F
δ is the value function given by (6.5), and the corresponding optimal

controls are

csup(t) = c̄sup(t, z0(t), z(t), S(t);F ), (6.22)

uBsup(t) = ūBsup(t, z0(t), z(t), S(t);F ), (6.23)

uLsup(t) = ūLsup(t, z0(t), z(t), S(t);F ), (6.24)

uSsup(t) = ūBsup(t, z0(t), z(t), S(t);F ), (6.25)

2Recall that (see Theorem 1.4.6) if the market is arbitrage free then the market price of risk ξ = (ξr, ξλ, ξS)
′
must verify

ΣAξ = µA(t)− r(t)1− λ(t)1λ = M . Furthermore

Q = ΣA
(
ΣA
)′
,

and the arbitrage free market is complete if and only if the matrix ΣA is invertible (see Corollary 1.4.5).
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where3

c̄sup(t, z0, z, S;F ) =
z

1
δ
0 e
− ρδ t0

F
, (6.26)

ūBsup(t, z0, z, S;F ) =
1
δ

ξrσ
S
S − σSr

BTr
BT

σr σSS
+

Fr
F
BTr
BT

−
LTr
LT

BTr
BT

(
1
δ

ξλ
LTλ
LT

σλ
+

Fλ
F
LTλ
LT

)
, (6.27)

ūLsup(t, z0, z, S;F ) =
1
δ

ξλ
LTλ
LT

σλ
+

Fλ
F
LTλ
LT

, (6.28)

ūSsup(t, z0, z, S;F ) =
1
δ

ξS
σSS

+ S
FS
F
, (6.29)

and z0(t), z(t) and S(t) are solutions of (5.50), (5.51) and (5.52) with initial conditions (5.55). Furthermore the
function F (t, z0, z, S) is given by (6.13) with z0(s), z(s) and S(s) solving (6.14), (6.15) and (6.16), respectively.

Observe that if we consider the arguments (t, z0, z, S) instead of (t, z0(t), z(t), S(t)) in above expression, then

we write ξ̂r, ξ̂λ, ξ̂S instead of ξr, ξλ, ξS respectively, and similarly for the other terms. Observe that the optimal
consumption and portfolio c̄sup and ū

A
sup not depend on V , then we can conclude that the optimal consumption

and portfolio for the CRRA investor not depend on the value of the portfolio.

Proof. Taking into account (6.3) and (6.12), and substituting the partial derivative (6.7), (6.9), (6.17) and (6.18)
into (5.72)-(5.75), by Proposition 5.3.5 we have that

c̄sup(t, z0, z, S;F ) =
1
V
U̇−1

(
JV

e−ρtz0

)
=

1
V
z

1
δ
0 e
− ρδ t

(
J(1− δ)

V

)− 1
δ

=
1
F
z

1
δ
0 e
− ρδ t, (6.30)

and the compact form of (6.27)-(6.29)

(
ūAsup

)′ (t, z0, z, S;F ) = − JV
V JV V

Q−1M − 1
V JV V

Q−1ΣAΠ′ JzV −
SJV S
V JV V

Q−1ΣAσS′

=
1
δ
Q−1M +

1
F
Q−1ΣAΠ′Fz +

S

F
Q−1ΣAσS′FS, (6.31)

where Q = ΣAΣA′ and JzV = (JrV , JλV )′. Finally, we can write the expression (6.31) in explicit form substi-
tuting the partial derivative (6.7), (6.9), (6.17) and (6.18) into and (5.73), (5.74) and (5.75), so that, after some
reshu�ing, we obtain (6.27)-(6.29). Finally, since F ∈ C1,2(R+, (0, 1) × R3), by the Veri�cation Theorem (see
Theorem D.1.2) we obtain the announced results.

Remark 6.2.1. Recall that we search the optimal consumption-investment strategy corresponding to the problem
with value function J(t, z, S, V ) de�ned in (5.43). The value function J(t, z, S, V ) is obtained by computing in
z0 = 1 the value function J̄(t, z0, z, S, V ) de�ned in (5.49) (see (5.91)). It is interesting to observe that in the
CRRA case the optimal consumption c̄sup and optimal portfolio ūAsup do not depend on the initial condition z0,

though the value function J̄ depends explicitly on z0: indeed on the one hand, for any �xed initial condition z0,
the representation (6.13) for F becomes

F (t0, z0, z, S) = z
1
δ
0 E

Q̄
t0,z,S

(∫ ∞
t0

e−
ρ
δ se
− 1
δ

∫ s
t0
λ(u)du

e
− δ−1

δ

∫ s
t0

(r(u)+ 1
2δ ξ
′(u)ξ(u))duds

)
= z

1
δ
0 K(t0, z, S), (6.32)

by Proposition 6.2.2, we obtain that c̄sup(t, z0, z, S;F ) = ¯̄csup(t, z, S;K) and ūAsup(t, z0, z, S;F ) = ¯̄uAsup(t, z, S;K)
where K is the de�ned in (6.32), and

3For the notational convenience, the arguments (t, z0(t), z(t), S(t)) �have been suppressed� and we we used the shorthand notation
of the form

F = F (t, z0, z, S),

and similarly for the partial derivatives.
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¯̄csup(t, z, S;K) =
1

EQ̄t0,z,S

(∫∞
t0
e−

ρ
δ (s−t0)e

− 1
δ

∫ s
t0
λ(u)du

e
− δ−1

δ

∫ s
t0

(r(u)+ 1
2δ ξ
′(u)ξ(u))duds

) , (6.33)

¯̄uBsup(t, z, S;K) =
1
δ

ξrσ
r,S
S − σr,Sr

BTr
BT

σr σr,SS
+

Kr
K
BTr
BT

−
LTr
LT

BTr
BT

(
1
δ

ξλ
LTλ
LT

σλ
+

Kλ
K
LTλ
LT

)
(6.34)

¯̄uLsup(t, z, S;K) =
1
δ

ξλ
LTλ
LT

σλ
+

Kλ
K
LTλ
LT

(6.35)

¯̄uSsup(t, z, S;K) =
1
δ

ξS

σr,SS
+ S

KS

K
. (6.36)

On the the other hand, we get that J̄(t, z0, z, S, V ) = V 1−δ

1−δ z0K
δ(t0, z, S); and therefore, for z0 = 1, we can

rewrite (6.12) as

J(t0, z, V, S) =
V 1−δ

1− δ
F δ(t0, z, S) (6.37)

where F coincides with K and has the representation

F (t0, z, S) = EQ̄t0,z,S

(∫ ∞
t0

e−
ρ
δ se
− 1
δ

∫ s
t0
λ(u)du

e
− δ−1

δ

∫ s
t0

(r(u)+ 1
2δ ξ
′(u)ξ(u))duds

)
. (6.38)

6.2.1 The Optimal Consumption and Portfolio for (P̂)

In this section we follow the same steps for the problem (P̄) and here we obtain the similar results. Recall
that the di�erence between the problem (P̄) and (P̂) is that the latter concern control processes such that not
depend directly on the dynamics of the risk asset, but only through the processes z0, z and V . Let J be the
value function for the control problem (P̄), i.e.,

J(t0, Ž) = 1{τ>t0} sup
ûA,ĉ∈Ûad

EP
[∫ ∞

t0

e−ρ tz0(t)U
(
V (t)c(t)

)
dt
∣∣∣Ž(t0) = Ž

]
(6.39)

where Ž(t) = (z0(t), r(t), λ(t), V (t))′ with dynamics given by (5.108)-(5.112). According to the results of
Section 5.3.2, now we solve the partial di�erential equation (5.114). Let the CRRA utility function given by
(6.2), and taking into account (6.3), we have that the partial di�erential equation (5.114) becomes

∂J

∂t
(t, Ž) +

δ

1− δ
e−

ρ
δ tz

1
δ
0

(
∂J

∂V
(t, Ž)

)1− 1
δ

+ Lû
A
sup,ĉsupJ(t, Ž). (6.40)

Using the explicit form of V (t) given by (5.29), we have that the value function J is given by

J(t0, z0, z, V ) =
V 1−δ

1− δ
F δ(t0, z0, z, V ) (6.41)

where

F δ(t0, z0, z, V )

= sup
ûA,ĉ∈Uad

EPz0,z,V

[ ∫ ∞
t0

e−ρt z0(t)c(t)1−δe
(1−δ)

∫ t
t0

(
r(s)+uA(s)M(s)−c(s)− 1

2 |u
A(s)ΣA(s)|2ds

)
ds

e
(1−δ)

∫ t
t0
uA(s)ΣA(s)dW (s)

dt
]

with M = µA − r1 − λ1λ, and uA(t), c(t), µA(t) and ΣA(t) given by (5.99) and (5.100), (5.97) and (5.98),
respectively.

Exactly as in the previous section, substituting the value function J(t0, z0, z, V ) and its partial derivatives4

in Hamilton-Jacobi-Bellman equation (6.40), we obtain that the function F (t0, z0, z, V ) also solves a partial

4In this setting the partial derivatives of J(t0, z0, z, V ) are given by (6.7), (6.8), (6.9) and (6.10) taking into account that J and
F are a functions depend on (t0, z0, z, V ). In particular (6.9) and (6.10) are valid for i = 0, 1, 2, 3.
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di�erential equation, but in general we do not know how to solve it explicitly. Nevertheless we can �nd a
solution independent of V , i.e.,

F (t0, z0, z, V ) = F̌ (t0, z0, z). (6.42)

With a little abuse of notation in the sequel we will continue to denote F̌ as F .
If (6.42) holds, then

J(t0, z0, z, V ) =
V 1−δ

1− δ
F δ(t0, z0, z) (6.43)

is our candidate value function for the optimal Markov control problem.
Furthermore, since the market is complete, (see Assumption 5.2.1), analogously to the Proposition 6.2.1, the

function F (t0, z0, z) can be represented through the Feynman-Ka�c theorem as shown in the following proposition.

