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Abstract
We consider sparse digraphs generated by the configuration model with given in-
degree and out-degree sequences. We establish that with high probability the cover
time is linear up to a poly-logarithmic correction. For a large class of degree sequences
we determine the exponent γ ≥ 1 of the logarithm and show that the cover time grows
as n logγ (n), where n is the number of vertices. The results are obtained by analysing
the extremal values of the stationary distribution of the digraph. In particular, we
show that the stationary distribution π is uniform up to a poly-logarithmic factor,
and that for a large class of degree sequences the minimal values of π have the form
1
n log

1−γ (n), while the maximal values of π behave as 1
n log

1−κ(n) for some other
exponent κ ∈ [0, 1]. In passing, we prove tight bounds on the diameter of the digraphs
and show that the latter coincides with the typical distance between two vertices.

Mathematics Subject Classification Primary 05C81 · 60J10 · 60C05; Secondary
60G42

1 Introduction

The problem of determining the cover time of a graph is a central one in combinatorics
and probability [3–5,18,19,21,26]. In recent years, the cover time of random graphs
has been extensively studied [1,14,16,17,20]. All these works consider undirected
graphs, with the notable exception of the paper [17] by Cooper and Frieze, where the
authors compute the cover time of directed Erdős-Renyi random graphs in the regime
of strong connectivity, that is with a logarithmically diverging average degree. The
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main difficulty in the directed case is that, in contrast with the undirected case, the
graph’s stationary distribution is an unknown random variable.

In this paperwe address the problemof determining the cover time of sparse random
digraphs with bounded degrees. More specifically, we consider random digraphs G
with given in- and out-degree sequences, generated via the configuration model. For
the sake of this introductory discussion let us look at the special case where all vertices
have either in-degree 2 and out-degree 3 or in-degree 3 and out-degree 2, with the two
types evenly represented in the vertex set V (G).We refer to this as the (2, 3)(3, 2) case.
With high probability G is strongly connected and we may ask how long the random
walk on G takes to cover all the nodes. The expectation of this quantity, maximized
over the initial point of the walk defines Tcov(G), the cover time of G. We will show
that with high probability as the number of vertices n tends to infinity one has

Tcov(G) � n logγ (n) (1.1)

where γ = log 3
log 2 ≈ 1.58, and an � bn stands forC−1 ≤ an/bn ≤ C for some constant

C > 0. The constant γ can be understood in connection with the statistics of the
extremal values of the stationary distribution π of G. Indeed, following the theory
developed by Cooper and Frieze, if the graphs satisfy suitable requirements, then the
problem of determining the cover time can be reformulated in terms of the control of
the minimal values of π . In particular, we will see that the hitting time of a vertex
x ∈ V (G) effectively behaves as an exponential random variable with parameter
π(x), and that to some extent these random variables are weakly dependent. This
supports the heuristic picture that represents the cover time as the expected value of
n independent exponential random variables, each with parameter π(x), x ∈ V (G).
Controlling the stationary distribution is however a rather challenging task, especially
if the digraphs have bounded degrees.

Recently, Bordenave, Caputo and Salez [9] analyzed the mixing time of sparse
random digraphs with given degree sequences and their work provides some important
information on the distribution of the values of π . In particular, in the (2, 3)(3, 2) case,
the empirical distribution of the values {nπ(x), x ∈ V (G)} converges as n → ∞ to
the probability law μ on [0,∞) of the random variable X given by

X = 2
5

N∑

k=1

Zk , (1.2)

where N is the random variable with N = 2 with probability 1
2 and N = 3 with

probability 1
2 , and the Zk are independent and identically distributedmean-one random

variables uniquely determined by the recursive distributional equation

Z1
d= 1

M

5−M∑

k=1

Zk, (1.3)
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where M is the random variable with M = 2 with probability 2/5 and M = 3 with

probability 3/5, independent of the Zk’s, and
d= denotes equality in distribution.

This gives convergence of the distribution of the bulk values ofπ , that is of the values
of π on the scale 1/n. What enters in the cover time analysis are however the extremal
values, notably the minimal ones, and thus what is needed is a local convergence result
towards the left tail of μ, which cannot be extracted from the analysis in [9]. To obtain
a heuristic guess of the size of the minimal values of π at large but finite n one may
pretend that the values of nπ are n i.i.d. samples from μ. This would imply that πmin,
the minimal value of π is such that nπmin ∼ ε(n) where ε(n) is a sequence for which
nμ([0, ε(n)]) ∼ 1, if μ([0, x]) denotes the mass given by μ to the interval [0, x].

Recursive distributional equations of the form (1.3) have been extensively studied,
and much is known about the law of random variables satisfying this type of stability
and self-similarity; see, e.g., [6,23–25,27] and references therein. In particular, the left
and right tail asymptotic of the law μ defined by (1.2) and (1.3) can be obtained as a
special case of these results. For instance, it is shown in Liu [25, Theorem 2.5] that
the left tail of μ must have the form

logμ([0, x]) � −x−α , x → 0+,

where α = 1/(γ − 1), with the coefficient γ taking the value γ = log 3
log 2 in the

(2, 3)(3, 2) case. Thus, returning to our heuristic reasoning, one has that the minimal
value of π should satisfy

nπmin � log1−γ (n). (1.4)

Moreover, this argument also suggests that with high probability there should be at
least nβ vertices x ∈ V (G), for some constant β > 0, such that nπ(x) is as small as
O(log1−γ (n)).

A similar heuristic argument, this time based on the analysis of the right tail of μ,
see [23,24] (in particular, see the first display in [24, p. 271]), predicts that πmax, the
maximal value of π , should satisfy

nπmax � log1−κ(n), (1.5)

where κ takes the value κ = log 2
log 3 ≈ 0.63 in the (2, 3)(3, 2) case.

Our main results below will confirm these heuristic predictions. The proof involves
the analysis of the statistics of the in-neighbourhoods of a node. Roughly speaking, it
will be seen that the smallest values of π are achieved at vertices x ∈ V (G) whose
in-neighbourhood at distance log2 log n is a directed tree composed entirely of vertices
with in-degree 2 and out-degree 3, while the the maximal values of π are achieved at
x ∈ V (G) whose in-neighbourhood at distance log3 log n is a directed tree composed
entirely of vertices with in-degree 3 and out-degree 2. Once the results (1.4) and
(1.5) are established, the cover time asymptotic (1.1) will follow from an appropriate
implementation of the Cooper-Frieze approach.

We conclude this preliminary discussion by comparing our estimates (1.4) and (1.5)
with related results for different random graph models. The asymptotic of extremal
values of π has been determined in [17] for the directed Erdős-Renyi random graphs
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with logarithmically diverging average degree. There, the authors show that nπmin
and nπmax are essentially of order 1, which can be interpreted as a concentration
property enforced by the divergence of the degrees. On the other hand, for uniformly
random out-regular digraphs, that is with constant out-degrees but random in-degrees,
the recent paper [2] shows that the stationary distribution restricted to the strongly
connected component satisfies nπmin = n−η+o(1), where η is a computable constant,
and nπmax = no(1). Indeed, in this model in contrast with our setting one can have
in-neighborhoods made by long and thin filaments which determine a power law
deviation from uniformity.

We now turn to a more systematic exposition of our results.

1.1 Model and statement of results

Set [n] = {1, . . . , n}, and for each integer n, fix two sequences d+ = (d+
x )x∈[n] and

d− = (d−
x )x∈[n] of positive integers such that

m =
n∑

x=1

d+
x =

n∑

x=1

d−
x . (1.6)

The directed configuration model DCM(d±) is the distribution of the random digraph
G with vertex set V (G) = [n] obtained by the following procedure: 1) equip each
node x with d+

x tails and d−
x heads; 2) pick uniformly at random one of them! bijective

maps from the set of all tails into the set of all heads, call it ω; 3) for all x, y ∈ [n],
add a directed edge (x, y) every time a tail from x is mapped into a head from y
through ω. The resulting digraph G may have self-loops and multiple edges, however
it is classical that by conditioning on the event that there are no multiple edges and
no self-loops G has the uniform distribution among simple digraphs with in degree
sequence d− and out degree sequence d+.

Structural properties of digraphs obtained in this way have been studied in [13].
Here we consider the sparse case corresponding to bounded degree sequences and, in
order to avoid non irreducibility issues, we shall assume that all degrees are at least 2.
Thus, from now on it will always be assumed that

δ± = min
x∈[n] d

±
x ≥ 2 �± = max

x∈[n] d
±
x = O(1). (1.7)

Under the first assumption it is known that DCM(d±) is strongly connected with high
probability. Under the second assumption, it is known that DCM(d±) has a uniformly
(in n) positive probability of having no self-loops nor multiple edges. In particular,
any property that holds with high probability for DCM(d±) will also hold with high
probability for a uniformly random simple digraph with degrees given by d− and d+
respectively. Here and throughout the rest of the paper we say that a property holds
with high probability (w.h.p. for short) if the probability of the corresponding event
converges to 1 as n → ∞.

The (directed) distance d(x, y) from x to y is the minimal number of edges that
need to be traversed to reach y from x . The diameter is the maximal distance between

123



Stationary distribution and cover time of sparse directed…

two distinct vertices, i.e.
diam(G) = max

x 
=y
d(x, y). (1.8)

We begin by showing that the diameter diam(G) concentrates around the value
c log n within a O(log log n) window, where c is given by c = 1/ log ν and ν is the
parameter defined by

ν = 1

m

n∑

y=1

d−
y d

+
y . (1.9)

Theorem 1.1 Set d = logν n. There exists εn = O
(
log log(n)
log(n)

)
such that

P ((1 − εn) d ≤ diam(G) ≤ (1 + εn) d) = 1 − o(1). (1.10)

Moreover, for any x, y ∈ [n]

P ((1 − εn) d ≤ d(x, y) ≤ (1 + εn) d) = 1 − o(1). (1.11)

The proof of Theorem1.1 is a directed version of a classical argument for undirected
graphs [8]. It requires controlling the size of in- and out-neighborhoods of a node,
which in turn follows ideas from [2] and [9]. The value d = logν n can be interpreted
as follows: both the in- and the out-neighborhood of a node are tree-like with average
branching given by ν, so that their boundary at depth h has typically size νh , see
Lemma 2.10; if the in-neighborhood of y and the out-neighborhood of x are exposed
up to depth h, one finds that the value h = 1

2 logν(n) is critical for the formation of
an arc connecting the two neighborhoods.

In particular, Theorem 1.1 shows that w.h.p. the digraph is strongly connected, so
there exists a unique stationary distribution π characterized by the equation

π(x) =
n∑

y=1

π(y)P(y, x) , x ∈ [n], (1.12)

with the normalization
∑n

x=1 π(x) = 1. Here P is the transition matrix of the simple
random walk on G, namely

P(y, x) = m(y, x)

d+
y

, (1.13)

and we write m(y, x) for the multiplicity of the edge (y, x) in the digraph G. If the
sequences d± are such that d+

x = d−
x for all x ∈ [n], then the stationary distribution

is given by

π(x) = d±
x

m
. (1.14)

The digraph is called Eulerian in this case. In all other cases the stationary distribution
is a nontrivial random variable. To discuss our results on the extremal values of π it
is convenient to introduce the following notation.
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Definition 1.2 We say that a vertex x ∈ [n] is of type (i, j), and write x ∈ Vi, j , if
(d−

x , d+
x ) = (i, j). We call C = C(d±) the set of all types that are present in the double

sequence d±, that is C = {(i, j) : |Vi, j | > 0}. The assumption (1.7) implies that the
number of distinct types is bounded by a fixed constant C independent of n, that is
|C| ≤ C . We say that the type (i, j) has linear size, if

lim inf
n→∞

|Vi, j |
n

> 0. (1.15)

We call L ⊂ C the set of types with linear size, and define the parameters

γ0 := log�+
log δ−

, γ1 := max
(k,�)∈L

log �

log k
, κ1 := min

(k,�)∈L
log �

log k
, κ0 := log δ+

log�−
.

(1.16)

Theorem 1.3 Set πmin = minx∈[n] π(x). There exists a constant C > 0 such that

P

(
C−1 log1−γ0(n) ≤ nπmin ≤ C log1−γ1(n)

)
= 1 − o(1). (1.17)

Moreover, there exists β > 0 such that

P

(
∃S ⊂ [n], |S| ≥ nβ , nmax

y∈S π(y) ≤ C log1−γ1(n)
)

= 1 − o(1). (1.18)

Notice that γ0 ≥ γ1 ≥ 1. If the sequences d± are such that (δ−,�+) ∈ L, then
γ0 = γ1 =: γ . This immediately implies the following

Corollary 1.4 If the sequences d± are such that (δ−,�+) ∈ L, then

πmin � 1

n
log1−γ (n) w.h.p. (1.19)

Remark 1.5 If (δ−,�+) /∈ L, then the estimate (1.17) can be strengthened by replacing
γ0 with γ ′

0 where

γ ′
0 := log�′+

log δ′−
, �′+ := max{� : (k, �) ∈ L0} , δ′− := min{k : (k, �) ∈ L0},

(1.20)
and L0 ⊂ C is defined as the set of (k, �) ∈ C such that

lim sup
n→∞

|Vk,�|
n1−a

= +∞ , ∀a > 0. (1.21)

We refer to Remark 3.9 below for additional details on this improvement.

Concerning the maximal values of π we establish the following estimates.
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Theorem 1.6 Set πmax = maxx∈[n] π(x). There exists a constant C > 0 such that

P

(
C−1 log1−κ1(n) ≤ nπmax ≤ log1−κ0(n)

)
= 1 − o(1). (1.22)

Moreover, there exists β > 0 such that

P

(
∃S ⊂ [n], |S| ≥ nβ , nmin

y∈S π(y) ≥ C−1 log1−κ1(n)
)

= 1 − o(1). (1.23)

Notice that κ0 ≤ κ1 ≤ 1. If the sequences d± are such that (�−, δ+) ∈ L, then
κ0 = κ1 =: κ , and we obtain the following

Corollary 1.7 If (�−, δ+) ∈ L

πmax � 1

n
log1−κ(n) w.h.p. (1.24)

Remark 1.8 In analogy with Remark (1.5), if (�−, δ+) /∈ L, then (1.22) can be
improved by replacing κ0 with κ ′

0 where

κ ′
0 := log δ′+

log�′−
, δ′+ := min{� : (k, �) ∈ L0}, �′− := max{k : (k, �) ∈ L0},

(1.25)

We turn to a description of our results concerning the cover time. A central role here
will be played by both statements in Theorem 1.3. On the other hand the information
on πmax derived in Theorem 1.6 will not be essential, and the statement (1.23) will
never be used in our proof.

