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a b s t r a c t

The L(2, 1)-labeling of a digraph D is a function l from the vertex set of D to the set of all
nonnegative integers such that |l(x) − l(y)| ≥ 2 if x and y are at distance 1, and l(x) ≠ l(y)
if x and y are at distance 2, where the distance from vertex x to vertex y is the length of a
shortest dipath from x to y. Theminimumover all the L(2, 1)-labelings ofD of themaximum
used label is denoted λ⃗(D). If C is a class of digraphs, the maximum λ⃗(D), over all D ∈ C is
denoted λ⃗(C).

In this paperwe study the L(2, 1)-labeling problemon oriented planar graphs providing
some upper bounds on λ⃗. Then we focus on some specific subclasses of oriented planar
graphs, improving the previous general bounds. Namely, for oriented prisms we compute
the exact value of λ⃗, while for oriented Halin graphs and cacti we provide very close upper
and lower bounds for λ⃗.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The L(h, k)-labeling of a graph G is a function l from the vertex set V (G) to the set of nonnegative integers {0, 1, . . . , σl}

such that:

– |l(x) − l(y)| ≥ h if x and y are adjacent in G, and
– |l(x) − l(y)| ≥ k if x and y are at distance 2 in G; the minimum value of σl over all L(h, k)-labelings is denoted by

λh,k. This problem has been introduced by Griggs and Yeh [9,17] in the particular case in which h = 2 and k = 1 as a
variation of the frequency assignment problem of wireless networks introduced by Hale [10]. Since its definition, a huge
number ofworks have been produced on this topic (some surveys looking at the problem fromdifferent point of views are
[1,3,18]) and particular interest has been raised by the special case of the L(2, 1)-labeling. A natural extension, recently
introduced by Chang and Liaw [5], is the L(2, 1)-labeling on directed graphs. Here the definition is the same as in the
undirected case in which the distance from vertex x to vertex y is defined as the length of the shortest dipath from x to
y. In agreement with the undirected case, the L(2, 1)-labeling number λ⃗(D) of D is the smallest number µ such that D
has an L(2, 1)-labeling with max{l(v) : v ∈ V (D)} = µ. It is immediately clear that if G is the underlying graph of the
oriented graph G⃗, then λ⃗(G⃗) ≤ λ(G). Finally, by extension, for a class C of digraphs, we denote by λ⃗(C) the maximum
λ⃗(D) over all D ∈ C.

In [5] it is proved that λ⃗(T ) ≤ 4 for any oriented tree T . The general L(h, k)-labeling problem is considered in [4] for
oriented graphs whose longest dipath is of length at most 2 and some specific results are given in case of oriented trees and
bipartite graphs with longest dipath of length 3. In [7] the same problem is considered for those orientations for which the
underlying graphs are paths, cycles or trees. Orientations of regular grids are considered in [2], where the values of λ⃗ for
squared, triangular and hexagonal oriented grids, are exactly determined. It is worth mentioning two other related works
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that are [11], dealing with the oriented L(1, 1)-labeling of Halin graphs, and [6], presenting a self-stabilizing algorithm for
L(2, 1)-labeling ditrees.

In this paper we approach the problem of determining λ⃗ for the wide class of oriented planar graphs. Our work goes into
two different directions. On the one hand we observe that when D is an oriented planar graph, λ⃗(D) must be a constant. A
side effect is a new bound on the chromatic number of the (unoriented) square graph of an oriented planar graph, χ(D2).
On the other hand, we improve the previous general bounds when focusing on some subclasses of oriented planar graphs,
i.e. prisms, Halin graphs and cacti, proving for them very close upper and lower bounds on λ⃗ as follows:

– For the class Pn of oriented prisms on n vertices we show that λ⃗(Pn) = 5 if n ≡ 0(mod 3) and λ⃗(Pn) = 6 otherwise.
– For the class H of oriented Halin graphs we prove that 8 ≤ λ⃗(H) ≤ 11. We improve these bounds for two subclasses:

for the class W of oriented wheels we found the exact result λ⃗(W) = 8, and for the class H ′ of the oriented Halin graphs
whose vertices on the cycle are at distance greater than two in the tree we get 7 ≤ λ⃗(H ′) ≤ 8.