Proposition 6.2.3. If the market is arbitrage free and complete, then the function F in (6.43) has the repre-
sentation

F (t0, z0, z) = EQ̄t0,z0,z

(∫ ∞
t0

e−
ρ
δ sz

1
δ
0 (s)e−

δ−1
δ

∫ s
t0

(r(u)+ 1
2δ ξ
′(u)ξ(u))duds

)
(6.44)

where the measure Q̄ and the subscripts t0, z0, and z denote that the expectation are taken using the following
dynamics

dz0(s) = −λ(s)z0(s)ds (6.45)

dz(s) =
(
µz(s) +

1− δ
δ

Π(s)ξ(s)
)
ds+ Π(s)dW Q̄(s) (6.46)

dS(s) = S(s)
[(
r(s) + σSr ξr(s) + σSSξS(s) +

1− δ
δ

σSSξ(s)
)
ds+ σS(s)dW Q̄(s)

]
(6.47)

with the initial conditions given by z0(t0) = z0, and z(t0) = z.

Proof. The proof follow immediately by Proposition 6.2.1. Indeed, taking into account that in this setting the
partial derivative of J(t0, z0, z, V ) respect to S are null, the equation (6.21) becomes5

Ft + e−
ρ
δ tz

1
δ
0 − z0λFz0 + (µ′z +

1− δ
δ

ξ′Π′)Fz +
1− δ
δ

(
r +

1
2δ
ξ′ξ

)
F +

1
2
tr[Π Π′Fzz] (6.48)

Then by applying the Feynman-Ka�c representation to the function F (t0, z0, z) such that satis�es the partial
di�erential equation (6.48), we obtain the announced result.

So again we are able to compute a solution in a quasi-explicit form only when the �nancial market is
complete. The results are shown in the following proposition analogous to Proposition 6.2.2.

Proposition 6.2.4. Under the completeness Assumption 5.2.1 if the function F in (6.44) is C1,2(R+,R3),
then, for the Markov control problem (P̂), the optimal consumption and portfolio are given by

ĉsup =
z

1
δ
0 e
− ρδ t0

F
, (6.49)

ûBsup =
1
δ

ξrσ
r,S
S − σr,Sr

BTr
BT

σr σr,SS
+

Fr
F
BTr
BT

−
LTr
LT

BTr
BT

(
1
δ

ξλ
LTλ
LT

σλ
+

Fλ
F
LTλ
LT

)
(6.50)

ûLsup =
1
δ

ξλ
LTλ
LT

σλ
+

Fλ
F
LTλ
LT

(6.51)

ûSsup =
1
δ

ξS

σr,SS
, (6.52)

where for the notational convenience, the arguments (t, z0(t), z(t)) �have been suppressed� and we we used the
short notations previously introduced. Furthermore the F (t0, z0, z) is given by (6.44) with z0(s), z(s) and S(s)
solving (6.45), and (6.46), respectively.

5For the notational convenience, in the sequel we denote t0 by t.
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Observe that if we consider the arguments (t0, z0, z) instead of (t, z0(t), z(t)) in above expression, then we

write ξ̂r ,ξ̂λ, ξ̂S instead of ξr ,ξλ, ξS respectively, and similarly for the other terms. Observe that the optimal
consumption and portfolio ĉsup and û

A
sup not depend on V , then we can conclude that the optimal consumption

and portfolio for the CRRA investor not depend on the value of the portfolio.

Proof. The proof follow immediately by Proposition 6.2.4 taking into account that in this setting the partial
derivative of F (t0, z0, z, V ) respect to S are null.

Observe that in this section we have the same results obtained by Menoncin [18] as a particular case of the
general problem (P̄), where in the latter case the risk asset S(t) may not be a Black-Scholes model.

6.3 The Optimal Consumption and Portfolio for (P̄) in UOS market

6.4 A speci�c market model

The results shown in the previous section are quite general and characterize di�erent models for the �nancial
market and state variables. This section introduces a slight modi�cation of the model for the �nancial market
of Chapter 5, i.e., the classic bond-stock market with a longevity bond (in the sequel shortly denoted as RLS
market model).

The key point is that we have chosen to take the model where the interest rate r(t) and the stochastic
mortality intensity λ(t) are dependent, but with uncorrelated driving noises. In particular we take as assets
traded on the RLS market a rolling bond, a T -zero coupon longevity bond and a stock, where T is a suitable
deterministic time such that, on the basis of demographic considerations, the investor will be dead at time T
with probability 1.

The model can be speci�ed as follows.

1. We take as reference model for the interest rate r(t) the Cox-Ingersoll-Ross (CIR) model, given by{
dr(t) = ar (br − r(t)) dt+ σ̄r

√
r(t)dW r(t),

r(t0) = r
(6.53)

where W r is a 1-dimensional Wiener process, and ar, br, σ̄r and r are strictly positive deterministic
constants such that 2 ar br > σ̄2

r , so that the process r(t) remains strictly positive6.

2. We set the stochastic mortality intensity λ(t) as

λ(t) =
λ(c)(t) +D

T − t
, (6.54)

where D is a positive constant and the process λ(c)(t) is given by (3.51), so that, under P , the process
λ(t) satis�esdλ(t) =

(
1

T−t − aλ
)
λ(t)dt+

aλ

(
bλ+cr(t)+D

)
T−t dt+ 1√

T−t σ̄λ

√
λ(t)− D

T−t dW
λ(t),

λ(t0) = λ
(6.55)

whereWλ is a 1-dimensional Wiener process independent ofW r, and aλ, bλ, σ̄λ, and c are strictly positive
deterministic constants such that 2 aλ bλ > σ̄2

λ. Observe that the stochastic mortality intensity λ(t) is not
assumed to be independent of r since λ(c)(t) depend on r(t) and λ(t) is strictly positive. Furthermore,
assuming that the death time τ is the �rst jump time of a doubly stochastic Poisson process with intensity
λ(t), we get τ ≤ T a.s., as should be in this setting.

3. We �x a time TB ≤ T − t0 (in the applications we take TB = 25 years) and take a rolling bond R(t, TB),
i.e., a self-�nancing strategy that involves holding at any time one unit of a TB-sliding bond. We recall
(see, e.g., Rutkowski [20]) that the price of a TB-sliding bond is B(t, TB + t), the price at time t of a

6As shown in Shreve [21].
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TB + t-bond. Moreover taking the market price of risk ξ̂r(t, r(t)) = ξ̄r
√
r(t) , the value of these bonds

evolves according to7

dR(t, TB)
R(t, TB)

=
dR̂(t, r(t);TB)
R̂(t, r(t);TB)

= C0

(
f(t, t+ TB)− arbrψr,ξr (TB) + r(t)

(
arψr,ξr (TB) +

σ̄2
r

2
1− eαr TB

βr + γr eαr TB

))
dt

+ ψr,ξr (TB)σ̄r
√
r(t) dW r(t) (6.56)

under P , while

dR(t, TB)
R(t, TB)

=
dR̂(t, r(t);TB)
R̂(t, r(t);TB)

= C0

(
f(t, t+ TB) + arbrψr,ξr (TB) + r(t)

(
(ar − σ̄r ξ̄r)ψr,ξr (TB) +

σ̄2
r

2
ψr,ξr (TB)

))
dt

+ σ̄r
√
r(t)ψr,ξr (TB)dW r(t) (6.57)

under Q, where

ψr,ξr (TB) =
1− eαr,ξr TB

βr,ξr + γr,ξr e
αr,ξrTB

,

αr,ξr = −
√

(ar − σ̄r ξ̄r)2 + 2σ̄2
r , βr,ξr =

αr − ar + σ̄r ξ̄r
2

, γr,ξr =
αr + ar − σ̄r ξ̄r

2
,

and as usual, f(t, T ) stands for the instantaneous forward rate prevailing at time t for the future in�nites-
imal time period [T, T + dT ],

4. We take a T -longevity bond L(t, T ) given by (4.55). Fixed the maturity time T , and the market price

of risk ξ̂λ(t, λ(t)) = ξ̄λ

√
λ(t)− D

T−t , and as above ξ̂r(t, r(t)) = ξ̄r
√
r(t) , the value of these bonds evolves

according to (see Section 6.5.4)

dL(t, T )
L(t, T )

=
dL̂(t, z(t);T )
L̂(t, z(t);T )

=
(
r(t) + λ(t)− ψ(c)

r,ξr
(t)σ̄r ξ̄rr(t)− ψ(D)

λ (t)
ξ̄λσ̄λ√
T − t

(
λ(t)− D

T − t
))
dt

− ψ(c)
r,ξr

(t)σ̄r
√
r(t) dW r(t)− ψ(D)

λ (t)
σ̄λ√
T − t

√
λ(t)− D

T − t
dWλ(t). (6.58)

where the functions ψ
(c)
r,ξr

(t) and ψ(D)
λ (t) satisfy the following di�erential equations

ψ̇
(c)
r,ξr

(t) = −arψ(c)
r,ξr

(t)− σ̄2
r

2

(
ψ

(c)
r,ξr

)2

(t) +
c

T − t
ψ

(D)
λ (t) + 1 (6.59)

ψ̇
(D)
λ (t) =

( 1
T − t

− aλ
)
ψ

(D)
λ (t)− σ̄2

λ

2
(T − t)2

(
ψ

(D)
λ

)2

(t) + 1 (6.60)

with the initial conditions ψ
(c)
r,ξr

(0) = 0 and ψ
(D)
λ (0) = 0.

5. For the risky asset we take the Black and Scholes model, and, taking the market price of risk ξS = ξ̄S the
price process S(t) is given by

dS(t)
S(t)

=
(
r(t) + σSr ξ̄r

√
r(t) + σSS ξ̄S

)
dt+ σSr dW

r(t) + σSSdW
S(t), (6.61)

where ξ̄S, σ
S
r and σSS are deterministic constants.