Let Xt , t = 0, 1, 2, . . . , denote the simple random walk on the digraph G, that
is the Markov chain with transition matrix P defined in (1.13). Consider the hitting
times

Hy = inf{t ≥ 0 : Xt = y}, τcov = max
y∈[n] Hy . (1.26)

The cover time Tcov = Tcov(G) is defined by

Tcov = max
x∈[n] Ex [τcov], (1.27)

where Ex denotes the expectation with respect to the law of the random walk (Xt )

with initial point X0 = x in a fixed realization of the digraph G. Let γ0, γ1 be as in
Definition 1.2

Theorem 1.9 There exists a constant C > 0 such that

P

(
C−1n logγ1(n) ≤ Tcov ≤ C n logγ0(n)

)
= 1 − o(1). (1.28)
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Corollary 1.10 For sequences d± such that (δ−,�+) ∈ L one has γ0 = γ1 = γ and

Tcov � n logγ (n), w.h.p. (1.29)

Remark 1.11 As in Remark 1.5, if (δ−,�+) /∈ L, then Theorem 1.9 can be strength-
ened by replacing γ0 with the constant γ ′

0 defined in (1.20).

Finally, we observe that when the sequences d± are Eulerian, that is d+
x = d−

x for
all x ∈ [n], then the estimates in Theorem 1.9 can be refined considerably, and one
obtains results that are at the same level of precision of those already established in
the case of random undirected graphs [1].

Theorem 1.12 Suppose d−
x = d+

x = dx for every x ∈ [n]. Call Vd the set of vertices
of degree d, and write d̄ = m/n for the average degree. Assume

|Vd | = nαd+o(1) (1.30)

for some constants αd ∈ [0, 1], for each type d. Then,

Tcov = (β + o(1)) n log n, w.h.p. (1.31)

where β := d̄ maxd
αd
d .

In particular, if all present types have linear size then αd ∈ {0, 1} for all d and
(1.31) holds with β = d̄/δ, where δ = δ± is the minimum degree. In any case it is not
difficult to see that β ≥ 1, since d̄ is determined only by types with linear size. For
some general bounds on cover times of Eulerian graphs we refer to [7].

The rest of the paper is divided into three sections. The first is a collection of
preliminary structural facts about the directed configuration model. It also includes
the proof of Theorem 1.1. The second section is the core of the paper. There we
establish Theorem 1.3 and Theorem 1.6. The last section contains the proof of the
cover time results Theorem 1.9 and Theorem 1.12.

2 Neighborhoods and diameter

We start by recalling some simple facts about the directed configuration model.

2.1 Sequential generation

Each vertex x has d−
x labeled heads and d+

x labeled tails, and we call E−
x and E+

x
the sets of heads and tails at x respectively. The uniform bijection ω between heads
E− = ∪x∈[n]E−

x and tails E+ = ∪x∈[n]E+
x , viewed as a matching, can be sampled

by iterating the following steps until there are no unmatched heads left:

1) pick an unmatched head f ∈ E− according to some priority rule;
2) pick an unmatched tail e ∈ E+ uniformly at random;
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3) match f with e, i.e. set ω( f ) = e, and call e f the resulting edge.

This gives the desired uniform distribution over matchings ω : E− �→ E+ regardless
of the priority rule chosen at step 1. The digraph G is obtained by adding a directed
edge (x, y) whenever f ∈ E−

y and e ∈ E+
x in step 3 above.

2.2 In-neighborhoods and out-neighborhoods

We will use the notation

δ = min{δ−, δ+}, � = max{�−,�+}. (2.1)

For any h ∈ N, the h-in-neighborhood of a vertex y, denoted B−
h (y), is the digraph

defined as the union of all directed paths of length � ≤ h in G which terminate at
vertex y. In the sequel a path is always understood as a sequence of directed edges
(e1 f1, . . . , ek fk) such that v fi = vei+1 for all i = 1, . . . , k−1, and we use the notation
ve (resp. v f ) for the vertex x such that e ∈ E+

x (resp. f ∈ E−
x ).

To generate the random variable B−
h (y), we use the following breadth-first proce-

dure. Start at vertex y and run the sequence of steps described above, by giving priority
to those unmatched heads which have minimal distance to vertex y, until this minimal
distance exceeds h, at which point the process stops. Similarly, for any h ∈ N, the
h-out-neighborhood of a vertex x , denoted B+

h (x) is defined as the subgraph induced
by the set of directed paths of length � ≤ h which start at vertex x . To generate the ran-
dom variable B+

h (x), we use the same breadth-first procedure described above except
that we invert the role of heads and tails. With slight abuse of notation we sometimes
write B±

h (x) for the vertex set of B±
h (x). We also warn the reader that to simplify the

notation we often avoid taking explicitly the integer part of the various parameters
entering our proofs. In particular, whenever we write B±

h (x) it is always understood
that h ∈ N.

During the generation process of the in-neighborhood, say that a collision occurs
whenever a tail gets chosen, whose end-point x was already exposed, in the sense that
some tail in E+

x or head in E−
x had already been matched. Since less than 2k vertices

are exposed when the kth tail gets matched, less than 2�k of the m − k + 1 possible
choices can result in a collision. Thus, the conditional chance that the kth step causes
a collision, given the past, is less than pk = 2�k

m−k+1 . It follows that the number Zk

of collisions caused by the first k arcs is stochastically dominated by the binomial
random variable Bin(k, pk). In particular,

P (Zk ≥ �) ≤ k� p�
k

�! , � ∈ N. (2.2)

Notice that as long as no collision occurs, the resulting digraph is a directed tree. The
same applies to out-neighborhoods simply by inverting the role of heads and tails.

For any digraph G, define the tree excess of G as

tx(G) = 1 + |E | − |V |, (2.3)
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where E is the set of directed edges and V is the set of vertices of G. In particular,
tx(B±

h (x)) = 0 iff B±
h (x) is a directed tree, and tx(B±

h (x)) ≤ 1 iff there is at most
one collision during the generation of the neighborhood B±

h (x). Define the events

Gx (h) = {
tx(B−

h (x)) ≤ 1 and tx(B+
h (x)) ≤ 1

}
, G(h) = ∩x∈[n]Gx (h). (2.4)

Set also

� = 1

5
log�(n). (2.5)

Proposition 2.1 There exists χ > 0 such that P (Gx (�)) = 1 − O(n−1−χ ) for any
x ∈ [n]. In particular,

P (G(�)) = 1 − O(n−χ ). (2.6)

Proof During the generation of B−
h (x) one creates at most �h edges. It follows from

(2.2) with � = 2 that the probability of the complement of Gx (�) is O(n−1−χ ) for all
x ∈ [n] for some absolute constant χ > 0:

P (Gx (�)) = 1 − O(n−1−χ ). (2.7)

The conclusion follows from the union bound. ��
We will need to control the size of the boundary of our neighborhoods. To this end,

we introduce the notation ∂B−
t (y) for the set of vertices x ∈ [n] such that d(x, y) = t .

Similarly, ∂B+
t (x) is the set of vertices y ∈ [n] such that d(x, y) = t . Clearly,

|∂B±
t (y)| ≤ �h for any y ∈ [n] and h ∈ N.

Lemma 2.2 There exists χ > 0 such that for all y ∈ [n],

P

(
|∂B±

h (y)| ≥ 1
2δ

h±, ∀h ∈ [1, �]
)

= 1 − O(n−1−χ ), (2.8)

where δ± is defined as in (1.7).

Proof By symmetry we may restrict to the case of in-neighborhoods. By (2.7) it is
sufficient to show that |∂B±

h (y)| ≥ 1
2δ

h±, for all h ∈ [1, �], if Gy(�) holds. If the tree
excess of the h-in-neighborhood B−

h (y) is at most 1 then there is at most one collision
in the generation of B−

h (y). This collision can be of two types:

(1) there exists some 1 ≤ t ≤ h and a v ∈ ∂B−
t (y) s.t. v has two out-neighbors

w,w′ ∈ ∂B−
t−1(y);

(2) there exists some 0 ≤ t ≤ h and a v ∈ ∂B−
t (y) s.t. v has an in-neighbor w in

B−
t (y).

The first case can be further divided into two cases: a) w = w′, and b) w 
= w′; see
Fig. 1.

In case 1a) we note that the (h − t)-in-neighborhood of v must be a directed tree
with at least δh−t− elements on its boundary andwith no intersection with the (h−t)-in-
neighborhoods of other v′ ∈ ∂B−

t (y). Moreover, B−
t−1(y) must be a directed tree with
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Fig. 1 The light-coloured arrow represents a collision of type (1a) (left) and a collision of type (1b) (right)

Fig. 2 Two examples of collision of type (2a)

Fig. 3 Two examples of collision of type (2b)

|∂B−
t−1(y)| ≥ δt−1− , and all elements of ∂B−

t−1(y) except one have disjoint (h− t +1)-

in-neighborhoods with δh−t+1− elements on their boundary. Therefore

|∂B−
h (y)| ≥ (δt−1− − 1)δh−t+1− + (δ− − 1)δh−t− ≥ 1

2
δh−.

In case 1b) one has that t ≥ 2, B−
t−1(y) is a directed tree with |∂B−

t−1(y)| ≥ δt−1− , and
for all z ∈ ∂B−

t (y), the (h − t)-in-neighborhoods of z are disjoint directed trees with
at least δh−t− elements on their boundary. Since |∂B−

t (y)| ≥ δt− − 1 it follows that

|∂B−
h (y)| ≥ (δt− − 1)δh−t− ≥ 1

2
δh−.

Collisions of type 2 can be further divided into two types: a) w ∈ ∂B−
s (y) with s < t

and there is no path from v to w of length t − s, or w ∈ ∂B−
t (y) and w 
= v, and b)

w ∈ ∂B−
s (y)with s < t and there is a path from v tow of length t − s, orw = v. Note

that in contrast with collisions of type 2a), a collision of type 2b) creates a directed
cycle within B−

t (y); see Figs. 2 and 3.
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We remark that in either case 2a) or case 2b), ∂B−
t (y) has at least δt− elements,

and the vertex v ∈ ∂B−
t (y) has at least δ− − 1 in-neighbors whose (h − t − 1)-in-

neighborhoods are disjoint directed trees. All other v′ ∈ ∂B−
t (y) have (h − t)-in-

neighborhoods that are disjoint directed trees. Therefore, in case 2):

|∂B−
h (y)| ≥ (δt− − 1)δh−t− + (δ− − 1)δh−t−1− ≥ 1

2
δh−.

��
We shall need a more precise control of the size of ∂B±

h (y), and for values of h that
are larger than �. Recall the definition (1.9) of the parameter ν. We use the following
notation in the sequel:

�0 = 4 logδ log(n), hη = (1 − η) logν(n). (2.9)

Lemma 2.3 For every η ∈ (0, 1), there exist constants c1, c2 > 0, χ > 0 such that for
all y ∈ [n],

P

(
νh log−c1(n) ≤ |∂B±

h (y)| ≤ νh logc2(n) , ∀h ∈ [
�0, hη

]) = 1 − O(n−1−χ ).

(2.10)

Proof We run the proof for the in-neighborhood only since the case of the out-
neighborhood is obtained in the same way. We generate B−

h (y), h ∈ [
�0, hη

]

sequentially in a breadth first fashion. After the depth j neighborhood B−
j (y) has

been sampled, we call F j the set of all heads attached to vertices in ∂B−
j (y). Set

u = log−7/8(n).

For any h ≥ �0 define

κh := [ν(1 − u)]h−�0 log7/2(n), κ̂h := [ν(1 + u)]h−�0��0 . (2.11)

We are going to prove

P
(
κh ≤ |Fh | ≤ κ̂h, ∀h ∈ [

�0, hη

]) = 1 − O(n−1−χ ). (2.12)

Notice that, choosing suitable constants c1, c2 > 0, (2.10) is a consequence of (2.12).
Consider the events

A j = {|Fi | ∈ [κi , κ̂i ] , ∀i ∈ [�0, j]} . (2.13)

Thus, we need to prove P(Ah) = 1 − O(n−1−χ ), for h = hη. From Lemma 2.2 and
the choice of �0, it follows that

P(A�0) = 1 − O(n−1−χ ). (2.14)
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For h > �0 we write

P(Ah) = P(A�0)

h∏

j=�0+1

P(A j |A j−1). (2.15)

To estimate P(A j |A j−1), note that A j−1 depends only on the in-neighborhood
B−

j−1(y), so if σ j−1 denotes a realization of B−
j−1(y) with a slight abuse of notation

we write σ j−1 ∈ A j−1 if A j−1 occurs for this given σ j−1. Then

P(A j |A j−1) =
∑

σ j−1
P(σ j−1)P(A j |σ j−1)1σ j−1∈A j−1

P(A j−1)
. (2.16)

Therefore, to prove a lower bound on P(A j |A j−1) it is sufficient to prove a lower
bound on P(A j |σ j−1) that is uniform over all σ j−1 ∈ A j−1.

Suppose we have generated the neighborhood σ j−1 up to depth j − 1, for a σ j−1 ∈
A j−1. In some arbitrary order we now generate the matchings of all heads f ∈ F j−1.

We define the random variable X ( j)
f , f ∈ F j−1, which, for every f evaluates to the

in-degree d−
z of the vertex z that is matched to f if the vertex z was not yet exposed,

and evaluates to zero otherwise. In this way

|F j | =
∑

f ∈F j−1

X ( j)
f . (2.17)

Therefore,

P(A j |σ j−1) = P
(
ν(1 − u)κ j−1 ≤ |F j | ≤ ν(1 + u)̂κ j−1 | σ j−1

)

= 1 − P

( ∑

f ∈F j−1

X ( j)
f < ν(1 − u)κ j−1 | σ j−1

)

− P

( ∑

f ∈F j−1

X ( j)
f > ν(1 + u)̂κ j−1 | σ j−1

)
. (2.18)

To sample the variables X ( j)
f , at each step we pick a tail uniformly at random among

all unmatched tails and evaluate the in-degree of its end point if it is not yet exposed.
Since σ j−1 ∈ A j−1, at any such step the number of exposed vertices is at most
K = O(n1−η/2). In particular, for any f ∈ F j−1 and any d ∈ [δ,�], σ j−1 ∈ A j−1:

P

(
X ( j)

f = d | σ j−1

)
≥

[(∑n
k=1 d

+
k 1d−

k =d

)
− �K

]

+
m

=: p(d),

where [·]+ denotes the positive part. This shows that X ( j)
f stochastically dominates

the random variable Y ( j) and is stochastically dominated by the random variable Ŷ ( j),
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where Y ( j) and Ŷ ( j) are defined by

∀d ∈ [δ,�], P(Y ( j) = d) = P(Ŷ ( j) = d) = p(d)

P

(
Ŷ ( j) = � + 1

)
= P

(
Y ( j) = 0

)
= 1 −

�∑

d=δ

p(d).