– For the class Y of oriented cacti we prove that 6 ≤ λ⃗(Y) ≤ 8.

2. Preliminary results: background and upper bounds on λ⃗ for oriented planar graphs

For an oriented graph G⃗, the underlying graph G is obtained ignoring all edge orientations. Given an oriented graph G⃗ and
a vertex v we denote by N+(v) and N−(v) the set of out- and in-neighbors of v. Let l be a fixed L(2, 1)-labeling of G⃗ and let
L be the label set it uses; we denote by L+(v) and L−(v) the sets of labels used in N+(v) and N−(v), respectively.

A seemingly related concept to the L(2, 1)-labeling of an oriented graph is the oriented chromatic number. An oriented
coloring of G⃗ = (V , A) is a function f : V → N such that:
– f (u) ≠ f (v) if (u, v) ∈ A and,
– for any two arcs (u, v) and (x, y), {f (x), f (v)} ≠ {f (y), f (u)}.

The oriented chromatic number of G⃗, χ⃗(G⃗), is the smallest integer κ such that G⃗ has an oriented coloring using κ colors.
A direct consequence of the previous definition is that λ⃗(G⃗) ≤ 2(χ⃗(G⃗) − 1) and the bound is trivially attained for

tournaments, i.e. orientations of complete graphs. Furthermore G⃗, λ⃗(G⃗) ≥ 2(χ(G) − 1) [7]. Thus we have:

Proposition 1. For any oriented graph G⃗ it holds:

2

χ(G) − 1


≤ λ⃗(G⃗) ≤ 2


χ⃗(G⃗) − 1


.

It is worth mentioning that, in general, Proposition 1 is a quite unsatisfactory result as there can be a huge gap between
the claimed lower and upper bounds on λ⃗. However, it will turn out to be helpful in case of oriented planar graphs. Indeed,
there are many results concerning χ⃗(G⃗) for an oriented planar graph G⃗ according to the maximum degree of its underlying
graph G [14,15,12] or to the girth g of G [13] (the girth is defined as the length of the shortest cycle in a graph). Combining
all these results with Proposition 1, we obtain the following:

Proposition 2. Let G⃗ be an oriented planar graph with maximum degree ∆ and girth g; then λ⃗(G⃗) is a constant and it is upper
bounded as follows:

a. λ⃗(G⃗) ≤ 8∆ − 13 when ∆ ≤ 8; λ⃗(G⃗) ≤ 2∆ + 35 when 9 ≤ ∆ ≤ 61 and λ⃗(G⃗) ≤ 158 otherwise;
b. λ⃗(G⃗) ≤ 8 when g ≥ 16; λ⃗(G⃗) ≤ 12 when g ≥ 11; λ⃗(G⃗) ≤ 22 when g ≥ 7 and λ⃗(G⃗) ≤ 62 when g ≥ 6.

Observe that Proposition 2.b suggests that the smaller the girth of a graph the larger the value of λ⃗. However, in the
following sections we will consider subclasses of planar graphs with small girth requiring also a small λ⃗.

The (unoriented) square graph G⃗2 of an oriented graph G⃗ is obtained from G⃗ by adding new arcs joining all pairs of vertices
at (directed) distance 2 in G⃗ and then eliminating the orientations of the arcs. It is immediate to see that χ(G⃗2) ≤ λ⃗(G⃗). It
straightly descends the following interesting fact:

Corollary 1. Given an oriented planar graph G⃗, its (unoriented) square graph has chromatic number χ(G⃗2) upper bounded by a
constant.

This result is quite surprising because it states a big difference between the behaviors of the square graphs of planar digraphs
and of planar graphs. Indeed, it is well known that, given any planar graph G, χ(G2) can be of the order of ∆ and the tight
upper bound on χ(G2) is matter of a huge study (for example, see [15,16]).