7See Section 6.5.3).
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6.5 Properties of RLS market model

In this section we analyze some properties of the BLS market model brie�y describe in the previous section,
one of the main properties being that z(t) = (r(t), λ(t)) is an a�ne process8.

6.5.1 CIR interest rate model

We have taken as reference model for the interest rate r(t) the CIR process under the measure P . Moreover

taking the market price of risk ξ̂r(t, r(t)) = ξ̄r
√
r(t) , the dynamics of r(t) under the measure martingale Q are

given by (see (2.42))

dr =
(
arbr − (ar − σ̄r ξ̄r)r(t)

)
dt+ σ̄r

√
r(t) dW̄ r(t) (6.62)

i.e., r(t) is still a CIR model under Q.

6.5.2 Mortality intensity model

In this setting, the time T is a suitable deterministic time such that, on the basis of demographic considerations,
at time T the investor will be dead. Modelling the death time τ as the �rst jump time of a doubly stochastic
Poisson process with intensity λ(t), we have that τ ≤ T a.s., as shown in the following proposition.

Proposition 6.5.1. Let λ(t) be the process with dynamics given by (6.55), with aλ, bλ, c and σ̄λ strictly positive
deterministic constants such that 2 aλ bλ > σ̄2

λ. Then

λ(t) > 0 a.s.

Furthermore the �rst jump time τ of a doubly stochastic Poisson process with intensity λ(t) is such that

P
(
τ < T

)
= 1. (6.63)

Proof of Proposition 6.5.1. Since λ(c)(t) is strictly positive (see Proposition 3.4.2) and D > 0, we have

λ(t) =
λ(c)(t) +D

T − t
≥ D

T − t
> 0, ∀t ≤ T (6.64)

i.e., λ(t) is strictly positive. Furthermore we have that the mortality intensity λ(t) satis�es the following property

P
( ∫ T

t0

λ(u)du =∞
)

= 1. (6.65)

Indeed, by (6.64) we have that ∫ T

t0

λ(t)dt ≥
∫ T

t0

D

T − t
dt = +∞.

Now we show that τ satis�es (6.63). By the relation (3.38) with T1 = τ ,i.e.,

P
(
τ > T |G ∨ FNs

)
= 1τ>se−

∫ T
s
λ(u)du, (6.66)

we have that for each 0 ≤ t0 ≤ T

P (τ > T ) = E
(
E
(
1τ>T

∣∣∣G ∨ FNt0 )) = 1τ>t0E
(
e
−
∫ T
t0
λ(u)du

)
. (6.67)

Since (6.65) holds, we obtain that

P (τ < T ) = 1− P (τ > T ) = 1− 1τ>t0E
(
e−

∫ T
s
λ(u)du

)
= 1. (6.68)

8We recall that the convenience of adopting such processes is given by the key property of a�ne processes, i.e., the property
(2.51) of Section 2.3 (see also Section 3.3).
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Furthermore given the market price of risk ξ̂λ(t, λ(t)) = (ξ̄λ
√
λ(t)− D

T−t ), under the martingale measure Q

the dynamics of λ(t) are given by

dλ(t) =
( 1
T − t

− aλ −
ξ̄λσ̄λ√
T − t

)
λ(t)dt+

( ξ̄λσ̄λD√
(T − t)3

+
aλ

(
bλ + cr(t) +D

)
T − t

)
dt

+
1√
T − t

σ̄λ

√
λ(t)− D

T − t
dW̄λ(t). (6.69)

6.5.3 Rolling Bonds

In this setting we consider a self-�nancing strategy that involves holding at any time one unit of a sliding bond.
The wealth process of this strategy is referred to as the rolling bond. In contrast to the sliding bond, which does
not represent a tradable security in arbitrage-free market, the rolling bond may play the role of a security with
in�nite lifespan. In particular we take a constant time to maturity TB = 25 years. By (2.52) with T = TB + t,
we have that

B(t, t+ TB) = B̂(t, r, TB + t) = eψ
0
r,ξr

(TB)+ψr,ξr (TB)r (6.70)

where9

ψr,ξr (TB) =
1− eαr,ξr TB

βr,ξr + γr,ξr e
αr,ξr TB

,

ψ0
r,ξr (TB) = −2 ar br

σ̄2
r

ln

(
βr,ξr + γr,ξre

αr,ξr z

αr,ξr

)
+
ar br
βr,ξr

TB

with

αr,ξr = −
√

(ar − σ̄r ξ̄r)2 + 2σ̄2
r , βr,ξr =

αr,ξr − ar + σ̄r ξ̄r
2

, γr,ξr =
αr,ξr + ar − σ̄r ξ̄r

2
. (6.71)

Furthermore, taking into account (6.70) the price dynamics of B(t, TB + t) are given by 10

dB(t, TB + t)
B(t, TB + t)

=
dB̂(t, r(t), TB + t)
B̂(t, r(t), TB + t)

= ψr,ξr (TB)dr(t) +
1
2
ψ2
r,ξr (TB)σ̄2

rr(t)dt. (6.72)

Therefore, taking into account (6.53) under P we get

dB(t, TB + t)
B(t, TB + t)

= ψr,ξr (TB)
(
ar (br − r(t)) dt+ σ̄r

√
r(t)dW r(t)

)
+

1
2
ψ2
r,ξr (TB)σ̄2

rr(t)dt, (6.73)

while taking into account (6.62) under Q we get

dB(t, TB + t)
B(t, TB + t)

= ψr,ξr (TB)
((
arbr − (ar − σ̄r ξ̄r)r(t)

)
dt+ σ̄r

√
r(t) dW̄ r(t)

)
+

1
2
ψ2
r,ξr (TB)σ̄2

rr(t)dt. (6.74)

Moreover by Proposition 3.2 in Rutkowski [20] , we have that

R(t, TB) = C0A(t, TB)B(t, TB + t), (6.75)

where C0 = R(t0,TB)
B(t0,TB) , A(t, TB) = e

∫ t
t0
f(s,TB+s)ds

and so that

dR(t, TB)
C0

= dA(t, TB)B(t, TB + t) +A(t, TB)dB(t, TB + t)

= R(t, TB)
[(
f(t, t+ TB) +

dB(t, TB + t)
B(t, TB + t)

]
. (6.76)

9See Section 2.2.1.

10We observe that B̂r
B̂

(t, r(t), TB + t) = ψr,ξr (TB).
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6.5.4 Longevity Bonds

The aim of this section is the computation of

L̂(t, r, λ;T ) = EQt,z

(
e−

∫ T
t
r(s)dse−

∫ T
t
λ(s,r)ds

)
. (6.77)

Given the market price of risk
(
ξ̂r(t, r(t)), ξ̂λ(t, λ(t))

)
= (ξ̄r

√
r(t) , ξ̄λ

√
λ(t)− D

T−t ), under the martingale mea-

sure Q the dynamics of r(t) are given by (6.62), while the dynamics of λ(t) are given by (6.69). Similarly to
the procedure of Section 4.3.1, we use

eψ
0
z+mψ

(c)
r,ξr

(t)r+nψ
(D)
λ (t)λ

as guess function for

EQt,z

(
e−m

∫ T
t
r(s)dse−n

∫ T
t
λ(s,r)ds

)
.

By Itô's formula and equation (6.69), together with Feynman-Ka�c representation formula, we obtain that ψ
(c)
r,ξr

(t)

and ψ
(D)
λ (t) satis�es (6.59) and (6.60). Thus

L̂(t, r, λ;T ) = eψ
0
z+ψ

(c)
r,ξr

(t)r+ψ
(D)
λ (t)λ,

and the dynamics follows by Itô's formula.
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Chapter 7

The Optimal Portfolio: a numerical

simulation of the CRRA utility case

7.1 Numerical Simulation of the interest rate and the stochastic in-
tensity

To compute the price of derivatives with a Monte-Carlo algorithm, we need to simulate paths of (r(t), λ(t)) and
the �rst di�culty lies in simulating a CIR process. It is well known that a standard Euler scheme can lead to
negative values and then to complex values even if 2arbr > σ̄2

r , which we assume to hold (see Section 6.5.1).
Following Brigo and Alfonsi [4] and [5] we present here brie�y the implicit positivity-preserving Euler scheme
for r(t) and we extend this scheme to the case z(t) = (r(t), λ(t)). This approximation method ensures that the
simulation preserves the positivity property also in this setting.

We start recalling the explicit Euler scheme for a generic autonomous stochastic di�erential equation given
by

dX(t) = µ(X(t))dt+ σ(X(t))dW (t), X(0) = X0 0 ≤ t ≤ T (7.1)

To apply a numerical method to (7.1) over [0, T ], we �rst discretize the interval with the standard time dis-
cretization ti = iTn , for i = 0, . . . , n. For computational purpose it is useful to consider discretized Wiener
process, where W (t) is speci�ed at discrete t values. Let Wi denote W (ti). Then W0 = 0 with probability 1,
and

Wi = Wi−1 + ∆Wi, i = 1, 2, . . . , n

where {∆Wi} is a sequence of independent Gaussian random variables with zero mean and
√
ti+1 − ti variance.