Notice that

E

(
Y ( j)

)
=

�∑

d=δ

dp(d) ≥ ν − �2K

m
= ν − O(n−η/2). (2.19)

Similarly,

E

(
Ŷ ( j)

)
≤ ν + �2K

m
= ν + O(n−η/2). (2.20)

Moreover, letting Y ( j)
i and Ŷ ( j)

i denote i.i.d. copies of the random variables Y ( j)

and Ŷ ( j) respectively, since σ j−1 ∈ A j−1, the sum in (2.17) stochastically

dominates
∑κ j−1

i=1 Y ( j)
i , and is stochastically dominated by

∑κ̂ j−1
i=1 Y ( j)

i . Therefore,
∑

f ∈F j−1
X ( j)

f < ν(1 − u)κ j−1 implies that

κ j−1∑

i=1

[
Y ( j)
i − E

(
Y ( j)

)]
≤ −1

2
uκ j−1, (2.21)

if n is large enough. Similarly,
∑

f ∈F j−1
X ( j)

f > ν(1 + u)̂κ j−1 implies that

κ̂ j−1∑

i=1

[
Ŷ ( j)
i − E

(
Ŷ ( j)

)]
≥ 1

2
uκ̂ j−1. (2.22)

An application of Hoeffding’s inequality shows that the probability of the events (2.21)
and (2.22) is bounded by e−cu2κ j−1 and e−cu2κ̂ j−1 respectively, for some absolute
constant c > 0. Hence, from (2.18) we conclude that for some constant c > 0:

P(A j |σ j−1) ≥ 1 − e−cu2κ j−1 − e−cu2κ̂ j−1 .

Therefore, using u2κ̂ j−1 ≥ u2κ j−1 ≥ u2κ0 ≥ log3/2(n),

P(A j |σ j−1) = 1 − O(n−3), (2.23)

uniformly in j ∈ [�0, hη] and σ j−1 ∈ A j−1. By (2.16) the same bound applies to
P(A j |A j−1) and going back to (2.15), for h = hη we have obtained

P(Ah) = 1 − O(n−1−χ ).

��
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We shall also need the following refinement of Lemma 2.3. Define the events

F±
y = F±

y (η, c1, c2) =
{
νh log−c1(n) ≤ |∂B±

h (y)| ≤ νh logc2(n) , ∀h ∈ [
�0, hη

]}
.

(2.24)
Lemma 2.3 states that

P

(
(F±

y )c
)

= O(n−1−χ ).

Let G(�) be the event from Proposition 2.1.

Lemma 2.4 For every η ∈ (0, 1), there exist constants c1, c2 > 0, χ > 0 such that for
all y ∈ [n],

P

(
(F±

y )c;G(�)
)

= O(n−2−χ ). (2.25)

Proof By symmetry we may prove the inequality for the event F−
y only. Consider the

set D−
y of all possible 2-in-neighborhoods of y compatible with the event G(�), that

is the set of labeled digraphs D such that

P(B−
2 (y) = D ; G(�)) > 0. (2.26)

Then
P

(
(F−

y )c;G(�)
)

≤ sup
D∈D−

y

P

(
(F±

y )c |B−
2 (y) = D

)
. (2.27)

Thus it is sufficient to prove that

P

(
(F±

y )c |B−
2 (y) = D

)
= O(n−2−χ ), (2.28)

uniformly in D ∈ D−
y . To this end, we may repeat exactly the same argument as in

the proof of Lemma 2.3 with the difference that now we condition from the start on
the event B−

2 (y) = D for a fixed D ∈ Dy . The key observation is that (2.14) can be
strenghtened to O(n−2−χ ) if we condition on B−

2 (y) = D. That is, for some χ > 0,
uniformly in D ∈ Dy ,

P
(
A�0 |B−

2 (y) = D
) = 1 − O(n−2−χ ), (2.29)

To prove (2.29) notice that if the 2-in-neighborhood of y is given byB−
2 (y) = D ∈ Dy

then the set F−
2 (y) has at least 4 elements. Therefore, taking a sufficiently large

constant C , for the event |F−
�0

(y)| ≥ δ�0/C to fail it is necessary to have at least 3

collisions in the generation of B−
t (y), t ∈ {3, . . . , �0}. From the estimate (2.2) the

probability of this event is bounded by p3k k
3 with k = ��0 , which implies (2.29)

if χ ∈ (0, 1). Once (2.29) is established, the rest of the proof is a repetition of the
argument in (2.15)-(2.23). ��
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2.3 Upper bound on the diameter

The upper bound in Theorem 1.1 is reformulated as follows.

Lemma 2.5 There exist constants C, χ > 0 such that if εn = C log log(n)
log(n)

,

P (diam(G) > (1 + εn) d) = O(n−χ ). (2.30)

Proof From Proposition 2.1 we may restrict to the event G(�). From the union bound

P (diam(G) > (1 + εn) d;G(�)) ≤
∑

x,y∈[n]
P (d(x, y) > (1 + εn)d;G(�)) . (2.31)

From Lemma 2.4, for all x, y ∈ [n]

P (d(x, y) > (1 + εn)d;G(�)) = P

(
d(x, y) > (1 + εn)d; F+

x ∩ F−
y

)
+O(n−2−χ ).

(2.32)
Fix

k = 1 + εn

2
logν n.

Let us use sequential generation to sample first B+
k (x) and then B−

k−1(y). Call σ a
realization of these two neighborhoods. Consider the event

Ux,y = {|∂B+
k (x)| ≥ νk log−c1(n) ; |∂B−

k−1(y)| ≥ νk−1 log−c1(n)}.

Clearly, F+
x ∩F−

y ⊂ Ux,y .MoreoverUx,y depends only onσ .Note also that {d(x, y) >

(1 + εn)d} ⊂ Ex,y , where we define the event

Ex,y = {There is no path of length ≤ 2k − 1 from x to y}. (2.33)

The event Ex,y depends only on σ . We say that σ ∈ Ux,y ∩ Ex,y if σ is such that both
Ex,y and Ux,y occur. Thus, we write

P

(
d(x, y) > (1 + εn)d; F+

x ∩ F−
y

)
≤ P

(
d(x, y) > (1 + εn)d;Ux,y ∩ Ex,y

)

≤ sup
σ∈Ux,y∩Ex,y

P (d(x, y) > (1 + εn)d | σ) .

(2.34)

Fix a realization σ ∈ Ux,y∩Ex,y . The event Ex,y implies that all vertices on ∂B−
k−1(y)

have all their heads unmatched and the sameholds for all the tails of vertices in ∂B+
k (x).

CallFk−1 the heads attached to vertices in ∂B−
k−1(y) andEk the tails attached to vertices
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in ∂B+
k (x). The event d(x, y) > (1+εn)d implies that there are nomatchings between

Fk−1 and Ek . The probability of this event is dominated by

(
1 − |Ek |

m

)|Fk−1|
≤

(
1 − n− 1

2+ εn
4

)n 1
2+ εn

4

≤ exp (−nεn/2) ,

if n is large enough and εn = C log log n/ log n with C large enough. Therefore,
uniformly in σ ∈ Ux,y ∩ Ex,y ,

P (d(x, y) > (1 + εn)d | σ) ≤ exp (−nεn/2) = O(n−2−χ ).

Inserting this in (2.31)–(2.32) completes the proof. ��

2.4 Lower bound on the diameter

Weprove the following lower bound on the diameter. Note that Lemma 2.5 andLemma
2.6 imply Theorem 1.1.

Lemma 2.6 There exists C > 0 such that taking εn = C log log(n)
log(n)

, for any x, y ∈ [n],

P (d(x, y) ≤ (1 − εn)d) = o(1). (2.35)

Proof Define

� = 1 − εn

2
logν n.

We start by sampling the out-neighborhood of x up to distance �. Consider the event

Jx =
{
|B+

� (x)| ≤ n
1−εn
2 logc2(n)

}
.

From Lemma 2.3, P(Jx ) = 1 − O(n−1−χ ) for suitable constants c2, χ > 0, and
therefore

P(y ∈ B+
� (x)) = P(y ∈ B+

� (x); Jx ) + O(n−1−χ ). (2.36)

If Jx holds, in the generation of B+
� (x) there are at most K := n

1−εn
2 logc2(n) attempts

to include y inB+
� (x), each with probability at most d−

y /(m−K ) ≤ 2�/m of success,
so that

P(y ∈ B+
� (x); Jx ) ≤ 2�

m
K = O(n− 1

2 ). (2.37)

Once the out-neighborhood B+
� (x) has been generated, if y /∈ B+

� (x), we generate the
in-neighborhood B−

� (y). If d(x, y) ≤ (1 − εn)d then there must be a collision with
∂B+

� (x), and

P(d(x, y) ≤ (1 − εn)d ; y /∈ B+
� (x)) = P(y /∈ B+

� (x) ; B−
� (y) ∩ ∂B+

� (x) 
= ∅).

(2.38)
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Consider the event
Jy =

{
|B−

� (y)| < n
1−εn
2 logc2(n)

}
.

FromLemma 2.3 it follows thatP(Jy) = 1−O(n−1−χ ) for suitable constants c2, χ >

0. If Jx and Jy hold, in the generation of B−
� (y) there are at most K = n

1−εn
2 logc2(n)

attempts to collide with ∂B+
� (x), each of which with success probability at most

�K/m, and therefore

P(y /∈ B+
� (x) ; B−

� (y) ∩ ∂B+
� (x) 
= ∅) ≤ �K 2

m
= O(n−εn/2) = o(1), (2.39)

where we take the constant C in the definition of εn sufficiently large. In conclusion,

P (d(x, y) ≤ (1 − εn)d) ≤ P
(
y ∈ B+

� (x)
) + P

(
d(x, y) ≤ (1 − εn)d ; y /∈ B+

� (x)
)
,

and the inequalities (2.36)–(2.39) end the proof. ��

3 Stationary distribution

We start by recalling some key facts established in [9].

3.1 Convergence to stationarity

Let Pt (x, ·) denote the distribution after t steps of the random walk started at x . The
total variation distance between two probabilities μ, ν on [n] is defined as

‖μ − ν‖TV = 1

2

∑

x∈[n]
|μ(x) − ν(x)|.

Let the entropy H and the associated entropic time TENT be defined by

H =
∑

x∈V

d−
x

m
log d+

x , TENT = log n

H
. (3.1)

Note that under our assumptions on d±, the deterministic quantities H , TENT satisfy
H = �(1) and TENT = �(log n). Theorem 1 of [9] states that for all s > 0 with
s 
= 1,

max
x∈[n]

∣∣∣‖PsTENT(x, ·) − π‖TV − ϑ(s)
∣∣∣ P−→ 0 , (3.2)

where ϑ denotes the step function ϑ(s) = 1 if s < 1 and ϑ(s) = 0 if s > 1, and we

use the notation
P−→ for convergence in probability as n → ∞. In words, convergence

to stationarity for the random walk on the directed configuration model displays with
high probability a cutoff phenomenon, uniformly in the starting point, with mixing
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time given by the entropic time TENT. By concavity of x �→ log(x) the mixing time
TENT = log n

H is always larger than the diameter d = log n
log ν

in Theorem 1.1,

H =
n∑

x=1

d−
x

m
log d+

x ≤ log

(
n∑

x=1

d−
x

m
d+
x

)
= log ν, (3.3)

with equality if and only if the sequence is out-regular, that is d+
x ≡ d. Thus, the

analysis of convergence to stationarity requires investigating the graph on a length
scale that may well exceed the diameter. Considering all possible paths on this length
scale is not practical, and we shall rely on a powerful construction of [9] that allows
one to restrict to a subset of paths with a tree structure, see Sect. 3.3.1 below for the
details.

3.2 The local approximation

A consequence of the arguments of [9] is that the unknown stationary distribution at a
node y admits an approximation in terms of the in-neighborhood of y at a distance that
is much smaller than the mixing time. More precisely, it follows from [9, Theorem 3]
that for any sequence tn → ∞

‖π − μinP
tn‖TV P−→ 0, (3.4)

where we use the notation μin for the in-degree distribution

μin(x) = d−
x

m
, (3.5)

and for any probability μ on [n], μPt is the distribution

μPt (y) =
∑

x∈[n]
μ(x)Pt (x, y), y ∈ [n].

We refer to [11, Lemma 1] for a stronger statement than (3.4) where μin is replaced
by any sufficiently widespread probability on [n]. While these facts are very useful to
study the typical values of π , they give very poor information on its extremal values
πmin and πmax, and to prove Theorem 1.3 and Theorem 1.6 we need a stronger control
of the local approximation of the stationary distribution.

A key role in our analysis is played by the quantity �h(y) defined as follows.
Consider the set ∂B−

h (y) of all vertices z ∈ [n] such that d(z, y) = h, and define

�h(y) :=
∑

z∈∂B−
h (y)

d−
z Ph(z, y). (3.6)
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The definitions (3.6) and (1.13) are such that for any y ∈ [n] and h ∈ N

�h(y) ≤ m μinP
h(y), (3.7)

where μin is defined in (3.5). If B−
h (y) is a tree, then (3.7) is an equality. In any case,

�h(y) satisfies the following rough inequalities.

Lemma 3.1 With high probability, for all y ∈ [n], for all h ∈ [1, �]:
(

δ−
�+

)h

≤ �h(y) ≤ 2�−
(

�−
δ+

)h

. (3.8)

Proof From Proposition 2.1 we may assume that the event G(�) holds. From Lemma
2.2 we know that 1

2δ
h− ≤ |∂B−

h (y)| ≤ �h−. Thus it suffices to show that for any
z ∈ ∂B−

h (y), h ∈ [1, �]:
�−h+ ≤ Ph(z, y) ≤ 2δ−h+ . (3.9)

The bounds in (3.9) follow from the observation that any path of length h from z to
y has weight at least �−h+ and at most δ−h+ , and that there is at least one and at most
two such paths if z ∈ ∂B−

h (y) and G(�) holds. The latter fact can be seen with the
same argument used in the proof of Lemma 2.2. With reference to that proof: in case
1) there are at most two paths from z to y, see Fig. 1; in case 2) there is only one path
from z to y; see Figs. 2 and 3. ��

Roughly speaking, in what follows the extremal values of π will be controlled by
approximating π(y) in terms of�h(y) for values of h of order log log n, for every node
y. The next two results allow us to control �h(y) in terms of �h0(y) for all h ∈ [h0, �]
where h0 is of order log log n.