3. L(2, 1)-labeling of oriented prisms

In this section we determine the exact value of λ⃗ for the planar oriented prism Prn isomorphic to the Cartesian product
Cn × P2. It is well known [8] that λ(Prn) = 5 if n ≡ 0(mod 3) and λ(Prn) = 6 otherwise. The following theorem proves that
the same result holds in the case of oriented prisms.
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Theorem 1. Let Pn be the set of all the orientations of the planar prism Prn. It holds λ⃗(Pn) = λ(Prn).

Proof. As λ⃗(P⃗rn) ≥ λ(Prn), to prove the theorem it is sufficient to show that there exists an orientation P⃗rn of the prism Prn
which preserves the two length distances between vertices.

Given Prn, let C and C ′ be its two n length cycles. Cyclically orient all the edges of C clockwise and those of C ′ anti-
clockwise. Then, for each edge {v, v′

}, v ∈ C and v′
∈ C ′, orient it from v to v′. Clearly, two vertices that are connected by

a path of length two in Prn are still connected by a dipath of length two in P⃗rn. Thus, λ(Prn) and λ⃗(P⃗rn) coincide for each
n ≥ 3. �

4. L(2, 1)-labeling of oriented Halin graphs

Here we provide some very close bounds on λ⃗ for oriented Halin graphs and two specific subclasses: oriented wheels
and leaf-distant oriented Halin graphs. In particular, for oriented wheels we find the exact value of λ⃗.

A Halin graph H is a planar graph constructed from a plane embedding of a tree with at least four vertices and with no
vertices of degree 2, by connecting all the leaves with a cycle that passes around the tree in the natural cyclic order defined
by the embedding of the tree.

An n-wheel Wn is formed by connecting a single vertex c (the central vertex), to all vertices of an n-cycle. Trivially, wheels
are Halin graphs.

We define an oriented Halin graph H⃗ as leaf distant if any two vertices on the cycle are at a distance strictly greater than
2 in the tree. In other words, H⃗ is a leaf distant oriented Halin graph if all the leaves that are children of the same father v
are either all in N+(v) or all in N−(v).

An Out-segment of a vertex v of an oriented Halin graph G⃗ is a maximal consecutive sequence of vertices in the cycle of
G⃗ such that all its vertices belong to the set N+(v). An In-segment of v is defined in an analog way.

In [11] it is proved that the span of any L(1, 1)-labeling of oriented Halin graphs is upper bounded by 6 which implies
that λ⃗(H) ≤ 12. In the following we will improve this bound first when dealing with orientations of wheels, and then with
orientations of Halin graphs.

Theorem 2. Let W be the set of all oriented wheels. It holds λ⃗(W) = 8.

The proof will directly follow by the next two lemmas.

Lemma 1. For every oriented wheel W⃗ it holds λ⃗(W⃗ ) ≤ 8.

Proof. Consider an arbitrary oriented wheel W⃗ and let c be its central vertex and Cn its cycle. Observe that any vertex of
N+(c) is connected by a dipath of length two (passing through c) to every vertex ofN−(c) thus it must be L+(c)∩L−(c) = ∅.
We construct an L(2, 1)-labeling of the vertices of W⃗ as follows. Label the central vertex c with 8. Let S be a segment
of maximum length and w.l.o.g. suppose it is an Out-segment. We label the vertices of the cycle using labels from 0 to 6
according to the following cases:

Case I: S contains all the vertices of the cycle. Then clearly we can label the cycle using labels {0, 1, 2, 3, 4} (see [9,18]).
Case II: S consists of one vertex, meaning that the vertices in the cycle are alternatively from N+(c) and N−(c) (then n is

even). Then we can easily label the cycle repeatedly using the sequence 0314 if n is a multiple of 4 and labeling the last two
vertices with 25 when n ≡ 2(mod 4).