We recall that the (explicit) Eulero-Maruyama method takes the form

xE(ti+1) = µ(xE(ti))
(
ti+1 − ti

)
+ σ(xE(ti))

(
Wi+1 −Wi

)
and, for ti < t < ti+1

either xE(t) = xE(ti), or xE(t) = xE(ti) +
t− ti

ti+1 − ti
(
xE(ti+1)− xE(ti)

)
and we known that it has strong order of convergence γ = 1

2 .
Brigo and Alfonsi show that the solution of (7.1) is also obtained with an implicit Eulero approximation,

xEimp(t), where as above for ti < t < ti+1,

either xEimp(t) = xEimp(ti), or xEimp(t) = xEimp(ti) +
t− ti

ti+1 − ti
(
xEimp(ti+1)− xEimp(ti)

)
,

where in this case xEimp(ti+1) is de�ne as the solution1 of the following equation

xEimp(ti+1)

= xEimp(ti) + µ(xEimp(ti+1))
(
ti+1 − ti

)
− σ(xEimp(ti+1))σ′(xEimp(ti+1))

(
ti+1 − ti

)
+ σ(xEimp(ti+1))

(
Wi+1 −Wi

)
, (7.2)

1To understand the philosophy of the implicit Euler scheme, observe that if

x(ti+1) = x(ti) + µ̃(x(ti+1))
(
ti+1 − ti

)
+ σ(x(ti+1))

(
Wi+1 −Wi

)
,

92



i.e.,

σσ′(xEimp(ti+1))
2

(
ti+1 − ti

)
+ xEimp(ti+1)−

(
µ(xEimp(ti+1)) (ti+1 − ti)

)
− σ(xEimp(ti+1))

(
Wi+1 −Wi

)
− xEimp(ti) = 0. (7.3)

In the CIR model one can �nd a closed form solution xEimp(ti+1), though generally this is not the case. Indeed,
in the CIR model

dx(t) = a
(
b− x(t)

)
dt+ σ

√
x(t) dW (t)

the di�usion coe�cient σ(x) = σ
√
x , so that σ′(x) = 1

2
√
x
σ, then σ(x)σ′(x) = σ

√
x 1

2
√
x
σ = 1

2 σ
2. Thus (7.3)

becomes

σ2

2
(
ti+1 − ti

)
+ xEimp(ti+1)−

(
ab− a xEimp(ti+1)

)
(ti+1 − ti)− σ

√
xEimp(ti+1)

(
Wi+1 −Wi

)
− xEimp(ti) = 0.

Let

yi+1 =
√
xEimp(ti+1) ,

then yi+1 is the positive solution of the following equation

y2
i+1 −

(
ab− a y2

i+1

)
(ti+1 − ti)− σ yi+1

(
Wi+1 −Wi

)
− xEimp(ti) +

σ2

2
(
ti+1 − ti

)
= 0,

i.e.,

(1 + a (ti+1 − ti)) y2
i+1 − σ

(
Wi+1 −Wi

)
yi+1 −

(
xEimp(ti) + ab (ti+1 − ti)−

σ2

2
(
ti+1 − ti

))
= 0.

Then yi+1 is given by

yi+1 =
σ
(
Wi+1 −Wi

)
+
√
σ2
(
Wi+1 −Wi

)2 + 4 (1 + a (ti+1 − ti))
(
xEimp(ti) + (ab− σ2

2 ) (ti+1 − ti)
)

2 (1 + a (ti+1 − ti))
.

for some function µ̃, then

x(tn)− x(0) =

n−1∑
i=0

(
x(ti+1)− x(ti)

)
=

n−1∑
i=0

µ̃(x(ti+1))
(
ti+1 − ti

)
+

n−1∑
i=0

σ(x(ti+1))
(
Wi+1 −Wi

)
=

n−1∑
i=0

µ̃(x(ti+1))
(
ti+1 − ti

)
+

n−1∑
i=0

(
σ(x(ti+1))− σ(x(ti))

) (
Wi+1 −Wi

)
+

n−1∑
i=0

σ(x(ti))
(
Wi+1 −Wi

)
'
n−1∑
i=0

µ̃(x(ti+1))
(
ti+1 − ti

)
+

n−1∑
i=0

σ′(x(ti))
(
x(ti+1)− x(ti)

) (
Wi+1 −Wi

)
+

n−1∑
i=0

σ(x(ti))
(
Wi+1 −Wi

)
.

As consequence, taking into account that
(
ti+1 − ti

) (
Wi+1 −Wi

)
= o(ti+1 − ti),

(
Wi+1 −Wi

)2 ' ti+1 − ti, and therefore

n−1∑
i=0

σ′(x(ti))
(
x(ti+1)− x(ti)

) (
Wi+1 −Wi

)
=

n−1∑
i=0

σ′(x(ti))
(
µ̃(x(ti+1))

(
ti+1 − ti

)
+ σ(x(ti+1))

(
Wi+1 −Wi

)) (
Wi+1 −Wi

)
=

n−1∑
i=0

σ′(x(ti)) µ̃(x(ti+1))
(
ti+1 − ti

) (
Wi+1 −Wi

)
+

n−1∑
i=0

σ′(x(ti))σ(x(ti+1))
(
Wi+1 −Wi

)2
'
n−1∑
i=0

σ′(x(ti))σ(x(ti+1)) (ti+1 − ti)

we obtain

x(tn)− x(0) ='
n−1∑
i=0

µ̃(x(ti+1))
(
ti+1 − ti

)
+

n−1∑
i=0

σ′(x(ti))σ(x(ti+1)) (ti+1 − ti) +

n−1∑
i=0

σ(x(ti))
(
Wi+1 −Wi

)
'
∫ tn

0

(
µ̃(x(s)) + σ σ′(x(s))

)
ds+

∫ tn

0
σ(x(s)) dWs

where for ti < t < ti+1, x(t) = x(ti).
The latter formula explain why the correct choice for µ̃ is

µ̃(x) = µ(x)− σ(x)σ′(x).
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Observe that we have assumed a > 0, b > 0 and ab > σ2

2 , so that if xEimp(ti) > 0 then yi+1 > 0, as should be.
Finally we obtain

xEimp(ti+1) = y2
i+1.

In order to simulate r(t) and λ(t), we apply the previous scheme to r(t) with a = ar, b = br and σ = σ̄r, and
we get rEimp(ti). Subsequently, following a similar reasoning, we can extend this approach also to the process

λ(c)(t) given by (3.51), i.e., setting γ(λ, r) = aλ (bλ − λ+ c r) and σ(λ) = σ̄λ
√
λ ,

dλ(c)(t) = aλ

(
bλ − λ(c)(t) + c r(t)

)
dt+ σ̄λ

√
λ(c)(t)dWλ(t)

= γ(λ(c)(t), r(t))dt+ σ(λ(c)(t))dWλ(t).

The implicit scheme λc,Eimp(ti+1) is given by

λc,Eimp(ti+1) = λc,Eimp(ti) +
(
γ
(
λc,Eimp(ti+1), rEimp(ti)

)
− σ(λc,Eimp(ti+1))σ′(λc,Eimp(ti+1))

)(
ti+1 − ti

)
+ σ(λc,Eimp(ti+1))

(
Wλ
i+1 −Wλ

i

)
(7.4)

which becomes

σσ′(λc,Eimp(ti+1))
2

(
ti+1 − ti

)
+ λc,Eimp(ti+1)− γ

(
λc,Eimp(ti+1)rEimp(ti)

)
(ti+1 − ti)

− σ(λc,Eimp(ti+1))
(
Wλ
i+1 −Wλ

i

)
− λc,Eimp(ti) = 0. (7.5)

Now proceeding exactly as above for r(t), again we can �nd a closed form solution λc,Eimp(ti+1). Let

vi+1 =
√
λc,Eimp(ti+1) ,

then vi+1 is the positive solution of the following equation

v2
i+1 −

(
aλbλ − aλ v2

i+1 + crEimp(ti)
)

(ti+1 − ti)− σ̄λ vi+1

(
Wλ
i+1 −Wλ

i

)
− λc,Eimp(ti) +

σ̄2
λ

2
(
ti+1 − ti

)
= 0,

so that vi+1 is given by

vi+1 =
σ̄λ
(
Wλ
i+1 −Wλ

i

)
2 (1 + aλ (ti+1 − ti))√

σ̄2
λ

(
Wλ
i+1 −Wλ

i

)2 + 4 (1 + aλ (ti+1 − ti))
(
λc,Eimp(ti) + (aλbλ + crEimp(ti)−

σ̄2
λ

2 ) (ti+1 − ti)
)

2 (1 + aλ (ti+1 − ti))
. (7.6)

Observe that the expression inside the square root is strictly positive since rEimp(ti) > 0, aλ > 0 and aλbλ >
σ̄2
λ

2 .
Finally we obtain

λc,Eimp(ti+1) = v2
i+1 > 0,

so that

λ(ti+1) =
λc,Eimp(ti+1) +D

T − ti+1

and for ti < t < ti+1

λ(t) =
λc,Eimp(t) +D

T − t
(7.7)

where

either λc,Eimp(t) = λc,Eimp(ti), or λc,Eimp(t) = λc,Eimp(ti) +
t− ti

ti+1 − ti
(
λc,Eimp(ti+1)− λc,Eimp(ti)

)
.

To calculate the optimal consumption and portfolio weights we need to simulate paths of (r(t), λ(t)). In the
sequel we apply the above implicit positivity-preserving Euler scheme for the processes r(t) and λ(t). The value
of the parameters are shown in table 7.1.
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Interest Rate (r(t)) Parameters Mortality Intensity (λ(t)) Parameters
ar 0.20 aλ 0.05
br 0.031 bλ 0.001
σ̄r 0.01 σ̄λ 0.001
r 0.05 λ 0.037

D 3.75
c 0.01

Table 7.1: Value of parameters

Recalling that T is a suitable deterministic time such that, on the basis of demographic considerations, the
investor will be dead at time T with probability 1, we take T = 100. The results of the simulations2 carried out
on a 90 years period are drawn in Figs. 7.1 and 7.2, where the solid line represents the mean value of M = 20
paths and the two dashed lines represents the 95% con�dence intervals. Fig. 7.1 shows the simulated path for
the interest rate r(t), while Fig. 7.2 shows the simulated path for the stochastic intensity λ(t)

Figure 7.1: Mean value of 20 paths for the interest rate r(t)

2The C program is left to an Appendix ??
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Figure 7.2: Mean value of 20 paths for the stochastic intensity λ(t)
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Appendix A

A.1 Some technical results

Here we recall some basic results which are used in this framework. Let (Ω,F , P ) be a probability space endowed
with a �ltration F satisfying the usual conditions. Then we have the following results.