Lemma 3.2 There exist constants c > 0 and C > 0 such that:

P

(
∀y ∈ [n], ∀h ∈ [h0, �] , �h(y) ≥ c log1−γ0(n)

)
= 1 − o(1), (3.10)

where γ0 is the constant from Theorem 1.3 and h0 := logδ−log(n) + C.

Proof From Lemma 2.2 we may assume that |∂B−
h0

(y)| ≥ 1
2δ

h0− =: R for all
y ∈ [n], where h0 is as in the statement above with C to be fixed later. Once we
have the in-neighborhood B−

h0
(y) we proceed with the generation of the (h − h0)-in-

neghborhoods of all z ∈ ∂B−
h0

(y). Consider the first R elements of ∂B−
h0

(y), and order

them as (z1, . . . , zR) in some arbitrary way. We sample sequentially B−
h−h0

(z1), then

B−
h−h0

(z2), and so on. We want to couple the random variables Zi := B−
h−h0

(zi ),
i = 1, . . . , R with a sequence of independent rooted directed random trees Wi ,
i = 1, . . . , R, defined as follows. The tree Wi is defined as the first h − h0 gen-
erations of the marked random tree Ti produced by the following instructions:

• the root is given the mark zi ;
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• every vertex with mark j has d−
j children, each of which is given independently

the mark k ∈ [n] with probability d+
k /m.

Consider the generation of the i-th variable Zi . This is achieved by the breadth-first
sequential procedure, where at each step a head ismatchedwith a tail chosen uniformly
at random from all unmatched tails; see Sect. 2. If instead we pick the tail uniformly
at random from all possible tails, then we need to reject the outcome if the chosen tail
belongs to the set of tails that have been already matched. Since the total number of
tails matched at any step of this generation is at most K := �� = O(n1/5), it follows
that the probability of a rejection is bounded by p := K/m = O(n−4/5). Let us now
consider the event of a collision, that is when the chosen tail belongs to a vertex that
has already been exposed during the previous steps, including the generation ofB−

h0
(y)

and of the Z j , j ≤ i . Notice that the total number of exposed vertices is at most K and
therefore the probability of a collision is bounded by p′ = �K/m = O(n−4/5). Since
the generation of Zi requires at most K matchings, we see that conditionally on the
past, a Zi with no rejections and no collisions is created with probability uniformly
bounded from below by 1 − q, where q = O(n−3/5). We say that Zi is bad if its
generation produced a rejection or a collision. Once the Zi ’s have been sampled we
define a set I such that i ∈ I if and only if either Zi is bad or there is a bad Z j such that
the generation of Z j produced a collision with a vertex from Zi . With this notation,
Wi = Zi for all i /∈ I and

�h(y) ≥ �
−h0+

∑

i /∈I
�h−h0(zi ). (3.11)

The above construction shows that the cardinality of the set I is stochastically domi-
nated by twice the binomial Bin(R, q). Therefore,

P(|I| ≥ 10) ≤ P(Bin(R, q) ≥ 5) ≤ (Rq)5 = o(n−2). (3.12)

On the other hand, notice that for all i /∈ I:

�h−h0(zi ) = Mi
h−h0 , (3.13)

where Mi
t , t ∈ N, is defined as follows. Let Tt,i denote the set of vertices forming

generation t of the tree Ti rooted at zi , and for x ∈ Tt,i , write

w(x) := w (x �→ zi ; Ti ) =
t∏

u=1

1

d+
xu

, (3.14)

for the weight of the path (xt = x, xt−1, . . . , x1, x0 = zi ) from x to zi along Ti . Then
Mi

t is defined by

Mi
t =

∑

x∈Tt,i
d−
x w(x), Mi

0 = d−
zi . (3.15)
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It is not hard to check (see e.g. [11, Proposition 4]) that for fixed n, (Mi
t )t≥0 is a

martingale with

E[Mi
t ] = Mi

0 = d−
zi .

In particular, by truncating at a sufficiently large constantC1 > 0 one hasMi
h−h0

≥ Xi ,
where

Xi := min{Mi
h−h0 ,C1}

are independent random variables with 0 ≤ Xi ≤ C1 and E[Xi ] ≥ 1 for all i .
Therefore, Hoeffding’s inequality gives, for any k ∈ N:

P

(
k∑

i=1

Mi
h−h0 ≤ k/2

)
≤ e−c1k, (3.16)

where c1 > 0 is a suitable constant.
Divide the integers {1, . . . , R} into 10 disjoint intervals I1, . . . , I10, each containing

R/10 elements. If |I| < 10 then there must be one of the intervals, say I j∗ , such that
I j∗ ∩ I = ∅. It follows that if |I| < 10, then

∑

i /∈I
�h−h0(zi ) ≥

∑

i∈I j∗
Mi

h−h0 ≥ min
�=1,...,10

∑

i∈I�
Mi

h−h0 . (3.17)

Using (3.12), and (3.16), (3.17) we conclude that, for a suitable constant c2 > 0:

P

(
∑

i /∈I
�h−h0(zi ) ≤ c2R

)
≤ P

⎛

⎝ min
�=1,...,10

∑

i∈I�
Mi

h−h0 ≤ c2R

⎞

⎠ + P(|I| ≥ 10)

≤ 10 exp (−c1R/10) + o(n−2). (3.18)

Since R = 1
2δ

h0− = 1
2δ

C− log n, the probability in (3.18) is o(n−2) if C is large enough.
From (3.11), on the event

∑
i /∈I �h−h0(zi ) > c2R one has

�h(y) ≥ 1
2c2δ

h0− �
−h0+ = c log1−γ0(n), (3.19)

where c = 1
2c2(δ−/�+)C . Thus the event (3.19) has probability 1 − o(n−2), and the

desired conclusion follows by taking a union bound over y ∈ [n] and h ∈ [h0, �]. ��
Lemma 3.3 There exists a constant K > 0 such that for all ε > 0, with high proba-
bility:

max
y∈[n] max

h∈[h1,�]

∣∣∣
�h(y)

�h1(y)
− 1

∣∣∣ ≤ ε, (3.20)

where h1 := K log log(n).
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Proof For any h ≥ h1, let σh denote a realization of the in-neighborhood B−
h (y),

obtained with the usual breadth-first sequential generation. From Proposition 2.1 we
may assume that the tree excess of B−

h (y) is at most 1, as long as h ≤ �. Call
Etot,h,Ftot,h the set of unmatched tails and unmatched heads, respectively, after the
generation of σh . Let also Eh ⊂ Etot,h denote the set of unmatched tails belonging to
vertices not yet exposed, and let Fh be the subset of heads attached to ∂B−

h (y). By
construction, all heads attached to ∂B−

h (y) must be unmatched at this stage so that
Fh ⊂ Ftot,h . Moreover,

�h(y) =
∑

f ∈Fh

Ph(v f , y), (3.21)

where v f denotes the vertex to which the head f belongs. To compute �h+1 given σh
we let ω : Etot,h �→ Ftot,h denote a uniform random matching of Etot,h and Ftot,h ,
and notice that a vertex z is in ∂B−

h+1(y) if and only if z is revealed by matching one
of the heads f ∈ Fh with one of the tails e ∈ Eh . Therefore,

�h+1(y) =
∑

e∈Eh

d−
e

d+
e

∑

f ∈Fh

Ph(v f , y)1ω(e)= f

=
∑

e∈Etot,h
c(e, ω(e)), (3.22)

where we use the notation d±
e for the degrees of the vertex to which the tail e belongs,

and the function c is defined by

c(e, f ) = d−
e

d+
e
Ph(v f , y)1e∈Eh , f ∈Fh . (3.23)

Since σh is such that tx(B−
h (y)) ≤ 1, we may estimate Ph(v f , y) as in (3.9), so that

‖c‖∞ = max
e, f

c(e, f ) ≤ 2�δ−h−1. (3.24)

We now use a version of Bernstein’s inequality proved by Chatterjee ([12, Proposition
1.1]) which applies to any function of a uniform random matching of the form (3.22).
It follows that for any fixed σh , for any s > 0:

P
(|�h+1(y) − E

[
�h+1(y) | σh

] | ≥ s | σh
)

≤ 2 exp

(
− s2

2 ‖c‖∞ (2E
[
�h+1(y) | σh

] + s)

)
. (3.25)
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Taking s = aE
[
�h+1(y) | σh

]
, a ∈ (0, 1), one has

P
(|�h+1(y) − E

[
�h+1(y) | σh

] | ≥ s | σh
) ≤ 2 exp

(
−a2E

[
�h+1(y) | σh

]

6 ‖c‖∞

)
.

(3.26)

Since the probability of the event ω(e) = f conditioned on σh is 1
|Etot,h | = 1

m (1 +
O(�h/m)), we have

E
[
�h+1(y) | σh

] = 1

|Etot,h |
∑

e∈Eh

d−
e

d+
e

�h(y)

= 1

m

(
1 + O(�h/m)

)
⎛

⎝m −
∑

e/∈Eh

d−
e

d+
e

⎞

⎠ �h(y)

=
(
1 + O(�h/m)

)
�h(y) =

(
1 + O(n−1/2)

)
�h(y), (3.27)

for all h ∈ [h1, �], where we use the fact that the sum over all tails e (matched or
unmatched) of d−

e /d+
e equals m. In particular, from Lemma 3.2 it follows that for

some constant c > 0:

E
[
�h+1(y) | σh

] ≥ c log−γ0+1(n), (3.28)

and therefore, using (3.24), one finds

‖c‖−1∞ E
[
�h+1(y) | σh

] ≥ log6(n), (3.29)

for all h ≥ h1, if the constant K in the definition of h1 is large enough. From (3.26),
(3.27) and (3.29) it follows that, letting

A := {|�h+1(y) − �h(y)| ≤ a�h(y) , ∀h ∈ [h1, �]} ,

with a := log−2(n), then
P (A) = 1 − o(1). (3.30)

Moreover, on the event A, for all h ∈ [h1, �]:

|�h(y) − �h1(y)| ≤
h−1∑

j=h1

∣∣� j+1(y) − � j (y)
∣∣ ≤ ε�h1(y).

��
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3.3 Lower bound on�min

If for some t ∈ N and a > 0 one has Pt (x, y) ≥ a for all x, y ∈ [n], then

π(z) =
n∑

x=1

π(x)Pt (x, z) ≥ a, (3.31)

and therefore πmin ≥ a. We will prove the lower bound on Pt (x, y) by choosing t of
the form t = (1 + ε)TENT, for some small enough ε > 0; see (3.1) for the definition
of TENT. More precisely, fix a constant η > 0, set η′ = 3η H

log δ
, and define

t = hx + hy + 1 , hx = (1 − η)TENT , hy = η′TENT. (3.32)

Note that η′ ≥ 3η and thus t = t(η) ≥ (1 + 2η)TENT.

Lemma 3.4 There exists η0 > 0 such that for all η ∈ (0, η0):

P

(
∀x, y ∈ [n], Pt+1(x, y) ≥ c

n �hy (y)
)

= 1 − o(1), (3.33)

for some constant c = c(η,�) > 0.

From (3.31) and Lemma 3.4 it follows that w.h.p. for all y

π(y) ≥ c
n �hy (y). (3.34)

Lemma 3.2 thus implies, for some new constant c > 0

P

(
πmin ≥ c

n log
1−γ0(n)

)
= 1 − o(1), (3.35)

which settles the lower bound in Theorem 1.3.
To prove Lemma 3.4 we will restrict to a subset of nice paths from x to y. This

will allow us to obtain a concentration result for the probability to reach y from x in
t steps.

3.3.1 A concentration result for nice paths

The definition of the nice paths follows a construction introduced in [9], which we
now recall. In contrast with [9] however, here we need a lower bound on Pt (x, y)
and thus the argument is somewhat different.

Fix hx as in (3.32). Following [9, Section 6.2] and [10, Section 4.1], we introduce
the rooted directed tree T (x), namely the subgraph of the hx -out-neighborhood of x
obtained by the following process: initially all tails and heads are unmatched and T (x)
is identified with its root, x ; throughout the process, we let ∂+T (x) (resp. ∂−T (x))
denote the set of unmatched tails (resp. heads) whose endpoint belongs to T (x); the
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height h(e) of a tail e ∈ ∂+T (x) is defined as 1 plus the number of edges in the unique
path in T (x) from x to the endpoint of e; the weight of e ∈ ∂+T (x) is defined as

w+(e) =
h(e)−1∏

i=0

1

d+
xi

, (3.36)

where (x = x0, x1, . . . , xh(e)−1) denotes the path in T (x) from x to the endpoint of
e. Hence, at the beginning ∂+T (x) is the set of tails at x , which all have height 1 and
weight 1/d+

x . We then iterate the following steps:

• A tail e ∈ ∂+T (x) is selected with maximal weight among all e ∈ ∂+T (x) with
h(e) ≤ hx − 1 and w+(e) ≥ wmin := n−1+η2 (using an arbitrary ordering of the
tails to break ties);

• e is matched to a uniformly chosen unmatched head f , forming the edge e f ;
• If f was not in ∂−T (x), then its endpoint and the edge e f are added to T (x).

The process stops when there are no tails e ∈ ∂+T (x) with height h(e) ≤ hx − 1 and
weight w+(e) ≥ wmin. The third item above guarantees that T (x) remains a directed
tree at each step. The final value of T (x) represents the desired directed tree. Notice
that this construction applies only to the out-neighborhood of a vertex; a different
procedure will be used for the in-neighborhood of a vertex (see the text preceding
(3.38) below).

After the generation of the tree T (x) a total number κ of edges has been revealed,
some of which may not belong to T (x). As in [10, Lemma 7], it is not difficult to see
that when exploring the out-neighborhood of x in this way the random variable κ is
deterministically bounded as

κ ≤ n1−
η2

2 . (3.37)

At this stage, let us call E∗(x) the set of unmatched tails e ∈ ∂+T (x) such that
h(e) = hx .

Definition 3.5 A path p = (x0 = x, x1, . . . , xt = y) of length t starting at x and
ending at y is called nice if it satisfies:

(1) The first hx steps of p are contained in T (x), and satisfy

hx∏

i=0

1

d+
xi

≤ n2η−1;

(2) xhx+1 ∈ ∂B−
hy

(y).