Case III: S consists ofm ≥ 2 vertices. Starting from S, we proceeding in a clockwise direction, labeling first all the extremes
of the In-segments using alternatively labels 6,4 (we label 6 the first vertex following S). Then we label all the extremes of
the Out-segments using alternatively labels 0, 2. It is easy to see that it is always possible to complete the labeling of In-
and Out-segments using labels 1, 4, 6 and 0, 2, 5, respectively. It remains to label S and we will do it in a counterclockwise
fashion. Ifm = 2, we use the sequence 31. Ifm ≥ 3 then we label S by repeating the sequence 352, and we modify only the
labels of the last few vertices. Namely, if m ≡ 0(mod 3) we substitute the last 2 by 0 if the second vertex before S is also
labeled by 2. If m ≡ 1(mod 3) we re-label the last four vertices with 3052 or 3520, according to the fact that the second
vertex before S is labeled 2 or not. Finally, ifm ≡ 2(mod 3)we re-label the last five vertices with 20530 or 25302, according
to the fact that the second vertex before S is labeled 2 or not.

We have L+(c) = {0, 2, 3, 5} and L−(c) = {1, 4, 6} and this is a feasible labeling, indeed: (i) the first vertex after S is
always labeled 6; (ii) the second vertex after S is labeled either 4 or 1 or 0, according to the kind of sequence it belongs to;
(iii) the vertex rightly before S is labeled either 6 or 4 and (iv) the second vertex before S is labeled with a label among 0, 1,
2, 4, 6. This concludes the proof. �

Lemma 2. There exists an oriented wheel W⃗ with λ⃗(W⃗ ) ≥ 8.

Proof. Consider the oriented wheel W⃗ in Fig. 1. Suppose by contradiction that there is an L(2, 1)-labeling l of W⃗ that uses
only labels 0, 1, . . . , 7.W.l.o.g. we assume l(c) = 7. Therefore we have to label the vertices of the cycle using the labels from
0 to 5. First note that in order to label a dipath of at least 4 vertices we have to use at least three labels at mutual distance at
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Fig. 1. An oriented wheel W⃗ for which λ⃗(W⃗ ) = 8.

least two. Observe that v3 → v2 → v1 → v0 is a dipath of vertices of N+(c) and similarly v9 → v8 → v7 → v6 is a dipath
of vertices of N−(c). Furthermore, recall that the sets of labels L+(c) and L−(c) must be disjoint. Consequently, the only way
to satisfy all these requirements is to use the two set of labels {0, 2, 4} and {1, 3, 5} for N+(c) and N−(c), and without losing
of generality, we assume L+(c) = {0, 2, 4}.

Consider now the vertex v0. Aswe are forced to use only three labels for the path v3 → v2 → v1 → v0, then l(v3) = l(v0).
Similarly l(v6) = l(v9). If l(v0) = l(v3) = 0 then l(v4) ∈ {3, 5}. If l(v4) = 3 then there is no feasible label in {0, 2, 4} to be
assigned to v5. So let l(v4) = 5, then l(v5) = 2 but then we cannot assign a label to v6. If l(v0) = l(v3) = 2 then we are
forced to have l(v4) = 5, l(v5) = 0, l(v6) = l(v9) = 3, l(v10) = 0 and l(v11) = 5 but then we cannot assign a label to v12.
If, finally, l(v0) = l(v3) = 4 then l(v4) = 1 but then we cannot assign a label to v5. Thus, in all the cases it is not possible to
complete the labeling using only labels from 0 to 7, and this concludes the proof. �

Now, we consider oriented Halin graphs that are not necessarily wheels. We remind that λ⃗(H) ≤ 12 from the result in [11].
We slightly improve this bound as shown by the next theorem.

Theorem 3. Let H and H ′ be the sets of all the oriented Halin graphs and leaf distant Halin graphs, respectively. It hold:

8 ≤ λ⃗(H) ≤ 11 and 7 ≤ λ⃗(H ′) ≤ 8.