Lemma A.1.1. Let (Ω,F , P ) be a probability space. Assume that A and M are σ-algebras contained in F ,
independent of each other. Let ξ be a random variable taking values in measurable space (S,S), and assume that
ξ is measurable with respect toM. Let ψ : S×Ω→ R, (x, ω) 7→ ψ(x, ω) be a real valued function, S ×A jointly
measurable, and such that ψ(ξ(ω), ω) is integrable. Then the conditional expectation of Ψ(ω) := ψ(ξ(ω), ω) with
respect toM is given by

E [Ψ|M] = E[ψ(x, ω)]
∣∣∣∣
x=ξ(ω)

. (A.1)

Proof. The proof is based on the observation that (i) relation (A.1) is straightforward when ψ(x, ω) = f(x)Z(ω),
with f a (deterministic) measurable function, and Z is a A-measurable random variable, and therefore for any
linear combination of such functions, (ii) without loss of generality one can assume ψ(x, ω) non negative,
(iii) the class of non negative functions ψ(x, ω) such that (A.1) holds is a monotone class.

Lemma A.1.2. Let (Ω,F ,F, P ) be a �ltered probability space. Let α = (α(t), t ∈ [0, T ]) be some stochastic

process with
∫ T

0
E(|α(t)|dt) <∞, and let S be some sub-σ-algebras of F . Then

E

(∫ t

0

α(s)ds|S
)

=
∫ t

0

E (α(s)ds|S) ds a.s., 0 ≤ t ≤ T. (A.2)

Proof. Let µ be a bounded S-measurable random variable. Then using the Fubini theorem, we �nd that

E

(
µ

∫ t

0

α(s)ds
)

=
∫ t

0

E (µα(s)) ds =
∫ t

0

E (µE (α(s)|S)) ds = E

(
µ

∫ t

0

E (α(s)|S) ds
)
. (A.3)

On the other hand

E

(
µ

∫ t

0

α(s)ds
)

= E

(
µE

(∫ t

0

α(s)ds|S
))

. (A.4)

Hence

E

(
µ

∫ t

0

α(s)ds
)

= E

(
µE

(∫ t

0

α(s)ds|S
))

. (A.5)

From this, because of the arbitrariness of µ, we obtain (A.2).

Lemma A.1.3. Let (Ω,F ,F, P ) be a �ltered probability space satisfying the usual conditions and X(t) be a
Markov process with respect to F. If A = {At : t ∈ [0, T ]} is a �ltration such that

FXt ⊆ At ⊆ Ft, ∀t (A.6)

then X(t) is a Markov process with respect to A.
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Proof. It is easily seen that X(t) is a At-Markov process.
In fact, for all Borel measurable, bounded functions f , we have

E [f (X(t+ s)) |At ] = E [E [f (X(t+ s)) |Ft ] |At ]
= E [E [f (X(t+ s)) |X(t) ] |At ]
= E [f (X(t+ s)) |X(t) ] ,

where in the last step we have used that FXt ⊆ At so that E [f (X(t+ s)) |X(t) ] is At-measurable.
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Appendix B

Stochastic Di�erential Equations

We give a brief summary of the de�nitions and results which are the background in this framework. For proofs
and more information we refer to Øksendal [19] and Karatzas and Shreve [16].

B.1 Itô Di�usion

Now introduce the concept of stochastic di�erential equation with respect to Wiener process and its solution in
the so called strong sense. We discuss the questions of existence and uniqueness of such solutions, as well as an
comparison result in one dimensional case and the connection with partial di�erential equations.

Let (Ω,F , P ) be a probability space, F be a �ltration satisfying the usual conditions and W (t) be a r-
dimensional Wiener process with respect to F. Let

µ(t, x) : R+ × Rd → Rd,
σ(t, x) : R+ × Rd →M(d, r),

be a measurable functions, where M(d, r) denoted the class of d× r matrices. The intent is to assign a meaning
to the stochastic di�erential equation{

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t)
X(u) = x

(B.1)

where x ∈ Rd.

De�nition B.1.1. We say that a continuous stochastic process X(t) is a solution of the stochastic di�erential
equation (B.1) if

1. X(t) is F-adapted;

2. For every 1 ≤ i ≤ d, 1 ≤ j ≤ r and u ≤ t ≤ ∞∫ t

u

|µi(s,X(s))|ds+
∫ t

u

σ2
ij(s,X(s))ds <∞, (B.2)

holds1 a.s.;

3. For all t ≥ u we have that

X(t) = x+
∫ t

u

µ
(
s,X(s)

)
dt+

∫ t

u

σ
(
s,X(s)

)
dW (s). (B.3)

Furthermore we recall that the coe�cients of this equation, b(t, x) and σ(t, x) are called the drift and di�usion
term of X(t).

De�nition B.1.2 (Strong Existence). We say that the stochastic di�erential equation (B.1) admit a strong
existence if for each �ltered probability space (Ω,F ,F, P ), and Wiener process (with respect to F) W (t), there
exists a stochastic process X(t) which is solution of (B.1).

1We are assuming the integrability conditions so that the deterministic and stochastic integrals in (B.3) are de�ned.
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Theorem B.1.1 ([19]). Suppose that there exist a constant K such that the following conditions are satis�ed

‖µ(t, x)− µ(t, y)‖ ≤ K ‖x− y‖ , x, y ∈ RN , t ∈ [0, T ] (B.4)

‖σ(t, x)− σ(t, y)‖ ≤ K ‖x− y‖ , x, y ∈ RN , t ∈ [0, T ] (B.5)

‖µ(t, x)‖+ ‖σ(t, x)‖ ≤ K(1 + ‖x‖), x ∈ RN , t ∈ [0, T ] (B.6)

where | · | denotes the Euclidean norm and ‖σ(t, x)‖2 =
∑N
i=1

∑M
j=1 σ

2
ij(t, x). Then, for any t ≥ 0, the stochastic

di�erential equation (B.1) admits a unique solution.

Now we discuss a notion of solvability for the stochastic di�erential equation (B.1) which, although weaker
that the one introduced previously, is yet extremely usefel and fruitful in both teory and applications. In
particular one can prove existence and uniqueness of solutions under assumptions much weaker than those of
the previous theorem.

De�nition B.1.3 (Weak Existence). We say that the stochastic di�erential equation (B.1) admit a weak ex-
istence if there exists a �ltered probability space (Ω,F ,F, P ), a Wiener process (with respect to F) W (t), a
stochastic process X(t) which is solution of (B.1).

Sometimes equation (B.1) may have solutions which are unique in the weaker sense that only their probability
laws coincide, but not necessarily their sample paths. We shall say then that we have a unique weak solution.

De�nition B.1.4 (Uniqueness in the sense of probability law). We say that the stochastic di�erential equation
(B.1) admit a unique solution in the sense of probability law if, for any two weak solutions X(t) and X̃(t) of
(B.1), the two processes X(t) and X̃(t) have the same law.

Now we recall a comparison result in the following proposition.

Proposition B.1.2 (Proposition 2.18 of [16]). Suppose that on a certain probability space (Ω,F , P ) equipped
with a �ltration F which satis�es the usual conditions, we have a standard, one dimensional Wiener process
W (t), and two continuous, adapted processes Xi(t), for i = 1, 2, such that{

dXi(t) = bi(t,Xi(t))dt+ σ(t,Xi(t))dW (t), 0 ≤ t ≤ ∞,
Xi(0) = Xi

0

(B.7)

holds a.s. for i = 1, 2. We assume that

1. the coe�cients σ(t, x), bi(t, x) are continuous, real valued function on [0,∞)× R;

2. σ(t, x) is such that

|σ(t, x)− σ(t, y)| ≤ h(|x− y|), (B.8)

for every 0 ≤ t < ∞, and x ∈ R, y ∈ R, where h : [0,∞) → [0,∞) is a strictly increasing function with
h(0) = 0 and ∫ ε

0

1
h2(u)

du =∞, ∀ε > 0; (B.9)

3. X1
0 ≤ X2

0 a.s.;

4. b1(t, x) ≤ b2(t, x), ∀t ∈ [0,∞), x ∈ R and either b1(t, x) or b2(t, x) are such that

|b(t, x)− b(t, y)| ≤ K(|x− y|), (B.10)

for every 0 ≤ t <∞, and x ∈ R, y ∈ R, where K is positive constant.

Then

P
(
X1(t) ≤ X2(t)

)
= 1 ∀t ∈ [0,∞). (B.11)
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Finally we explore the connection which exist between stochastic di�erential equation and certain parabolic
partial di�erential equations. For example the so called Cauchy problem. Now, instead of solve the Cauchy
problem using purely analytical tools, we will produce a so called stochastic representation formula, which gives
the solution to the Cauchy problem in terms of the solution to an stochastic di�erential equation associated to
the Cauchy problem in a natural way.

In the sequel we shall be considering a solution to the stochastic integral equation (B.3) under the following
assumptions

1. the coe�cients µ(t, x) and σ(t, x) are continuous and satisfy the linear growth condition (B.6);

2. the stochastic integral equation has a weak solution X(t) for every pair (t, x) and this solution X(t) is
unique in the sense of probability law.

For every t ≥ 0, we introduce the partial di�erential operator

Af(t, x) =
d∑
i=1

µi(t, x)
∂f

∂xi
(t, x) +

1
2

d∑
i,j=1

ai,j(t, x)
∂2f

∂xi∂xj
(t, x), f ∈ C2, (B.12)

where µi, xi represent the ith component of the vector µ, x respectively, and

a(t, x) = σ(t, x)σ′(t, x).