We recall that hy is defined as in (3.32), and refer to Sect. 2.2 for the definitions
of B−

hy
(y) and ∂B−

hy
(y). To obtain a useful expression for the probability of going

from x to y along a nice path, we need to generate B−
hy

(y). To this end, assume that
κ edges in the hx -out-neighborhood of x have been already sampled according to
the procedure described above, and then sample B−

hy
(y) according to the sequential
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generation described in Sect. 2. Some of the matchings producing B−
hy

(y) may have
already been revealed during the previous stage. In any case, this second stage creates
an additional random number τ of edges, satisfying the crude bound τ ≤ �hy+1.
We call Ftot the set of unmatched heads, and Etot the set of unmatched tails after the
sampling of these κ + τ edges. Consider the setF0 := Fhy ∩Ftot, whereFhy denotes
the set of all heads (matched or unmatched) attached to vertices in ∂B−

hy
(y). Moreover,

call E0 := E∗(x) ∩ Etot the subset of unmatched tails which are attached to vertices
at height hx in T (x). Finally, complete the generation of the digraph by matching
the m − κ − τ unmatched tails Etot to the m − κ − τ unmatched heads Ftot using
a uniformly random bijection ω : Etot �→ Ftot. For any f ∈ Fhy we introduce the
notation

w−( f ) := Phy (v f , y), (3.38)

where v f denotes the vertex v ∈ ∂B−
hy

(y) such that f ∈ E−
v . With the notation

introduced above, the probability to go from x to y in t steps following a nice path
can now be written as

P0,t (x, y) :=
∑

e∈E0

∑

f ∈F0

w+(e)w−( f )1ω(e)= f 1w+(e)≤n2η−1 . (3.39)

Note that, conditionally on the construction of the first κ + τ edges described above,
each Bernoulli random variable 1ω(e)= f appearing in the above sum has probability of
success at least 1/m. In particular, if σ denotes a fixed realization of the κ + τ edges,
then

E
[
P0,t (x, y) | σ ] ≥ 1

m
Ax,y(σ )Bx,y(σ ) , (3.40)

where

Ax,y(σ ) :=
∑

e∈E0

1w+(e)≤n2η−1w+(e) , Bx,y(σ ) :=
∑

f ∈F0

w−( f ). (3.41)

Moreover, the probability of ω(e) = f for any fixed e ∈ E0, f ∈ F0 is at most
1/(m − κ − τ), so that

E
[
P0,t (x, y) | σ ] ≤ (1 + o(1))

m
Ax,y(σ )Bx,y(σ ) ≤ (1 + o(1))

m
�hy (y), (3.42)

where we use Ax,y ≤ 1 and Bx,y ≤ �hy (y). Recall the definition of the tree excess,
tx, in (2.3) and consider the event

Yx,y =
{
σ : Ax,y(σ ) ≥ 1

2 , Bx,y(σ ) ≥ log−γ0(n) , tx(B−
hy

(y)) ≤ 1
}
, (3.43)

where the exponent −γ0 is chosen for convenience only and any exponent −c with
c > γ0 − 1 would be as good.

123



P. Caputo, M. Quattropani

Lemma 3.6 There exists η0 > 0 such that for all η ∈ (0, η0), for any σ ∈ Yx,y , any
a ∈ (0, 1):

P
(|P0,t (x, y) − E

[
P0,t (x, y) | σ ] | ≥ aE

[
P0,t (x, y) | σ ] | σ ) ≤ 2 exp

(
−a2nη/2

)

(3.44)

Proof Conditioned on σ , P0,t (x, y) is a function of the uniform random permutation
ω : Etot �→ Ftot,

P0,t (x, y) =
∑

e∈Etot
c(e, ω(e)) , c(e, f ) = w+(e)w−( f )1w+(e)≤n2η−11e∈E0, f ∈F0 .

(3.45)
Since we are assuming tx(B−

hy
(y)) ≤ 1, we can use (3.9) to estimate w−( f ) ≤

2δ−hy = n−3η for any f ∈ F0. Therefore

‖c‖∞ = max
e, f

c(e, f ) ≤ 2n−1−η. (3.46)

As in Lemma 3.3, and as in [9], we use Chatterjee’s concentration inequality for
uniform random matchings [12, Proposition 1.1] to obtain for any s > 0:

P
(|P0,t (x, y) − E

[
P0,t (x, y) | σ ] | ≥ s | σ )

≤ 2 exp

(
− s2

2 ‖c‖∞ (2E
[
P0,t (x, y) | σ ] + s)

)
. (3.47)

Taking s = aE
[
P0,t (x, y) | σ ]

, a ∈ (0, 1), one has

P
(|P0,t (x, y) − E

[
P0,t (x, y) | σ ] | ≥ s | σ ) ≤ 2 exp

(
−a2E

[
P0,t (x, y) | σ ]

6 ‖c‖∞

)
.

(3.48)
Using (3.40), (3.43), and (3.46) one concludes that (3.44) holds for all σ ∈ Yx,y and
for all n large enough. ��

3.3.2 Proof of Lemma 3.4

Let V∗ denote the set of all z ∈ [n] such thatB+
�

(z) is a directed tree. It is an immediate
consequence of Proposition 2.1 that with high probability, for all x ∈ [n]:

P(x, V∗) =
∑

z∈V∗
P(x, z) ≥ 1

2 . (3.49)

In fact, as observed in [9, Proposition 6], one can show that with high probability
P�(x, V∗) ≥ 1 − 2−� for any fixed � ∈ N. Therefore,

Pt+1(x, y) ≥ 1
2 min
x∈V∗

Pt (x, y). (3.50)
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Since Pt (x, y) ≥ P0,t (x, y) it is sufficient to prove

P
(∀x ∈ V∗,∀y ∈ [n], P0,t (x, y) ≥ c

n �hy (y)
) = 1 − o(1), (3.51)

for some constant c = c(η,�) > 0. The proof of (3.51) is based on Lemma 3.6 and
the following two lemmas, which allow us to make sure the events Yx,y in Lemma 3.6
have large probability.

Lemma 3.7 The event A1 = {∀x ∈ V∗,∀y ∈ [n] : Ax,y ≥ 1
2 } has probability

P (A1) = 1 − o(1) .

Proof Let us first note that the event Â1 = {∀x ∈ V∗ : ∑
e∈E∗(x) w

+(e)1w+(e)≤n2η−1 ≥
0.9} satisfies

P
(
Â1

) = 1 − o(1).

Indeed, this fact is a consequence of [9,10], which established that for any ε > 0, with
high probability

min
x∈V∗

∑

e∈E∗(x)
w+(e)1w+(e)≤n2η−1 ≥ 1 − ε, (3.52)

see e.g. [10, Theorem 4 and Lemma 11]. Thus, it remains to show that replacing
E∗(x) with E0 does not alter much the sum. Suppose the κ edges generating T (x)
have been revealed and then sample the τ edges generating the neighborhood B−

hy
(y).

Let K denote the number of collisions between T (x) and B−
hy

(y). There are at most

N := �hy = n3η log�/ log δ attempts each with success probability at most p :=
κ/(m−κ). Thus K is stochastically dominated by a binomial Bin(N , p), and therefore
by Hoeffding’s inequality

P(K > Np + N ) ≤ exp (−2N ) ≤ exp
(
−n3η

)
.

Thus by a union bound we may assume that all x, y are such that the corresponding
collision count K satisfies K ≤ Np + N ≤ 2N . Therefore, on the event Â1

∑

e∈E0

w+(e)1w+(e)≤n2η−1 ≥ 0.9 − 2N n2η−1 ≥ 1

2
,

if η is small enough. ��
Lemma 3.8 Fix a constant c > 0 and consider the event A2 = {∀x, y ∈ [n] : Bx,y ≥
c�hy (y)}. If c > 0 is small enough

P (A2) = 1 − o(1) .
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Proof By definition,
∑

f ∈Fhy
w−( f ) = �hy (y). Thus, we need to show that if we

replace F0 by Fhy the sum defining Bx,y is still comparable to �hy (y). For any
constant T > 0, for each z ∈ ∂B−

hy−T (y), let Vz denote the set of w ∈ ∂B−
hy

(y) such
that d(w, z) = T . Notice that if the event G(�) from Proposition 2.1 holds then for
each z ∈ ∂B−

hy−T (y) one has |Vz | ≥ 1
2δ

T . Consider the generation of the κ + τ edges

as above, and call a vertex z ∈ ∂B−
hy−T (y) bad if all heads attached to Vz are matched,

or equivalently if none of these heads is in Ftot. Given a z ∈ ∂B−
hy−T (y), we want to

estimate the probability that it is bad. To this end, we use the same construction given
in Sect. 3.3.1 but this time we first generate the in-neighborhood B−

hy
(y) and then the

tree T (x). Let K denote the number of collisions between T (x) and the set Vz . Notice
that |Vz | ≤ �T and that |T (x)| ≤ n1−η2/2, so that K is stochastically dominated by
the binomial Bin(N , p) where N = n1−η2/2 and p = �T+1/n. Therefore,

P

(
K > 1

2δ
T
)

≤ (Np)
1
2 δT ≤

(
�T+1n−η2/2

) 1
2 δT

.

Since |Vz | ≥ 1
2δ

T , if z is bad then K > 1
2δ

T and thus the probability of the event that

z is bad is at most O(n−δT η2/4). The probability that there exists a bad z ∈ ∂B−
hy−T (y)

is then bounded by O(�hy n−δT η2/4). In conclusion, if T = T (η) is a large enough
constant, we can ensure that for any y ∈ [n] the probability that there exists a bad
z ∈ ∂B−

hy−T (y) is o(n−2), and therefore, by a union bound, with high probability there

are no bad z ∈ ∂B−
hy−T (y), for all x, y ∈ [n]. On this event, for all z we may select

one vertex w ∈ Vz with at least one head f ∈ F0 attached to it. Notice that w−( f ) ≥
�−T−1Phy−T (z, y). Therefore, assuming that there are no bad z ∈ ∂B−

hy−T (y):

Bx,y(σ ) =
∑

f ∈F0

w−( f )

≥ �−T
∑

z∈∂B−
hy−T (y)

Phy−T (z, y) ≥ �−T−1�hy−T (y).

From Lemma 3.3 we may finish with the estimate �hy−T (y) ≥ 1
2�hy (y). ��

We can now conclude the proof of (3.51). Consider the event

A = A1 ∩ A2 ∩ G(�) ∩ R, (3.53)

whereR denotes the event from Lemma 3.2 and G(�) is given by (2.4) and (2.5). For
any s > 0,

P
(∀x, y ∈ [n], P0,t (x, y) ≥ s

n �hy (y)
)

≥ P(A) −
∑

x,y∈[n]
P

(
P0,t (x, y) < s

n �hy (y);A
)
, (3.54)

123



Stationary distribution and cover time of sparse directed…

where the semicolon represents intersection of events. From Lemma 3.2, Lemma 3.7,
Lemma 3.8, and Proposition 2.1 it follows that P(A) = 1−o(1). LetWx,y denote the
event

E
[
P0,t (x, y) | σ ] ≥ c

2m �hy (y), (3.55)

where c is the constant from Lemma 3.8. By definition of the events involved

A ⊂ Wx,y ∩ Yx,y,

for all x, y, and for all n large enough. Therefore,

P
(
P0,t (x, y) < s

n �hy (y);A
) ≤ sup

σ∈Wx,y∩Yx,y

P
(
P0,t (x, y) < s

n �hy (y) | σ )
.

(3.56)

Taking s = c/(4�) and using (3.55), we see that for every σ ∈ Wx,y , P0,t (x, y) <
s
n �hy (y) implies:

|P0,t (x, y) − E
[
P0,t (x, y) | σ ] | ≥ 1

2
E

[
P0,t (x, y) | σ ]

,

and therefore from Lemma 3.6

sup
σ∈Wx,y∩Yx,y

P
(
P0,t (x, y) < s

n �hy (y) | σ ) = o(n−2). (3.57)

The bounds (3.54) and (3.57) end the proof of (3.51). This ends the proof of Lemma
3.4.

Remark 3.9 Let us show that if the type (δ−,�+) is not in the set of linear typesL one
can improve the lower bound on πmin as mentioned in Remark 1.5. The proof given
above shows that it is sufficient to replace γ0 by γ ′

0 in Lemma 3.2, where γ ′
0 is defined

by (1.20). To this end, for any ε > 0, let Lε denote the set of types (k, �) ∈ C such
that

lim sup
n→∞

|Vk,�|
n1−ε

= +∞ , (3.58)

where Vk,� denotes the set of vertices of type (k, �), and define

γ ′
ε := log�′

ε,+
log δ′

ε,−
, �′

ε,+ := max{� : (k, �) ∈ Lε} , δ′
ε,− := min{k : (k, �) ∈ Lε}.

(3.59)
The main observation is that if (k, �) /∈ Lε, then w.h.p. there are at most a finite
number of vertices of type (k, �) in all in-neighborhoods B−

h0
(y), y ∈ [n], for any

h0 = O(log log n). Indeed, for a fixed y ∈ [n] the number of v ∈ Vk,� ∩ B−
h0

(y) is

stochastically dominated by the binomialBin
(
�h0 , n−ε/2

)
, and therefore if K = K (ε)

is a sufficiently large constant then the probability of havingmore than K such vertices
is bounded by (�h0n−ε/2)K = o(n−1). Taking a union bound over y ∈ [n] shows
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that w.h.p. all B−
h0

(y), y ∈ [n] have at most K vertices with type (k, �). Then we may
repeat the argument of Lemma 3.2 with this constraint, to obtain that for all ε > 0,
w.h.p. �hy (y) ≥ c(ε) log1−γ ′

ε (n). Since the number of types is finite one concludes
that if ε is small enough then γ ′

0 = γ ′
ε and the desired conclusion follows.

3.4 Upper bound on�min

In this section we prove the upper bound for πmin in Theorem 1.3 by establishing
the estimate in (1.18). We first show that we can replace π(y) in (1.18) by a more
convenient quantity. Define the distances

d(s) = max
x∈[n] ‖P

s(x, ·) − π‖TV, d̄(s) = max
x,y∈[n] ‖P

s(x, ·) − Ps(y, ·)‖TV. (3.60)

It is standard that, for all k, s ∈ N,

d(ks) ≤ d̄(ks) ≤ d̄(s)k ≤ 2kd(s)k, (3.61)

see e.g. [22]. In particular, defining

λt (y) = 1

n

∑

x∈[n]
Pt (x, y) , (3.62)

for any k ∈ N, setting t = 2kTENT, one has

max
y∈[n] |λt (y) − π(y)| ≤ d(2kTENT) ≤ 2kd(2TENT)k . (3.63)

From (3.2) we know that d(2TENT) → 0 in probability, or equivalently that for all
fixed ε ∈ (0, 1) we have d(2TENT) ≤ ε w.h.p. In particular we can choose ε = 1

2e , so
that w.h.p. the right hand side above is at most e−k . If k = �(log2(n)) we can safely
replace π(y) with λt (y) in (1.18). Thus, it suffices to prove the following statement.