The proof follows immediately using Theorem 2 and the next three lemmas.

Lemma 3. For every Halin digraph H⃗ it holds λ⃗(H⃗) ≤ 11.

Proof. Let be given an oriented Halin graph H⃗ constituted by an oriented tree T⃗ with at least two inner vertices and an
oriented cycle C⃗ connecting all the leaves of T⃗ . For any oriented tree there is an L(2, 1)-labeling of its vertices according to
the algorithm in [5] using labels 0, 2, 4. We label the inner vertices of the tree considering only its directed edges, ignoring
the arcs of the cycle C⃗ , and using labels 0, 4, 8 instead of 0, 2, 4. To completely define a feasible labeling it remains to set
only the labels of the vertices on the cycle. We label these vertices using labels from the set A = {0, . . . , 11} \ {0, 4, 8}.
Note that in this way there is no conflict between the label of any vertex on the cycle and the label of an inner vertex of
the tree that is at distance two from it. Let us now consider the following six sets of labels: I0 = {2, 5, 9}, I4 = {1, 6, 9},
I8 = {1, 5, 10},O0 = {3, 6, 10},O4 = {2, 7, 10},O8 = {2, 6, 11}. The names of these sets derive from the fact that we will
use labels from set Ix (Ox) to label the In(Out)-segments of an inner vertex of the tree labeled with x. Note that this definition
of the label sets is consistent with the labeling of the tree and for any inner vertex v L+(v) ∩ L−(v) = ∅ as Ix ∩ Ox = ∅ for
each x ∈ {0, 4, 8}. It is not difficult to check that these six sets have the following properties:

Property 1. The intersection of any pair of label sets not corresponding to the same label (i.e. either Ix ∩ Iy, or Ix ∩ Oy, or Ox ∩ Oy
with x ≠ y), consists of exactly one label.

Property 2. For any label x ∈ A the intersection of the set {x− 1, x, x+ 1} with any of the label sets consists of exactly one label.

Let S be a segment ofmaximum length. It is not restrictive to assume that S is an In-segment of a vertex labeled 0. (Otherwise
rename the labels in T⃗ and, if S is an Out-segment, exchange the role of I0 and O0.)

Let P1, . . . , Pr = S be the sequence of segments in clockwise order starting from the segment that follows S and
ending with S. Label the segments in order from P1 to Pr−1, using labels from Ix or Ox according to their definition. Observe
that, from Properties 1 and 2, once the segments P1, . . . , Pi−1 have been labeled, it is always possible to label Pi avoiding
conflicts between labels and guaranteeing the feasibility of the L(2, 1)-labeling by simply alternating the three labels of the
corresponding set and starting from a label that does not create a conflict with the labeling of Pi−1. Hence, we concentrate
our attention on the labeling of S whose sequence of vertices is s1, s2 . . . , sm.



T. Calamoneri, B. Sinaimeri / Discrete Applied Mathematics ( ) – 5

Fig. 2. An oriented leaf distant Halin graph for which λ⃗ = 7.

Suppose firstm ≥ 3 and let v, k and w, u be the two vertices that follow and precede S clockwise, respectively. We label
the vertices of S once v, k, w and u are labeled, and use labels from I0 except for sm−1 and sm for which we may use labels
from the set B = I0 ∪ {7, 11}. Observe that B ∩ O0 = ∅ and this is necessary as we must always have L+(0) ∩ L−(0) = ∅.

We start by labeling s1. In view of Properties 1 and 2 l(w) and l(u) together exclude at most two labels in I0 and thus it is
always possible to label s1. Also, for any vertex si with i ≤ m − 2 there is at least one possible label in I0. Thus, we focus on
labeling the last two vertices of S. When arriving at sm−1 it may be the case that exactly one label a of I0 is available to label
sm−1. If a ≠ l(v) then we set l(sm−1) = a, otherwise we set l(sm−1) = 11. Note that in this latter case if |S| = 3 we could
have l(u) = 11 but then we would have two choices in I0 for sm−1 and thus we can label it using the one different from l(v).