With an arbitrary but �xed T > 0 and appropriate constants L > 0, c ≥ 1, we consider functions f(x) :
Rd × R→ R, g(t, x) : [0, T ]× Rd → R and k(t, x) : [0, T ]× Rd → [0,∞) which are continuous and satisfy

(i) |f(x)| ≤ L(1 + |x|2c) or (ii) f(x) ≥ 0, ∀x ∈ Rd (B.13)

as well as

(i) |g(t, x)| ≤ L(1 + |x|2c) or (ii) g(t, x) ≥ 0, ∀t ∈ [0, T ], x ∈ Rd, (B.14)

where | · | denotes the Euclidean norm.

Theorem B.1.3 ([16]). Under the preceding assumptions, we suppose that

v(t, x) : [0, T ]× Rd → Rd

is continuous, v ∈ C1,2([0, T ),Rd), and satis�es the Cauchy problem

−∂v
∂t

(t, x) + k(t, x)v(t, x) = Av(t, x) + g(t, x) t ∈ [0, T ], x ∈ Rd (B.15)

v(T, x) = f(x) x ∈ Rd (B.16)

as well as the polynomial growth condition

max
0≤t≤T

|v(t, x)| ≤M(1 + |x|2ν), x ∈ Rd, (B.17)

for some M > 0, ν ≥ 1. Then v(t, x) admits the stochastic representation

v(t, x) = Et,x

[
f(X(T ))e−

∫ T
t
k(u,X(u))du +

∫ T

t

g(s,X(s))e−
∫ T
t
k(u,X(u))du ds

]
(B.18)

on [0, T ]×Rd and where the subscripts t, x denote that the expectation are taken using the following dynamics
for s ∈ [0, T ] {

dX(s) = µ̂(s,X(s))ds+ σ(s,X(s))dW (s)
X(t) = x

(B.19)

In particular, such a solution is unique.
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Remark B.1.1. A set of conditions su�cient under which the Cauchy problem (B.15) and (B.16) has a solution
satisfying the polynomial growth condition (B.17) is

1. Uniform ellipticity: there exists a positive constant δ such that for all (t, x) ∈ R+ × Rd and ξ ∈ Rd

d∑
i,j=1

aij(t, x)ξiξj ≥ δ |ξ|2 . (B.20)

2. Boundedness: the functions ai,j(t, x), bi(t, x) and k(t, x) are bounded in [0,∞]× Rd.

3. Hölder continuity: the functions ai,j(t, x), bi(t, x), k(t, x) and g(t, x) are uniformly Hölder continuous in
[0, T ]× Rd.

4. Polynomial growth: the functions f(x) and g(t, x) satisfy (B.13)(i) and (B.14)(i), respectively.

B.2 Itô Process

Now we extend the comparison result of Proposition B.1.2 at the case of a generic Itô Process. Before proceeding
to give the following de�nition.

De�nition B.2.1. Let (Ω,F , P ) be a probability space, F be a �ltration satisfying the usual conditions and
W (t) be a 1-dimensional Wiener process with respect to F. A (1-dimensional) Itô process is a stochastic process
X(t) on (Ω,F , P ) of the form

X(t) = X0 +
∫ t

0

µ(s)ds+
∫ t

0

σ(s)dW (s) (B.21)

where W is a Wiener process, µ(t) and σ(t) are adapted2.

IfX(t) is an Itô process of the form (B.21), the equation (B.21) is sometimes written in the shorter di�erential
form {

dX(t) = µ(t)dt+ σ(t)dW (t),
X(0) = X0

(B.22)

Now we have the following comparison theorem.

Theorem B.2.1. Suppose that on a certain probability space (Ω,F , P ) equipped with a �ltration F which satis�es
the usual conditions, we have a standard, one dimensional Wiener process W (t), and two continuous, adapted
processes Xi(t), for i = 1, 2, such that{

dX1(t) = b1(t,X1(t))dt+ σ(t,X1(t))dW (t), 0 ≤ t ≤ ∞,
X1(0) = X1

0

and {
dX2(t) =

(
b2(t,X2(t)) + α(t, ω)

)
dt+ σ(t,X2(t))dW (t), 0 ≤ t ≤ ∞,

X2(0) = X2
0

hold a.s. We assume that

1. the coe�cient σ(t, x) is continuous, real valued function on [0,∞)× R;

2. σ(t, x) is such that

|σ(t, x)− σ(t, y)| ≤ h(|x− y|), (B.23)

for every 0 ≤ t < ∞, and x ∈ R, y ∈ R, where h : [0,∞) → [0,∞) is a strictly increasing function with
h(0) = 0 and (B.9) holds;

3. X1
0 ≤ X2

0 a.s.;

2We assume implicitely the integrability conditions that are necessary to de�ne the right hand side of (B.21).
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4. b1(t, x) ≤ b2(t, x), ∀t ∈ [0,∞), x ∈ R and either b1(t, x) or b2(t, x) are such that

|b(t, x)− b(t, y)| ≤ K|x− y|, (B.24)

for every 0 ≤ t <∞, and x ∈ R, y ∈ R, where K is positive constant.

5. α(t, ω) ≥ 0 a.s.

Then

P
(
X1(t) ≤ X2(t)

)
= 1 ∀t ∈ [0,∞). (B.25)
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Appendix C

C.1 A bidimensional CIR: an approximation for the term structure
equation

In this section we prove the series expansion announced in Remark 4.3.2 for the functions x1 and x2, that give

the representation (4.85) for the function ψ
(c)
r . We recall that the function ψ

(c)
r appears in the expression (4.72)

for L̂T (t, z) and is bounded above by 0 and below by − 1
|β−| (see (4.77) in Proposition 4.3.7).

We recall that in the proof of Proposition 4.3.7 the functions x1 and x2 are de�ned as x1 = yr and x2 = ẏr,

where yr is given by (4.83). Therefore, using the above bound for ψ
(c)
r , we observe that

0 ≤ x1(s) = yr(s) = e−
∫ s
0
σ̄2
r
2 ψ(c)

r (u) du ≤ e
1
|β−|

s

and

0 ≤ x2(s) = ẏr(s) = − σ̄
2
r

2
ψ(c)
r (s) e−

∫ s
0
σ̄2
r
2 ψ(c)

r (u) du ≤ σ̄2
r

2|β−|
e

1
|β−|

s
.

The functions x1 and x2 solve the system ẋ1(s) = x2(s), ẋ2(s) = A(s)x1(s)−Bx2(s), with initial conditions

x1(0) = 1, x2(0) = 0, where A(s) = σ̄2
r

2

(
aλ c ψλ(s) + 1

)
, and B = ar (see (4.84)). Then, clearly

x1(t) = 1 +
∫ t

0

x2(s)ds

x2(t) =
∫ t

0

(
A(s)x1(s)−Bx2(s)

)
ds =

∫ t

0

(
A(s)

(
1 +

∫ s

0

x2(u)du
)
−Bx2(s)

)
ds

=
∫ t

0

A(s) ds+
∫ t

0

A(s)
∫ s

0

x2(u)du ds−
∫ t

0

Bx2(s) ds

=
∫ t

0

A(s) ds+
∫ t

0

(∫ t

u

A(s)ds−B
)
x2(u) du

Let us denote by

C(u, t) :=
∫ t

u

A(s)ds−B = IA(t)− IA(u)−B, 0 ≤ u ≤ t,

where

IA(t) =
σ̄2
r

2
(
aλ c

∫ t

0

ψλ(s) + t
)

=
σ̄2
r

2
aλ c ψ

0
λ(t) +

σ̄2
r

2
t

Note that
∂

∂t
C(u, t) := A(t), and C(t, t) := −B

and that, for c su�ciently small (recall that B = ar)

−ar ≤ C(u, t) :=
∫ t

u

A(s)ds−B = IA(t)− IA(u)−B ≤ σ̄2
r

2
(t− u)− ar ≤

σ̄2
r

2
t− ar, 0 ≤ u ≤ t,

i.e.,

|C(u, t)| ≤ max
(
ar,
∣∣ σ̄2
r

2
t− ar

∣∣) ≤ σ̄2
r

2
t+ ar =: k(t), 0 ≤ u ≤ t.

(Observe that, even if c is not small, there exists a linear function k(t) such that |C(u, t)| ≤ k(t) for 0 ≤ u ≤ t)
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With the above notation we get

x2(t) =
∫ t

0

A(s) ds+
∫ t

0

C(u, t)x2(u) du

so that

x2(t)

=
∫ t

0

A(s1) ds1 +
∫ t

0

C(u1, t)x2(u1) du1

=
∫ t

0

A(s1) ds1 +
∫ t

0

C(u1, t)
(∫ u1

0

A(s2) ds2 +
∫ u1

0

C(u2, u1)x2(u2) du2

)
du1

=
∫ t

0

A(s1) ds1 +
∫ t

0

C(u1, t)
(∫ u1

0

A(s2) ds2

)
du1 +

∫ t

0

C(u1, t)
(∫ u1

0

C(u2, u1)x2(u2) du2

)
du1

=
∫ t

0

A(s1) ds1 +
∫ t

0

C(u1, t)
(∫ u1

0

A(s2) ds2

)
du1

+
∫ t

0

C(u1, t)
(∫ u1

0

C(u2, u1)
(∫ u2

0

A(s) ds+
∫ t

0

C(u3, u2)x2(u3) du3

)
du2

)
du1

=
∫ t

0

A(s1) ds1 +
∫ t

0

C(u1, t)
(∫ u1

0

A(s2) ds2

)
du1 +

∫ t

0

C(u1, t)
(∫ u1

0

C(u2, u1)
(∫ u2

0

A(s) ds
)
du2

)
du1

+
∫ t

0

C(u1, t)
(∫ u1

0

C(u2, u1)
(∫ u2

0

C(u3, u2)x2(u3) du3

)
du2

)
du1

=
∫ t

0

A(s) ds+
∫ t

0

C(u1, t)
(∫ u1

0

A(s) ds
)
du1

+
m∑
k=1

∫ t

0

C(u1, t)
(∫ u1

0

C(u2, u1)
(
...