Lemma 3.10 For some constants β > 0, C > 0, and for any t = tn = �(log3(n)):

P

(
∃S ⊂ [n], |S| ≥ nβ , nmax

y∈S λt (y) ≤ C log1−γ1(n)
)

= 1 − o(1). (3.64)

Proof Let (δ∗,�∗) ∈ L denote a type realizing the maximum in the definition of γ1;
see (1.16). Let V∗ = Vδ∗,�∗ denote the set of vertices of this type, and let α∗ ∈ (0, 1)
be a constant such that |V∗| ≥ α∗n, for all n large enough. Let us fix a constant
β1 ∈ (0, 1

4 ). This will be related to the constant β, but we shall not look for the
optimal exponent β in the statement (3.64). Consider the first N1 := nβ1 vertices in
the setV∗, and call them y1, . . . , yN1 . Next, generate sequentially the in-neighborhoods
B−
h0

(yi ), i = 1, . . . , N1, where

h0 = logδ∗ log n − C0, (3.65)
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for some constant C0 to be fixed later. As in the proof of Lemma 3.2 we couple the
B−
h0

(yi )with independent random treesYi rooted at yi . For eachB−
h0

(yi ) the probability
of failing to equal Yi , conditionally on the previous generations, is uniformly bounded
above by p := N1�

2h0/m. Let A denote the event that all B−
h0

(yi ) are successfully
coupled to the Yi ’s and that they have no intersections. Therefore,

P(A) ≥ 1 − O(N1 p) ≥ 1 − O(n3β1−1) = 1 − o(1). (3.66)

Consider now a single random tree Y1. We say that Y1 is unlucky if all labels of the
vertices in the tree are of type (δ∗,�∗). The probability that Y1 is unlucky is at least

q =
(

α∗n�∗
m

)δ
h0∗

≥ n−η,

where η = δ
−C0∗ log(�/2α∗) if C0 is the constant in (3.65). We choose C0 so large

that 0 < η ≤ β1/4. Call S1 the set of y ∈ {y1, . . . , yN1} such that Yi is unlucky. Since
the Yi are i.i.d. the probability that |S1| < nβ1/2 is bounded by the probability that
Bin(N1, q) < nβ1/2, which by Hoeffding’s inequality is at most

exp
(
−nβ1/3

)
(3.67)

Fix a realization σ of the in-neighborhoods B−
h0

(yi ), i = 1, . . . , N1. Say that yi is

unlucky if all vertices inB−
h0

(yi ) are of type (δ∗,�∗). Thanks to (3.66) wemay assume

that σ ∈ A, i.e. B−
h0

(yi ) = Yi for all i so that the set of unlucky yi coincides with S1,

and thanks to (3.67) we may also assume that σ is such that |S1| ≥ N̄ := nβ1/2. We
callA′ ⊂ A the set of all σ ∈ A satisfying the latter requirement. Let S̄ denote the first
N̄ elements in S1. We are going to show that uniformly in σ ∈ A′, for a sufficiently
large constant C > 0, any t = �(log3(n)),

P

( ∑

y∈S̄
λt (y) > C N̄

2n log1−γ1(n)

∣∣∣ σ
)

= o(1). (3.68)

Notice that (3.68) says that, conditionally on a fixed σ ∈ A′, with high probability

∑

y∈S̄
λt (y) ≤ C N̄

2n log1−γ1(n),

which implies that there are at most N̄/2 vertices y ∈ S̄ with the property that λt (y) >
C
n log1−γ1(n). Summarizing, the above arguments and (3.68) allow one to conclude
the unconditional statement that with high probability there are at least 12n

β1/2 vertices
y ∈ [n] such that

λt (y) ≤ C
n log1−γ1(n),
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which implies the desired claim (3.64), taking e.g. β = β1/3.
To prove (3.68), consider the sum

X =
∑

y∈S̄
λt (y). (3.69)

We first establish that, uniformly in σ ∈ A′, for any t = �(log3(n)),

E (X | σ) = (1 + o(1))
δ∗
m

N̄�−h0∗ δh0∗ . (3.70)

If y is unlucky then Ph0(z, y) = �
−h0∗ for any z ∈ ∂B−

h0
(y). Hence, for any y ∈ S̄:

λt (y) = �
−h0∗
n

∑

x∈[n]

∑

z∈∂B−
h0

(y)

Pt−h0(x, z) = �−h0∗
∑

z∈∂B−
h0

(y)

λt−h0(z).

Since |∂B−
h0

(y)| = δ
h0∗ , and since all z ∈ ∂B−

h0
(y) have the same in-degree d−

z = δ∗,
using symmetry the proof of (3.70) is reduced to showing that for any z ∈ ∂B−

h0
(y),

t = �(log3 n),

E (λt (z) | σ) = (1 + o(1))
d−
z

m
. (3.71)

To compute the expected value in (3.71)weuse the so calledannealedprocess.Namely,
observe that

E (λt (z) | σ) = 1

n

∑

x∈[n]
E

(
Pt (x, z) | σ ) = 1

n

∑

x∈[n]
P
a,σ
x (Xt = z) , (3.72)

where Xt is the annealed walk with initial environment σ , and initial position x ,
and P

a,σ
x denotes its law. This process can be described as follows. At time 0 the

environment consists of the edges from σ alone, and X0 = x ; at every step, given the
current environment and position, the walker picks a uniformly random tail e from its
current position, if it is still unmatched then it picks a uniformly random unmatched
head f , the edge e f is added to the environment and the position is moved to the
vertex of f , while if e is already matched then the position is moved to the vertex of
the head to which e was matched. Let us show that uniformly in x 
= z ∈ ∂B−

h0
(y),

uniformly in σ ∈ A′:

P
a,σ
x (Xt = z) = (1 + o(1))

d−
z

m
. (3.73)

Say that a collision occurs if the walk lands on a vertex that was already visited by
using a freshly matched edge. Recall that we fixed t = O(log3(n)). At each time step
the probability of a collision is at most O(t/m), and therefore the probability of more
than one collision in the first t steps is at most O(t4/m2) = o(m−1). Thus we may
assume that there is at most one cycle in the path of the walk up to time t . There are
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two cases to consider: 1) there is no cycle in the path up to time t or there is one cycle
that does not pass through the vertex z; 2) there is a cycle and it passes through z. In
case 1) since Xt = z the walker must necessarily pick one of the heads of z at the
very last step. Since all heads of z are unmatched by construction, and since the total
number of unmatched heads at that time is at least m − nβ1�h0 − t = (1 − o(1))m,
this event has probability (1 + o(1))d−

z /m. In case 2) since x 
= z we argue that
in order to have a cycle that passes through z, the walk has to visit z at some time
before t , which is an event of probability O(t/m), and then must hit back the previous
part of the path, which is an event of probability O(t2/m). This shows that we can
upper bound the probability of scenario 2) by O(t3/m2) = o(m−1). This concludes
the proof of (3.73). Next, observe that if x = z, then the previous argument gives
P
a,σ
z (Xt = z) = O(t/m) which is a bound on the probability that the walk again hits

z at some point within time t . In conclusion, (3.72) and (3.73) imply (3.71) which
establishes (3.70).

Let us now show that

E

(
X 2 | σ

)
= (1 + o(1))E (X | σ)2 . (3.74)

Once we have (3.74) we can conclude (3.68) by using Chebyshev’s inequality together
with (3.70) and the fact that δh0∗ �

−h0∗ ≤ C2 log1−γ1(n) for some constant C2 > 0. We
write

E
(X 2 | σ )=

∑

y,y′∈S̄
�−2h0∗

1

n2
∑

x,x ′∈[n]

∑

z∈∂B−
h0

(y)

∑

z′∈∂B−
h0

(y′)

P
a,σ
x,x ′(Xt−h0 = z, X ′

t−h0 = z′),

(3.75)
whereP

a,σ
x,x ′ is the law of two trajectories (Xs , X ′

s), s = 0, . . . , t , that can be sampled as
follows. Let X be sampled up to time t according to the previously described annealed
measureP

a,σ
x , call σ ′ the environment obtained by adding to σ all the edges discovered

during the sampling of X and then sample X ′ up to time t independently, according
to P

a,σ ′
x ′ .

Let also P
a,σ
u be defined by

P
a,σ
u = 1

n2
∑

x,x ′∈[n]
P
a,σ
x,x ′ .

Thus, under P
a,σ
u the two trajectories have independent uniformly distributed starting

points x, x ′. With this notation we write

E

(
X 2 | σ

)
=

∑

y,y′∈S̄
�−2h0∗

∑

z∈∂B−
h0

(y)

∑

z′∈∂B−
h0

(y′)

P
a,σ
u (Xt−h0 = z, X ′

t−h0 = z′).

(3.76)
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Let us show that if z 
= z′, t = �(log3(n)):

P
a,σ
u (Xt = z, X ′

t = z′) = (1 + o(1))
d−
z d

−
z′

m2 . (3.77)

Indeed, let A be the event that the first trajectory hits z at time t and visits z′ at some
time before that. Then reasoning as in (3.73) the event A has probability O(t/m2).
Given any realization X of the first trajectory satisfying this event, the probability of
X ′
t = z′ is at most the probability of colliding with the trajectory X within time t ,

which is O(t/m). On the other hand, if the first trajectory hits z at time t and does
visit z′ at any time before that, then the conditional probability of X ′

t = z, as in (3.73)
is given by (1 + o(1))d−

z′ /m. This proves (3.77) when z 
= z′.
If z = z′, t = �(log3(n)), let us show that

P
a,σ
u (Xt = z, X ′

t = z) = O(1/m2). (3.78)

Consider the event A that the first trajectory X has at most one collision. The comple-
mentary event Ac has probability at most O(t4/m2). If Ac occurs, then the conditional
probability of X ′

t = z is at most the probability that X ′ collides with the first trajectory
at some time s ≤ t , that is O(t/m). Hence,

P
a,σ
u (Xt = z, X ′

t = z; Ac) = O(t5/m3) = O(1/m2). (3.79)

To prove (3.78), notice that to realize X ′
t = z there must be a time s = 0, . . . , t such

that X ′ collides with the first trajectory X at time s, then X ′ stays in the digraph D1
defined by the first trajectory for the remaining t−s units of time, and X ′ hits z at time
t . On the event A the probability of spending h units of time in D1 is at most 2δ−h ,
and for any h ∈ [0, t] there are at most h + 1 points x which have a path of length h
from x to z in D1. Therefore

P
a,σ
u (Xt = z, X ′

t = z; A) ≤ (1 + o(1))
d−
z

m

t∑

h=0

2(h + 1)

m
2δ−h = O(1/m2). (3.80)

Hence, (3.78) follows from (3.79) and (3.80).
In conclusion, using (3.77) and (3.78) in (3.76), and recalling (3.70), we have

obtained (3.74). ��

3.5 Upper bound on�max

As in Sect. 3.4 we start by replacing π(y) with λt (y) = 1
n

∑
x P

t (x, y). In (3.63) we
have seen that if t = 2kTENT, then w.h.p.

max
y∈[n] |λt (y) − π(y)| ≤ e−k . (3.81)
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Thus, using a union bound over y ∈ [n], the upper bound in Theorem 1.6 follows from
the next statement.

Lemma 3.11 There exists C > 0 such that for any t = tn = �(log3(n)), uniformly in
y ∈ [n]

P

(
λt (y) ≥ C

n log1−κ0(n)
)

= o(n−1). (3.82)

Proof Fix

h0 = log�− log n,

and call σ a realization of the in-neighborhood B−
h0

(y). Clearly,

λt+h0(y) =
∑

z∈B−
h0

(y)

λt (z)P
h0(z, y).

From (3.9), under the eventGy(�) fromProposition 2.1, we have Ph0(z, y) ≤ 2δ−h0+ =
2 log−κ0(n) for every z ∈ B−

h0
(y). Define

X :=
∑

z∈B−
h0

(y)

λt (z) = λt (B−
h0

(y)).

Note X = X y where the vertex y is fixed. Then it is sufficient to prove that for some
constant C , uniformly in σ and y ∈ [n]:

P
(
X > C

n log n ; Gy(�) | σ
) = o(n−1), (3.83)

where Gy(�) is defined in (2.4), (2.5). By Markov’s inequality, for any K ∈ N and any
constant C > 0:

P
(
X > C

n log(n);Gy(�) | σ ) ≤ E
[
X K ;Gy(�) | σ ]

(C
n log n

)K . (3.84)

We fix K = log n, and claim that there exists an absolute constant C1 > 0 such that

E

[
X K ;Gy(�) | σ

]
≤

(
C1
n log n

)K
. (3.85)

The desired estimate (3.83) follows from (3.85) and (3.84) by taking C large enough.
We compute the K -thmomentE

[
X K ;Gy(�) | σ ]

by using a version of the annealed
process that we used in (3.75) that we now explain. This time we have K trajectories
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instead of 2:

E

[
X K ;Gy(�) | σ

]
= 1

nK
∑

x1,...,xK

E

[
Pt (x1,B−

h0
(y)) · · · Pt (xK ,B−

h0
(y)) ; Gy(�) | σ

]

= 1

nK
∑

x1,...,xK

P
a,σ
x1,...,xK

(
X (1)
t ∈ B−

h0
(y), . . . , X (K )

t ∈ B−
h0

(y) ; Gy(�)
)

, (3.86)

where X ( j) := {X ( j)
s , s ∈ [0, t]}, j = 1, . . . , K denote K annealed walks each

with initial point x j , and P
a,σ
x1,...,xK denotes the joint law of the trajectories X ( j), j =

1, . . . , K , and the environment, defined as follows. Start with the environment σ ,
and then run the first random walk X (1) up to time t as described after (3.72). After
that, run the walk X (2) up to time t with initial environment given by the union of
edges from σ and the first trajectory, as described in (3.75). Proceed recursively until
all trajectories up to time t have been sampled. This produces a new environment,
namely the digraph given by the union of σ and all the K trajectories. At this stage
there are still many unmatched heads and tails, and we complete the environment by
using a uniformly random matching of the unmatched heads and tails. This defines
the coupling P

a,σ
x1,...,xK between the environment (the digraph G) and K independent

walks in that environment. To ensure the validity of the expression (3.86) it suffices
to note that conditionally on the realization of the full digraph G, under P

a,σ
x1,...,xK the

variables X (1)
t , . . . , X (K )

t are independent random walks on G with length t .
It is convenient to introduce the notation

P
a,σ
u = 1

nK
∑

x1,...,xK

P
a,σ
x1,...,xK ,

for the annealed law of the K trajectories such that independently each trajectory starts
at a uniformly random point X ( j)

0 = x j . Let D0 = σ and let D�, for � = 1, . . . , K ,
denote the digraph defined by the union of σ = B−

h0
(y) with the first � paths

{X ( j)
s , 0 ≤ s ≤ t}, j = 1, . . . , �.