Finally, we arrive at sm. If l(sm−1) = 11 in the worst case, all four vertices sm−1, v, k and sm−2 have labels from B and
hence are forbidden for sm. We label sm with the remaining color. If l(sm−1) ∈ I0 and l(v) ≠ 10 then we set l(v) = 11, sure
that it is feasible. Finally, if l(sm−1) ∈ I0 and l(v) = 10 then we set l(sm) = 7 if l(k) ≠ 7, otherwise we set l(sm) = l(sm−1)
and change the label of sm−1 to 11 or 7 according to the label of the vertex preceding sm−2.

Observe that the case |S| = 2 can be handled easily using the same argument of above with sm−2 = u. Finally, if |S| = 1
then simply label inner vertices of the tree using 0, 2, 4, label the cycle using 6, 9, 7, 10 alternatively and label its last two
vertices with 8, 11 when n ≡ 2(mod 4).

All the described L(2, 1)-labelings are feasible and use the labels from 0 to 11. This concludes the proof. �

As wheels are Halin graphs, from Lemma 2 we have that λ⃗(H) ≥ 8. However, it is not difficult to see that the same result
holds for oriented Halin graphs which are not wheels.

Lemma 4. If H⃗ is a leaf distant oriented Halin graph then it holds λ⃗(H⃗) ≤ 8.

Proof. Observe that the distance greater than two in the tree of any two vertices on the cycle implies that all the leaves
that are children of the same father v are either all in N+(v) or all in N−(v). Thus, it is sufficient to use only one set of
labels for the neighbors of a vertex that are on the cycle. The proof follows using the same labeling technique as in the
previous lemma. We label the inner vertices of the tree using labels 0, 3, 6 and set I0 = O0 = {2, 5, 8}, I3 = O3 = {1, 5, 7},
I6 = O6 = {1, 4, 8}. �

Lemma 5. There exists a leaf distant oriented Halin graph H⃗ with λ⃗(H⃗) ≥ 7.

Proof. Consider the oriented Halin graph H⃗ in Fig. 2. Suppose by contradiction that labels from 0 to 6 are sufficient. First
observe that one between the labels of x, y, z must be different from 0 and 6. Without losing generality suppose this is y.
The four neighbors of y in the cycle, must have labels distinct from l(y)− 1, l(y), l(y)+ 1 and l(x). Thus, there are only three
labels left for these vertices. Moreover, as they are on a directed path in the cycle, these 3 labels must have pairwise distance
at least 2. Consequently, y and its four neighbors must get 4 labels with pairwise difference at least two. The only fourtuple
that satisfies this property is 0, 2, 4, 6. This means that l(x) is different from 0, 2, 4 and 6 and again x and its four neighbors
must get 4 labels with pairwise difference at least 2. By the uniqueness of the fourtuple we arrive at a contradiction and this
concludes the proof. �

5. L(2, 1)-labeling of oriented cacti

A cactus is a connected graph in which very block (maximal subgraph without a cut-vertex) is an edge or a cycle. Here
we provide very close upper and lower bounds for λ⃗ of oriented cacti.

Theorem 4. Let Y be the set of all the oriented cacti. It holds 6 ≤ λ⃗(Y) ≤ 8.

Lemma 6. For every oriented cactus Y⃗ it holds λ⃗(Y⃗ ) ≤ 8.

Proof. The proof is by induction on the number of vertices of the oriented cactus. The base cases n ≤ 3 are trivially true. So,
suppose n > 3 and consider an oriented cactus Y⃗ on n vertices. If Y⃗ is a unique block then the proof is trivial as it is either
an edge or a cycle. Otherwise, if it has at least two blocks then there exists a cut-vertex c of Y⃗ , belonging to at least a block
not containing further cut-vertices. Let B0, B1, . . . , Br be the set of all the blocks containing only c as a cut-vertex.
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Fig. 3. An oriented cactus for which λ⃗ = 6.