(∫ um−1

0

C(um, um−1)
(∫ um

0

A(s) ds
))

...

)
du2

)
du1 (C.1)

+
∫ t

0

C(u1, t)
(∫ u1

0

C(u2, u1)
(
...

(∫ um−1

0

C(um, um−1)x2(um)
)
...

)
du2

)
du1. (C.2)

Taking into account that
|A(s)| ≤ A,

0 ≤ x2(u) ≤ σ̄2
r

2|β−|
e

1
|β−|

u ≤ σ̄2
r

2|β−|
e

1
|β−|

t
, 0 ≤ u ≤ t,

and that, for c su�ciently small,

|C(u, v)| ≤ k(v) ≤ k(t) =
σ̄2
r

2
t+ ar, 0 ≤ u ≤ v ≤ t.

we get that the above sum (C.1) converges and that the rest (C.2) goes to zero, for each �xed t > 0.
Finally we can show that x2 coincides with the function

x(t) :=
∫ t

0

A(s) ds+
∫ t

0

C(u1, t)
(∫ u1

0

A(s) ds
)
du1

+
∞∑
k=1

∫ t

0

C(u1, t)
(∫ u1

0

C(u2, u1)
(
...

(∫ uk−1

0

C(uk, uk−1)
(∫ uk

0

A(s) ds
))

...

)
du2

)
du1

which can also be written as

:=
∫ t

0

A(s) ds+
∫ t

0

A(s)
(∫ t

s

C(u1, t) du1

)
ds

+
∞∑
k=1

∫ t

0

A(s)
(∫ t

s

dum

(∫ t

um

dum−1...

∫ t

u3

du2

∫ t

u2

du1C(u1, t)
)
C(u2, u1) ... C(um, um−1)

))
ds.

It is not hard to see that x is not only well de�ned, but also has a derivative, such that

ẋ(t) = −B x(t) +A(t)
[
1 +

∫ t

0

x(u1) du1

]
(C.3)
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Indeed

ẋ(t) = A(t) + C(t, t)
(∫ t

0

A(s) ds
)

+
∫ t

0

∂

∂t
C(u1, t)

(∫ u1

0

A(s) ds
)
du1

+
∞∑
k=1

C(t, t)
(∫ t

0

C(u2, t)
(
...

(∫ um−1

0

C(um, um−1)
(∫ um

0

A(s) ds
))

...

)
du2

)
du1+

+
∞∑
k=1

∫ t

0

∂

∂t
C(u1, t)

(∫ u1

0

C(u2, u1)
(
...

(∫ um−1

0

C(um, um−1)
(∫ um

0

A(s) ds
))

...

)
du2

)
du1

= A(t)−B
(∫ t

0

A(s) ds
)

+
∫ t

0

A(t)
(∫ u1

0

A(s) ds
)
du1

−
∞∑
k=1

B

(∫ t

0

C(u2, t)
(
...

(∫ um−1

0

C(um, um−1)
(∫ um

0

A(s) ds
))

...

)
du2

)
du1+

+
∞∑
k=1

∫ t

0

A(t)
(∫ u1

0

C(u2, u1)
(
...

(∫ um−1

0

C(um, um−1)
(∫ um

0

A(s) ds
))

...

)
du2

)
du1

= −B
(∫ t

0

A(s) ds
)

−
∞∑
k=1

B

(∫ t

0

C(u2, t)
(
...

(∫ um−1

0

C(um, um−1)
(∫ um

0

A(s) ds
))

...

)
du2

)
du1

+A(t) +A(t)
∫ t

0

(∫ u1

0

A(s) ds
)
du1

+A(t)
∫ t

0

∞∑
k=1

(∫ u1

0

C(u2, u1)
(
...

(∫ um−1

0

C(um, um−1)
(∫ um

0

A(s) ds
))

...

)
du2

)
du1

= −B x(t) +A(t)
[
1 +

∫ t

0

x(u1) du1

]
Then x(t) = x2(t) since there exists a unique solution of (C.3).

Finally we observe that one could easily �nd an upper bound for the truncation error of this representation,

and use the above expansion to get an approximation for x1 and x2 and therefore of ψ
(c)
r . However in the

simulations we prefer to approximate ψ
(c)
r by numerical schemes for ordinary di�erential equations.
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Appendix D

D.1 Stochastic Optimal Control: general results

In this section we describe a brief review of the theory of stochastic optimal control problems with the
dynamic programming method. In particular, we refer to Fleming and Soner [12].

Let (Ω,F ,F, P ) be a �ltered probability space under Assumptions 1.2.1 and 1.2.2, and let µ(t, x, u) and
Σ(t, x, u)

µ : R+ × Rn × Rk → Rn,
Σ : R+ × Rn × Rk → Rn×d,

be given functions. For a given point x0 ∈ Rn we consider the following controlled stochastic di�erential
equation, {

dX(t) = µ(t,X(t), u(t))dt+ Σ(t,X(t), u(t))dW (t),
X(t0) = x0,

(D.1)

where W is a d-dimensional Wiener process on the probability space (Ω,F ,F, P ). The n-dimensional process
X is called the state process (or state variable), the process u is called control process. We can control the state
process X by choosing the k-dimensional control process u in a suitable way.

Our �rst modelling problem concerns the class of the admissible control processes. In general we require
that the control process u is F-adapted. In most concrete cases we also have to satisfy some control constraints,
and we model this by taking as given a �xed subset Uad, with Uad ⊆ Rk, and requiring that u(t) ∈ Uad for each
t. We can now de�ne the class of admissible control process.

De�nition D.1.1 (Admissible Control Process). A control process u is called admissible if

• u(t) is F-adapted;

• u(t) ∈ Uad for all t ∈ R+;

• For any given initial point (t, x) the stochastic di�erential equation for s ∈ [t,∞){
dX(s) = µ(s,X(s), u(s))ds+ Σ(s,X(s), u(s))dW (s),
X(t) = x,

(D.2)

has a unique solution.

The class of admissible control process is denoted UF
ad.

For a given control process u, the solution process X of (D.2) will of course depend on the initial value, as
well as on the chosen control process u. To be precise we denote the process X by Xu(·). Fixing Xu(·)(t) = x,
we will denote the unique solution Xu(·)(s) of (D.2) also by Xu(·)(s; t, x), s ≥ t.

Now given a function
F : R+ × Rn × Rk → R, (D.3)

we have the following de�nition.

De�nition D.1.2 (Optimal Control Problem). Let J : R+ × UF
ad → R be de�ned as

J
(
t, u(·)

)
= E

[∫ ∞
t

F (s,Xu(·)(s), u(·))ds
∣∣∣Ft] , (D.4)

The optimal control problem is de�ned as the problem of maximizing J
(
t, u(·)

)
over u(·) ∈ UF

ad.
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In order to ensure that J is well de�ned, we always assume that F is continuous, together with further
(integrability) assumptions.

In most concrete cases it is natural to require that the control process u is FX-adapted. In other words, at
time t the value u(t) of the control process is only allowed to depend on past observed values of the state process
X. One natural way to obtain an adapted control process is by choosing a deterministic function û(t, x)

û : R+ × Rn → Rk,

and then de�ning the control process u by u(t) = û(t,X(t)). Such a function û is called a Markov control
policy1, and in the sequel we will restrict ourselves to consider only Markov control policies.

Suppose now that we have chosen a �xed Markov control policy û(t, x). Then we can insert û into (D.1) to
obtain the standard stochastic di�erential equation2

dX(t) = µ(t,X(t), û(t,X(t)))dt+ Σ(t,X(t), û(t,X(t)))dW (t). (D.5)

Similarly to De�nition D.1.1, we now de�ne the class of admissible Markov control policies. By abuse of notation
we use the same notation for the class of admissible control process and the class of admissible Markov control
policies.

De�nition D.1.3 (Admissible Markov Control policy). A measurable deterministic function û is an admissible
Markov control policy if:

• the control process u has the form
u(t) = û(t,X(t)); (D.6)

• û(t, x) ∈ Uad for all t ∈ R+ and all x ∈ Rn;

• for any given initial point (t, x) the stochastic di�erential equation for s ∈ [t,∞){
dX(s) = µ(s,X(s), û(s,X(s)))ds+ Σ(s,X(s), û(s,X(s)))dW (s),
X(t) = x,

(D.7)

has a unique solution.

The class of admissible Markov control policies is denoted Uad.

For a given Markov control policy û, the solution process X of (D.7) will of course depend on the initial
value, as well as on the chosen Markov control policy û. To be precise we denote the process X by X û. Fixing
X û(t) = x, we will denote the unique solution X û(s) of (D.7) also by X û(s; t, x), s ≥ t. We observe that if (D.6)
is assumed, then X û(s; t, x) is an Itô di�usion, and for all Borel measurable, bounded functions f , we have

E
[
f(X û(s′))|Fs

]
= E

[
f(X û(s′))|X û(s)

]
= g

(
X û(s)

)
for �xed s, s′ such that t ≤ s ≤ s′, with3 g(y) := E

[
f(X û(s; t, y))

]
, y ∈ Rk.

Finally, given a Markov control policy û, with the above notations, we can rewrite the dynamics (D.7) of
the process X û as

dX û(s) = µ
(
s,X û(s), û

(
s,X û(s)

))
ds+ Σ

(
s,X û(s), û

(
s,X û(s)

))
dW (s). (D.8)

We now introduce the objective function of the Markov control problem, and therefore we consider as given
a function F : R+ × Rn × Rk → R as in (D.3).