Call D�(�) the subgraph of D� consisting of all directed paths in D� ending at y with
length at most �. We define G�

y(�) as the event tx(D�(�)) ≤ 1. Notice that if the final
environment has to satisfy Gy(�), then necessarily for every � the digraph D� must
satisfy G�

y(�). Therefore,

E

[
X K ;Gy(�) | σ

]
≤ P

a,σ
u

(
X (1)
t ∈ B−

h0
(y), . . . , X (K )

t ∈ B−
h0

(y) ; GK
y (�)

)
. (3.87)

Define
W� =

∑

x∈V (D�)

[d−
x (D�) − 1]+, (3.88)

where V (D�) denotes the vertex set of D� and d−
x (D�) is the in-degree of x in the

digraph D�. Define also the (�, s) cluster Cs� as the digraph given by the union of D�−1
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and the truncated path {X (�)
u , 0 ≤ u ≤ s} with s ≤ t . We say that the �-th trajectory

X (�) has a collision at time s ≥ 1 if the edge (X (�)
s−1, X

(�)
s ) /∈ Cs−1

� and X (�)
s ∈ Cs−1

� .

We say that a collision occurs at time zero if X (�)
0 ∈ D�−1. Notice that at least

∑

x /∈B−
h0

(y)

[d−
x (D�) − 1]+

collisions must have occurred after the generation of the first � trajectories.
Let Q� denote the total number of collisions after the generation of the first �

trajectories. Since |B−
h0

(y)| ≤ � log n one must have

W� ≤ � log n + Q�. (3.89)

Notice that the probability of a collision at any given time by any given trajectory
is bounded above by p := 2�(Kt + �

h0− )/m = O(log4(n)/n) and therefore Q� is
stochastically dominated by the binomial Bin(Kt, p). In particular, for any k ∈ N:

P (QK ≥ k) ≤ (Ktp)k ≤ Ck
2
log8k(n)

nk
, (3.90)

for some constant C2 > 0. If A > 0 is a large enough constant, then

P (QK ≥ A log n) ≤ e− A
2 log2(n)

. (3.91)

If A ≥ 2 then (3.91) is smaller than the right hand side of (3.85) with e.g. C1 = 1,
and therefore from now on we may restrict to proving the upper bound

P
a,σ
u

(
X (1)
t ∈ B−

h0
(y), . . . , X (K )

t ∈ B−
h0

(y) ; QK ≤ A log n ; GK
y (�)

)
≤

(
C1
n log n

)K
,

(3.92)

for some constant C1 = C1(A) > 0. To prove (3.92), define the events

B� = {X (1)
t ∈ B−

h0
(y), . . . , X (�)

t ∈ B−
h0

(y) ; Q� ≤ A log n ; G�
y(�)}, (3.93)

for � = 1, . . . , K . Since B�+1 ⊂ B�, the left hand side in (3.92) is equal to

P
a,σ
u (B1)

K∏

�=2

P
a,σ
u (B� | B�−1) (3.94)

Thus, it is sufficient to show that for some constant C1:

P
a,σ
u (B� | B�−1) ≤ C1

n log n , (3.95)
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for all � = 1, . . . , K , where it is understood that P
a,σ
u (B1 | B0) = P

a,σ
u (B1) .

Let us partition the event {X (�)
t ∈ B−

h0
(y)} by specifying the last time in which the

walk X (�) enters the neighborhood B−
h0

(y). Unless the walk starts in B−
h0

(y), at that

time it must enter from ∂B−
h0

(y). Since the tree excess of B−
h0

(y) is at most 1, once the

walker is in B−
h0

(y), we can bound the chance that it remains in B−
h0

(y) for k steps by

2δ−k+ . Therefore,

P
a,σ
u (B� | B�−1) ≤ P

a,σ
u

(
X (�)
t ∈ B−

h0
(y) | B�−1

)

≤ 2δ−t+ P
a,σ
u

(
X (�)
0 ∈ B−

h0
(y) | B�−1

)

+
t∑

j=1

2δ−(t− j)
+ P

a,σ
u

(
X (�)

j ∈ ∂B−
h0

(y) | B�−1

)

≤ 2tδ−t/2
+ +

t∑

j=t/2+1

2δ−(t− j)
P
a,σ
u

(
X (�)

j ∈ ∂B−
h0

(y) | B�−1

)

Since t = �(log3(n)), it is enough to show

P
a,σ
u

(
X (�)

j ∈ ∂B−
h0

(y) | B�−1

)
≤ C1

n log n, (3.96)

uniformly in j ∈ (t/2, t) and 1 ≤ � ≤ K .
LetH�

0 denote the event that the �-th walk makes its first visit to the digraph D�−1
at the very last time j , when it enters ∂B−

h0
(y). Uniformly in the trajectories of the

first � − 1 walks, at any time there are at most �−|∂B−
h0

(y)| ≤ �
h0+1
− = �− log n

unmatched heads attached to ∂B−
h0

(y), and therefore

P
a,σ
u

(
X (�)

j ∈ ∂B−
h0

(y) ; H�
0 | B�−1

)
= O(|∂B−

h0
(y)|/m) ≤ C1

n log n. (3.97)

Let H�
2 denote the event that the �-th walk makes a first visit to D�−1 at some time

s1 < j , then at some time s2 > s1 it exits D�−1, and then at a later time s3 ≤ j enters
again the digraph D�−1. Since each time the walk is outside D�−1 the probability of
entering D�−1 at the next step is O(Kt/m), it follows that

P
a,σ
u

(
X (�)

j ∈ ∂B−
h0

(y) ; H�
2 | B�−1

)
= O(K 2t4/m2) ≤ C1

n log n. (3.98)

It remains to consider the case where the �-th walk enters only once the digraph D�−1
at some time s ≤ j − 1, and then stays in D�−1 for the remaining j − s units of time.
Calling H�

1,s this event, and summing over all possible values of s, we need to show
that

j−1∑

s=0

P
a,σ
u

(
X (�)

j ∈ ∂B−
h0

(y) ; H�
1,s | B�−1

)
≤ C1

n log n. (3.99)
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We divide the sum in two parts: s ∈ [0, j − � + h0] and s ∈ ( j − � + h0, j). For
the first part, note that the walk must spend at least � − h0 ≥ �/2 units of time in
D�−1(�), which has probability at most 2δ−�/2

+ = O(n−ε) for some constant ε > 0,
because of the condition G�−1

y (�) included in the event B�−1. Since the probability of
hitting D�−1 at time s is O(Kt/m) we obtain

j−�+h0∑

s=0

P
a,σ
u

(
X (�)

j ∈ ∂B−
h0

(y) ; H�
1,s | B�−1

)
= O(Kt2n−ε/m) ≤ C1

n log n.

(3.100)
To estimate the sum over s ∈ ( j −�+h0, j), notice that the walk has to enter D�−1 by
hitting a point z ∈ D�−1 at time s such that there exists a path of length h = j−s from
z to ∂B−

h0
(y) within the digraph D�−1. Call Lh the set of such points in D�−1. Hitting

this set at any given time s coming from outside the digraph D�−1 has probability
at most 2�|Lh |/m, and the path followed once it has entered D�−1 is necessarily in
D�−1(�) and therefore has weight at most 2δ−h+ . Then,

j−1∑

s= j−�+h0+1

P
a,σ
u

(
X (�)

j ∈ ∂B−
h0

(y) ; H�
1,s | B�−1

)
≤

�−h0−1∑

h=1

2�|Lh |
m

2δ−h+ , (3.101)

Let Ah ⊂ Lh denote the set of points exactly at distance h from ∂B−
h0

(y) in D�−1. We
have

|Ah | ≤
∑

x∈Ah−1

d−
x (D�−1)

≤ |Ah−1| +
∑

x∈Ah−1

[d−
x (D�−1) − 1]+

≤ |Ah−2| +
∑

x∈Ah−1∪Ah−2

[d−
x (D�−1) − 1]+

≤ · · · ≤ |A0| +
∑

x∈A0∪....∪Ah−1

[d−
x (D�−1) − 1]+

≤ |∂B−
h0

(y)| + W�−1.

Since h ≤ � = O(log n) and |∂B−
h0

(y)| ≤ log n, using (3.89) we have obtained

|Ah | ≤ C2 log n + Q�−1. (3.102)

On the event B�−1 we know that Q�−1 ≤ A log n, and therefore |Ah | ≤ C3 log n for
some absolute constant C3 > 0. In conclusion, for all h ∈ (0, � − h0)

|Lh | ≤
h∑

�=0

|A�| ≤ C3h log n. (3.103)
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Inserting this estimate in (3.101),

j−1∑

s= j−�+1

P
a,σ
u

(
X (�)

j ∈ ∂B−
h0

(y) ; H�
1,s | B�−1

)
≤ C4

n log n. (3.104)

Combining (3.100) and (3.104) we have proved (3.99) for a suitable constant C1. ��

3.6 Lower bound on�max

Lemma 3.12 There exist constants ε, c > 0 such that

P

(
∃S ⊂ [n], |S| ≥ nε , nmin

y∈S π(y) ≥ c log1−κ1(n)
)

= 1 − o(1). (3.105)

Proof We argue as in the first part of the proof of Lemma 3.10. Namely, let (�∗, δ∗) ∈
L denote the type realizing the minimum in the definition of κ1; see (1.16). Let V∗ =
V�∗,δ∗ denote the set of vertices of this type, and let α∗ ∈ (0, 1) be a constant such that
|V∗| ≥ α∗n, for all n large enough. Fix a constant β1 ∈ (0, 1

4 ) and call y1, . . . , yN1

the first N1 := nβ1 vertices in the set V∗. Then sample the in-neighborhoods B−
h0

(yi )
where

h0 = log�∗ log n − C, (3.106)

and call σ a realization of all these neighborhoods. As in the proof of Lemma 3.10, we
may assume that all B−

h0
(yi ) are successfully coupled with i.i.d. random trees Yi . Next

define a yi lucky if B−
h0

(yi ) has all its vertices of type (�∗, δ∗). Then, if C in (3.106)

is large enough we may assume that at least nβ1/2 vertices yi are lucky; see (3.67). As
before, we callA′ the set of σ realizing these constraints. Given a realization σ ∈ A′,
and some ε ∈ (0, β1/2) we fix the first nε lucky vertices y∗,i , i = 1, . . . , nε. Since
P(A′) = 1 − o(1), letting S = {y∗,i , i = 1, . . . , nε}, it is sufficient to prove that for
some constant c > 0

max
σ∈A′ P

(
min

i=1,...,nε
nπ(y∗,i ) < c log1−κ1(n) | σ

)
= o(1). (3.107)

To prove (3.107) we first observe that by (3.34) and Lemma 3.3 it is sufficient to prove
the same estimate with nπ(y∗,i ) replaced by �h1(y∗,i ), where h1 = K log log n for
some large but fixed constant K . Therefore, by using symmetry and a union bound it
suffices to show

max
σ∈A′ P

(
�h1(y∗) < c log1−κ1(n) | σ

)
≤ n−2ε, (3.108)

where y∗ = y∗,1 is the first lucky vertex. By definition of lucky vertex, ∂B−
h0

(y∗)
has exactly �

h0∗ elements. For each z ∈ ∂B−
h0

(y∗) we sample the in-neighborhood

B−
h1−h0

(z). The same argument of the proof of Lemma 3.2 shows that the probability
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that all these neighborhoods are successfully coupled to i.i.d. random directed trees is
at least 1 − O(�2h1/n). On this event we have

�h1(y∗) = δ−h0∗
�

h0∗∑

i=1

Xi , (3.109)

where Xi = Mi
h1−h0

is defined by (3.15). Then (3.16) shows that

P

(
�h1(y∗) < 1

2�
h0∗ δ−h0∗

)
≤ exp

(
−c1�

h0∗
)
, (3.110)

for someconstant c1 > 0. Since�
h0∗ =�−C∗ log n and�

h0∗ δ
−h0∗ =(δ∗/�∗)C log1−κ1(n),

this shows that

max
σ∈A′ P

(
�h1(y∗) < c2 log

1−κ1(n) | σ
)

≤ n−2ε, (3.111)

for some new constant c2 > 0 and for ε = c1�−C∗ /4. This ends the proof of (3.108).
��

4 Bounds on the cover time

In this section we show how the control of the extremal values of the stationary
distribution obtained in previous sections can be turned into the bounds on the cover
time presented in Theorem 1.9. To this end we exploit the full strength of the strategy
developed by Cooper and Frieze [14–17].

4.1 The key lemma

Given a digraph G, write Xt for the position of the random walk at time t and write
Px for the law of {Xt , t ≥ 0} with initial value X0 = x . In particular, Px (Xt = y) =
Pt (x, y) denotes the transition probability. Fix a time T > 0 and define the event that
the walk does not visit y in the time interval [T , t], for t > T :

AT
y (t) = {Xs 
= y, ∀s ∈ [T , t]}. (4.1)

Moreover, define the generating function

RT
y (z) =

T∑

t=0

zt Py(Xt = y), z ∈ C. (4.2)

Thus, RT
y (1) ≥ 1 is the expected number of returns to y within time T , if started at y.

The following statement is proved in [15], see also [17, Lemma 3].
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Lemma 4.1 Assume that G = Gn is a sequence of digraphs with vertex set [n] and
stationary distribution π = πn, and let T = Tn be a sequence of times such that

(i) maxx,y∈[n] |PT (x, y) − π(y)| ≤ n−3.
(ii) T 2πmax = o(1) and Tπmin ≥ n−2.

Suppose that y ∈ [n] satisfies:
(iii) There exist K , ψ > 0 independent of n such that

min
|z|≤1+ 1

KT

|RT
y (z)| ≥ ψ.