If some Bi, 1 ≤ i ≤ r is a cycle of length at least four, then choose in Bi a vertex y not adjacent to c. By induction, we can
label Y⃗ − {y} properly with labels from 0 to 8. As the two (labeled) adjacent vertices of y forbid at most three labels each,
and the two (labeled) vertices at distance two from y (possibly coinciding, if Bi is a length 4 cycle) forbid at least one color
each, we have that 9 − 3 − 3 − 1 − 1 = 1 label is always available for y. So we can extend the labeling to Y⃗ .

If all Bi are K2 or triangles for 1 ≤ i ≤ r , then we can label the cactus Y⃗ − (∪1≤i≤r Bi) ∪ {c} exploiting the induction. It
remains to label all the vertices of Bi − {c}, for each 1 ≤ i ≤ r . Observe that, for all these vertices, the (labeled) cut-vertex
c forbids at least three labels, and the two (labeled) adjacent vertices of c in Y⃗ − (∪1≤i≤r Bi) ∪ {c} forbid at most other two
labels. It follows that at least 9−3−1−1 = 4 labels are available for the vertices of (∪1≤i≤r Bi)−{c}. Let c1 < c2 < c3 < c4
be these four colors. We can use c1 and c3 for the out-neighbors of c , and c2 and c4 for the in-neighbors of c. We only have to
be careful on the triangle blocks Bi in which the two vertices of Bi − {c} must be labeled with labels at distance at least two.

It is easy to see that the produced labeling is feasible and uses labels from 0 to 8. �

Lemma 7. There exists an oriented cactus Y⃗ for which λ⃗(Y⃗ ) ≥ 6.

Proof. We exhibit an oriented cactus Y⃗ for which λ⃗ is at least 6. Consider the cactus in Fig. 3. Suppose, by contradiction,
that there is an L(2, 1)-labeling l with labels 0, 1, . . . , 5. Clearly, if one from u, v is different from 0 and 5 then we arrive at
a contradiction as each of them has four neighbors and there are only three possible labels left. Otherwise, without loss of
generality we can suppose l(u) = 0 and l(v) = 5. Then we have l(v1) = 2 or l(v1) = 3, but then both of the pairs u1, u2 and
w1, w will get labels differing by just one. This leads to a contradiction and thus λ⃗ ≥ 6. �

6. Concluding remarks and open problems

In this paper we approach the problem of determining λ⃗ for the wide class of oriented planar graphs providing some
lower and upper bounds on λ⃗. For the particular subclass of oriented prisms we completely determine the value of λ⃗, while
for the subclasses of oriented Halin graphs and cacti we provide nearly tight bounds for λ⃗. Determining the exact value of
λ⃗ for these two subclasses still remains an open problem as well as improving the general bounds for the whole class of
oriented planar graphs.

It is worth noting that in the unoriented case there is a strong relationship between λ and the graph’s maximum degree
∆, and it efficiently expresses the value of λ (for awide list of bounds having∆ as a parameter, see for example [3]). However
the L(2, 1)-labeling problem on oriented graphs presents different issues with respect to the unoriented case and ∆ is
not an appropriate parameter anymore. The case of oriented planar graphs attests this fact as λ⃗ is bounded by a constant,
independently on the maximum degree.

Due to the fact that very few classes of oriented graphs have been investigated, it is not possible yet to identify the most
natural graph parameter that efficiently expresses the value of λ⃗ for arbitrary oriented graphs. However, for the class of
oriented planar graphs it seems reasonable to suggest that the girth of the underlying graph is in some relation with λ⃗. This
is suggested by Proposition 2.b and by the following Conjecture in [2]:

Conjecture 1. Every oriented planar graph D whose underlying graph has girth g ≥ 5 has λ⃗(D) ≤ 5.

Nevertheless, this relation does not seem to be as strong as in the unoriented case between λ and ∆. Investigating in this
direction is an interesting open problem.
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