1In Fleming and Rischel [11], and Björk [2], û is called a feedback control law.

2When using Markov control policies then as we will see the solution of (D.5) is a Markov process.

3In the sequel the equalities analogous to (2.5) and (2.6) hold, substituting r with Xû, i.e.,

E
[
f(Xû(s; t, x))

]
= Et,x

[
f(Xû(s))

]
,

and
g(y) = Et,y

[
f(Xû(s))

]
.

More in general we will use the same kind of notation for functionals of the trajectory Xû(s; t, x), s ≥ t.
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De�nition D.1.4 (Optimal Markov Control Problem). Let J : R+ × Rn × Uad → R be de�ned as

J (t, x, û) = Et,x

[∫ ∞
t

F (s,X û(s), û(s,X û(s)))ds
]
, (D.9)

where the subscripts t and x denote that the expectation is taken using the dynamics given by (D.8) for s ∈ [t,∞)
and X û(t) = x, and where F is called4 the (running) cost function, and J the total expected cost corresponding
to û. The optimal Markov control problem P(t, x) is de�ned as the problem of maximizing J (t, x, û) over
û ∈ Uad.

As before, in order to ensure that J is well de�ned, we always assume that F is continuous, together with
further (integrability) assumptions.

Associated to the total expected cost J , we now de�ne the value function (or optimal cost function).

De�nition D.1.5 (Value Function and Optimal Markov Control policy). The value function

J : R+ × Rn → R,

is de�ned by

J(t, x) = sup
û∈Uad

J (t, x, û).

Furthermore if there exists5 an admissible Markov control policy ûsup such that

J (t, x, ûsup) = sup
û∈Uad

J (t, x, û),

then we say that ûsup is an optimal Markov control policy 6 for the given optimal Markov control problem P(t, x).

Given an optimal control problem, there are two main problems: prove the existence of an optimal Markov
control policy and determine such a policy. In many case the strategy to solve these problems consists of two
steps:

1. �nd necessary conditions for the optimal policies,

2. if a policy û satis�es such conditions, verify that û is optimal, so that the problem of existence reduces to
a veri�cation.

Dynamics programming is the methodology we will use. The main idea is to embed our problem into a class
of control problems, and then to tie all these problems together with a partial di�erential equation, known as
the Hamilton-Jacobi-Bellman equation. The value function satis�es such equation, and the control problem is
then shown to be equivalent to the problem of �nding a solution to the Hamilton-Jacobi-Bellman equation. A
gratifying fact is that the Hamilton-Jacobi-Bellman equation also acts as a su�cient condition for the optimal
control problem, thus we obtain the existence of the optimal Markov control policy found. This result is known
as the veri�cation theorem for the dynamics programming.

For the notational convenience, we introduce the following notations. For any �xed vector v ∈ Uad ⊆ Rk the
partial di�erential operator Av is de�ned by

Avf(t, x) =
n∑
i=1

µi(t, x, v)
∂f

∂xi
(t, x) +

1
2

n∑
i,j=1

Ci,j(t, x, v)
∂2f

∂xi∂xj
(t, x), (D.10)

where µi, xi represent the ith component of the vector µ, x respectively, and

C(t, x, v) = Σ(t, x, v)Σ′(t, x, v).

We recall that the partial di�erential operator Av is called uniformly elliptic if there exists a constant K > 0
such that for all (t, x, v) ∈ R+ × Rn × Uad and ξ ∈ Rn

n∑
i,j=1

Cij(t, x, v)ξiξj ≥ K |ξ|2 . (D.11)

4In Yong and Zhou [22], J is called the cost functional.

5Note that, as for any optimization problem, the optimal Markov control policy may not exist.

6In Fleming and Rischel [11], and Björk [2], û is called a optimal feedback control law.
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For any Markov control policy û, the partial di�erential operator Lû is de�ned by

Lûf(t, x) = Aû(t,x)f(t, x), (D.12)

and Lû is the operator associated to the solution X û of the stochastic di�erential equation (D.8).
We now have the following result, namely the Hamilton-Jacobi-Bellman equation.

Theorem D.1.1 (Hamilton-Jacobi-Bellman equation [11]). Let P(t, x) be the control problem de�ned in Def-
inition D.1.4. If the value function J is regular, i.e., J ∈ C1,2(R+,Rn), then J satis�es the Hamilton-Jacobi-
Bellman equation

∂J

∂t
(t, x) + sup

v∈Uad⊆Rk
{F (t, x, v) +AvJ(t, x)} = 0, (t, x) ∈ (0,∞)× Rn, (D.13)

with boundary condition
lim
t→∞

J(t, x) = 0. (D.14)

Furthermore, if ûsup is optimal Markov control policy, then for each (t, x) ∈ (0,∞)× Rn,

ûsup(t, x) ∈ arg max
v∈Uad

{F (t, x, v) +AvJ(t, x)} .

It is important to note that when (D.11) holds, results from the theory of second order nonlinear partial
di�erential equations of parabolic type imply existence and uniqueness7 of a solution to the problem (D.13)-
(D.14), and the Hamilton-Jacobi-Bellman equation (D.13) is called uniformly elliptic. When the uniform elliptic
condition (D.11) does not hold, the Hamilton-Jacobi-Bellman equation (D.13) is called degenerate parabolic
type. In this case a smooth solution J(t, x) cannot be expected. Instead, the value function will be interpreted as
a solution in some broader sense, for instance as a generalized solution. Another convenient interpretation of the
value function is as viscosity solution to the Hamilton-Jacobi-Bellman equation. Furthermore Theorem D.1.1 has
the form of a necessary condition. It says that if J is the value function, and if ûsup is the optimal control, then J
satis�es Hamilton-Jacobi-Bellman equation (D.13) and (D.14), and ûsup realizes the supremum in the equation.
The following result belongs to a class of theorems known as veri�cation theorems for the dynamics programming,
and shows that Hamilton-Jacobi-Bellman equation (D.13) and (D.14) are also a su�cient condition for the
optimal control problem.

Theorem D.1.2 (Veri�cation Theorem [11]). Suppose that we have two functions H and û∗ such that

• H ∈ C1,2, is integrable8 and solves the Hamilton-Jacobi-Bellman equation

∂H

∂t
(t, x) + sup

v∈Uad⊆Rk
{F (t, x, v) +AvH(t, x)} = 0, (t, x) ∈ (0,∞)× Rn, (D.15)

with the boundary condition
lim
t→∞

H(t, x) = 0. (D.16)

• The function û∗ is an admissible Markov control policy.

• For each �xed (t, x), û∗(t, x) ∈ arg maxv∈Uad {F (t, x, v) +AvH(t, x)}, i.e.,

F (t, x, û∗(t, x)) +Aû
∗(t,x)H(t, x) = sup

v∈Uad
{F (t, x, v) +AvH(t, x)} .

Then the following results hold.

1. The value function J to the control problem P(t, x) coincides with the function H, i.e.,

J(t, x) = H(t, x).

2. There exists an optimal Markov control policy ûsup(t, x), and coincides with û∗, i.e.,

ûsup(t, x) = û∗(t, x).
7A su�cient condition for the uniqueness is that (D.14) holds.

8The assumption that H is integrable is made in order to guarantee that the Dynkin formula (used in the proof) holds. This
will be the case if, for example, H satis�es the condition Hx

(
s,Xû(s)

)
Σ
(
t,Xû(s), û(s,Xû(s))

)
∈ L2(0,∞; F), for all admissible

Markov control policy.
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Thanks to the previous results, the optimal Markov control problem P(t, x) may be solved by using the
Hamilton-Jacobi-Bellman equation with the corresponding boundary condition, as in the following scheme.

1. Fixed an arbitrary point (t, x) ∈ (0,∞) × Rn and any function H(t, x) su�ciently smooth, we can solve
the optimization problem

max
v∈Uad

{F (t, x, v) +AvH(t, x)} , (D.17)

where the partial di�erential operator Av is given by (D.12). Note that in (D.17) v is the only variable,
whereas t and x are considered to be �xed parameters. The functions F , µ, Σ are given.

2. If the maximum in (D.17) is attained in a unique point v, the optimal choice of v will of course depend
on our choice of t and x, but it will also depend on the function H, and its partial derivatives, which
appear in AvH, and the argument of the maximum in (D.17) is denoted by û∗(t, x;H) = û∗H(t, x) (more
in general û∗H(t, x) ∈ arg maxv∈Uad {F (t, x, v) +AvH(t, x)}).

3. The function û∗H(t, x) is our candidate for the optimal Markov control policy. If we knew the value function
J , then our candidate would be û∗J(t, x), but we do not know J and therefore we substitute the expression
for û∗H(t, x) of the previous point 2 into (D.15), giving us the partial di�erential equation

∂H

∂t
(t, x) + F (t, x, û∗H(t, x)) + Lû

∗
HH(t, x) = 0. (D.18)

4. Now we solve the partial di�erential equation (D.18) under condition (D.16), and we assume that H∗ is
a classical solution. Then we can use the Veri�cation Theorem D.1.2 with H = H∗, û∗ = û∗H∗(t, x), and
conclude that J = H∗, ûsup = û∗H∗ .

The hard work of dynamic programming consists in solving the non linear partial di�erential equation (D.18).
There are no general analytic methods available for this, so the number of known optimal control problems with
an analytic solution is very small indeed.

Observe that if the hypotheses of the Veri�cation Theorem D.1.2 do not hold, then we cannot follow the
above scheme. When ellipticity condition (D.11) holds, then we have existence and uniqueness for the problem
(D.13)-(D.14) and in this case we have a smooth solution J(t, x).
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