Then there exist ξ1, ξ2 = O(Tπmax) such that for all t ≥ T :

max
x∈[n]

∣∣∣∣Px

(
AT

y (t)
)

− 1 + ξ1

(1 + py)t+1

∣∣∣∣ ≤ e− t
2KT , (4.3)

where

py = (1 + ξ2)
π(y)

RT
y (1)

. (4.4)

Wewant to apply the above lemma to digraphs from our configurationmodel. Thus,
our first task is to make sure that the assumptions of Lemma 4.1 are satisfied. From
now on we fix the sequence T = Tn as

T = log3(n). (4.5)

From (3.2) and the argument in (3.61) it follows that item (i) of Lemma 4.1 is satisfied
with high probability. Moreover, Theorem 1.3 and Theorem 1.6 imply that item (ii)
of Lemma 4.1 is also satisfied with high probability. Next, following [16], we define a
class of vertices y ∈ [n] which satisfy item (iii) of Lemma 4.1. We use the convenient
notation

ϑ = log log log(n). (4.6)

Definition 4.2 We call small cycle a collection of � ≤ 3ϑ edges such that their undi-
rected projection forms a simple undirected cycle of length �. We say that v ∈ [n] is
locally tree-like (LTL) if its in- and out-neighborhoods up to depth ϑ are both directed
trees and they intersect only at x . We denote by V1 the set of LTL vertices, and write
V2 = [n] \ V1 for the complementary set.

The next proposition can be proved as in [16, Section 3]. Recall the definition of �

in (2.1).

Proposition 4.3 The following holds with high probability:

(1) The number of small cycles is at most �9ϑ .
(2) The number of vertices which are not LTL satisfies |V2| ≤ �15ϑ .
(3) There are no two small cycles which are less than 9ϑ undirected steps away from

each other.
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Proposition 4.4 With high probability, uniformly in y ∈ V1:

RT
y (1) = 1 + O(2−ϑ). (4.7)

Moreover, there exist constants K , ψ > 0 such that with high probability, every y ∈ V1
satisfies item (iii) of Lemma 4.1. In particular, (4.3) holds uniformly in y ∈ V1.

Proof We first prove (4.7). Fix y ∈ V1 and consider the neighborhoods B±
ϑ (y) and

B−
�

(y). By Proposition 2.1 we may assume that B−
�

(y) and B+
ϑ (y) are both directed

trees except for at most one extra edge. By the assumption y ∈ V1 we know that
B−

ϑ (y),B+
ϑ (y) are both directed trees with no intersection except y, so that the extra

edge in B−
�

(y) ∪ B+
ϑ (y) cannot be in B−

ϑ (y) ∪ B+
ϑ (y). Thus, the following cases only

need to be considered:

(1) There is no extra edge in B−
�

(y) ∪ B+
ϑ (y);

(2) The extra edge connects B−
�

(y) \ B−
ϑ (y) to itself

(3) The extra edge connects B−
ϑ (y) to B−

�
(y) \ B−

ϑ (y);
(4) The extra edge connects B+

ϑ (y) to B−
�

(y) \ B−
ϑ (y).

In all cases but the last, if a walk started at y returns at y at time t > 0 then it must exit
∂B+

ϑ (y) and enter ∂B−
�

(y), and from any vertex of ∂B−
�

(y) the probability to reach y
before exiting B−

�
(y) is at most 2δ−�. Therefore, in these cases the number of visits

to y up to T is stochastically dominated by 1 + Bin(T , 2δ−�) and

1 ≤ RT
y (1) ≤ 1 + 2T δ−� = 1 + O(n−a),

for some a > 0. In the last case instead it is possible for the walk to jump from B+
ϑ (y)

to B−
�

(y) \B−
ϑ (y). Let Ek denote the event that the walk visits y exactly k times in the

interval [1, T ]. Let B denote the event that the walk visits y exactly ϑ units of time
after its first visit to ∂B−

ϑ (y). Then Py(B) ≤ δ−ϑ . On the complementary event Bc

the walk must enter ∂B−
�

(y) before visiting y, and each time it visits ∂B−
�

(y) it has
probability at most 2δ−� to visit y before the next visit to ∂B−

�
(y). Since the number

of attempts is at most T one finds

Py(E1) ≤ Py(B) + Py(E1, B
c) ≤ δ−ϑ + 2T δ−� ≤ 2δ−ϑ .

By the strong Markov property,

Py(Ek) ≤ Py(E1)
k .

Therefore

RT
y (1) = 1 +

∞∑

k=1

kPy(Ek) = 1 + O(δ−ϑ).

123



P. Caputo, M. Quattropani

To see that y ∈ V1 satisfies item (iii) of Lemma 4.1, take z ∈ C with |z| ≤ 1+ 1/KT
and write

|RT
y (z)| ≥ 1 −

T∑

t=1

Py(Xt = y)|z|t ≥ 1 − e1/K (RT
y (1) − 1) = 1 − O(δ−ϑ).

��

4.2 Upper bound on the cover time

We prove the following estimate relating the cover time to πmin. From Theorem 1.3
this implies the upper bound on the cover time in Theorem 1.9.

Lemma 4.5 For any constant ε > 0, with high probability

max
x∈[n] Ex (τcov) ≤ (1 + ε)

log n

πmin
. (4.8)

Proof Let Us denote the set of vertices that are not visited in the time interval [0, s].
By Markov’s inequality, for all t∗ ≥ T :

Ex [τcov] =
∑

s≥0

Px (τcov > s) =
∑

s≥0

Px (Us 
= ∅)

≤ t∗ +
∑

s≥t∗
Ex [|Us |] = t∗ +

∑

s≥t∗

∑

y∈[n]
Px (y ∈ Us)

≤ t∗ +
∑

s≥t∗

∑

y∈[n]
Px (AT

y (s)). (4.9)

Choose

t∗ := (1 + ε) log n

πmin
,

for ε > 0 fixed. It is sufficient to prove that the last term in (4.9) is o(t∗) uniformly in
x ∈ [n].

From Proposition 4.4 we can estimate

Px (AT
y (s)) = (1 + ξ ′)

(1 + p̄y)s+1 , (4.10)

where p̄y := (1 + ξ)π(y) with ξ, ξ ′ = O(Tπmax) + O(δ−ϑ) = o(1) uniformly in
x ∈ [n], y ∈ V1. Therefore,

∑

s≥t∗

∑

y∈V1
Px (AT

y (s)) = (1 + o(1))
∑

y∈V1

1

p̄y(1 + p̄y)t∗
. (4.11)
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Using π(y) ≥ πmin, (4.11) is bounded by

(1 + o(1))n

p̄y(1 + p̄y)t∗
≤ 2n

πmin
exp (−πmint∗(1 + o(1))) ≤ 1

πmin
= o(t∗),

for all fixed ε > 0 in the definition of t∗.
It remains to control the contribution of y ∈ V2 to the sum in (4.9). FromProposition

4.3 we may assume that |V2| = O(�15ϑ). In particular, it is sufficient to show that
with high probability uniformly in x ∈ [n] and y ∈ V2:

∑

s≥t∗
Px (AT

y (s)) = o(t∗�−15ϑ). (4.12)

To prove (4.12), fix y ∈ V2 and notice that by Proposition 4.3 (3), we may assume
that there exists u ∈ V1 s.t. d(u, y) < 10ϑ . If t1 = t0 + 10ϑ , t0 := 4/πmin, then

Px (AT
y (t1)

c) = Px (y ∈ {XT , XT+1, . . . , Xt1})
≥ Px (u ∈ {XT , XT+1, . . . , Xt0})Pu(y ∈ {X1, . . . , X10ϑ })
≥

(
1 − Px (AT

u (t0))
)

�−10ϑ .

Since u ∈ V1, as in (4.10), for n large enough,

Px (AT
u (t0)) ≤ 2

(1 + p̄y)t0+1 ≤ 1

2
. (4.13)

Setting γ := 1
2�

−10ϑ , we have shown that Px (AT
y (t1)c) ≥ γ . Since this bound is

uniform over x , the Markov property implies, for all k ∈ N,

Px (AT
y (s)) ≤ (1 − γ )k, s > k(T + t1). (4.14)

Therefore,

∑

s≥t∗
Px (AT

y (s)) ≤
∑

s≥t∗
(1 − γ )�s/(T+t1)� ≤

∑

s≥t∗
(1 − γ )s/2t1

≤ exp (−γ t∗/2t1)
1 − exp (−γ /2t1)

= O(t1/γ ) = o(t∗�−15ϑ).

��

4.3 Lower bound on the cover time

We prove the following stronger statement.

123



P. Caputo, M. Quattropani

Lemma 4.6 For some constant c > 0, with high probability

min
x∈[n] Px

(
τcov ≥ c n logγ1 n

) = 1 − o(1). (4.15)

Clearly, this implies the lower bound on Tcov = maxx∈[n] Ex (τcov) in Theorem 1.9.
The proof of Lemma 4.6 is based on the second moment method as in [17]. IfW ⊂ [n]
is a set of vertices, let Wt be the set

Wt = {y ∈ W : y is not visited in [0, t]} (4.16)

Then

Px (τcov > t) ≥ Px (|Wt | > 0) ≥ Ex [|Wt |]2
Ex

[|Wt |2
] . (4.17)

Therefore, Lemma 4.6 is a consequence of the following estimate.

Lemma 4.7 For some constant c > 0, with high probability there exists a nonempty
set W ⊂ [n] such that

max
x∈[n]

Ex
[|Wt |2

]

Ex [|Wt |]2
= 1 + o(1), t = c n logγ1 n. (4.18)

We start the proof of Lemma 4.7 by exhibiting a candidate for the set W .

Proposition 4.8 For any constant K > 0, with high probability there exists a set W
such that

(1) W ⊂ V1, where V1 is the LTL set from Definition 4.2, and |W | ≥ nα for some
constant α > 0.

(2) For some constant C > 0, for all y ∈ W,

π(y) ≤ C
n log1−γ1(n). (4.19)

(3) For all x, y ∈ W:
|π(x) − π(y)| ≤ πmin log

−K (n). (4.20)

(4) For all x, y ∈ W: min{d(x, y), d(y, x)} > 2ϑ .

Proof From Theorem 1.3 we know that w.h.p. there exists a set S ⊂ [n]with |S| > nβ

such that (4.19) holds. Moreover, a minor modification of the proof of Lemma 3.10
shows that we may also assume that S ⊂ V1 and that min{d(x, y), d(y, x)} > 2ϑ for
every x, y ∈ W . Indeed, it suffices to generate the out-neighborhoodsB+

ϑ (yi ) for every
i = 1, . . . , N1 and the argument for (3.66) shows that these are disjoint trees with
high probability. To conclude, we observe that there is aW ⊂ S such that |W | > nβ/2

and such that (4.20) holds. Indeed, using πmin ≥ n−1 log−K1(n) for some constant
K1, for any constant K > 0 we may partition the interval
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[n−1 log−K1(n),Cn−1 log1−γ1(n)]

in log2K (n) intervals of equal length and there must be at least one of them containing
nβ log−2K (n) ≥ nβ/2 elements which, if K is sufficiently large, satisfy (4.20). ��
Proof of Lemma 4.7 Consider the first moment Ex [|Wt |], where W is the set from
Proposition 4.8 and t is fixed as t = c n logγ1(n). For y ∈ W ⊂ V1 we use Lemma
4.1 and Proposition 4.4. As in (4.10) we have

Px (AT
y (t)) = (1 + o(1))(1 + p̄y)

−(t+1), (4.21)

where p̄y = (1 + o(1))π(y) ≤ pW := 2C n−1 log1−γ1(n), where C is as in (4.19).
Therefore,

Ex [|Wt |] =
∑

y∈W
Px (y not visited in [0, t])

≥ −T +
∑

y∈W
P(AT

y (t)) ≥ −T + (1 + o(1))|W |(1 + pW )−t .

Taking the constant c in the definition of t sufficiently small, one has pW t ≤ α/2 log n
and therefore

Ex [|Wt |] ≥ −T + (1 + o(1))|W |n−α/2 ≥ 1
2 n

α/2, (4.22)

where we use T = log3(n) and |W | ≥ nα . In particular, since T = log3(n), (4.22)
shows that

∑

y∈W
P(AT

y (t)) = (1 + o(1))Ex [|Wt |] . (4.23)

Concerning the second moment Ex
[|Wt |2

]
, we have

Ex

[
|Wt |2

]
=

∑

y,y′∈W
Px

(
y and y′ not visited in [0, t])

≤
∑

y,y′∈W
Px

(
AT

y (t) ∩ AT
y′(t)

)
.

From this and (4.23), the proof of Lemma 4.7 is completed by showing, uniformly in
x ∈ [n], y, y′ ∈ W :

Px

(
AT

y (t) ∩ AT
y′(t)

)
= (1 + o(1))Px

(
AT

y (t)
)
Px

(
AT

y′(t)
)

. (4.24)
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We follow the idea of [17]. Let G∗ denote the digraph obtained from our digraph G
by merging the two vertices y, y′ into the single vertex y∗ = {y, y′}. Notice that y∗
is LTL in the graph G∗ in the sense of Definition 4.2. Moreover, G∗ has the law of a
directed configuration model with the same degree sequence of G except that at y∗ it
has d±

y∗ = d±
y + d±

y′ . It follows that we may apply Lemma 4.1 and Proposition 4.4.
Therefore, if P∗

x denotes the law of the random walk on G∗ started at x , as in (4.21)
we have

P∗
x (AT

y∗(t)) = (1 + o(1))(1 + p̄y∗)
−t , (4.25)

uniformly in x ∈ [n], y, y′ ∈ W , where p̄y∗ = (1 + o(1))π∗(y∗), and π∗ is the
stationary distribution of G∗. In Lemma 4.9 below we prove that

max
v∈[n]:
v 
=y,y′

|π(v) − π∗(v)| ≤ a, |π(y) + π(y′) − π∗(y∗)| ≤ a, (4.26)

where a := πmin log−1(n). Assuming (4.26), we can conclude the proof of (4.24).
Indeed, letting P∗ denote the transition matrix of the graph G∗,

P∗
x (AT

y∗(t)) =
∑

v 
=y,y′
PT∗ (x, v)P∗

v(Xs 
= y∗, ∀s ∈ [1, t − T ])

=
∑

v 
=y,y′

(
π∗(v) + O(n−3)

)
P∗

v(Xs 
= y∗, ∀s ∈ [1, t − T ])

On the other hand,

Px (AT
y (t) ∩ AT

y′(t)) =
∑

v 
=y,y′
PT (x, v)Pv(Xs /∈ {y, y′}, ∀s ∈ [1, t − T ])

=
∑

v 
=y,y′

(
π(v) + O(n−3)

)
Pv(Xs /∈ {y, y′}, ∀s ∈ [1, t − T ])

For all v 
= y, y′,

P∗
v(Xs 
= y∗, ∀s ∈ [1, t − T ]) = Pv(Xs /∈ {y, y′}, ∀s ∈ [1, t − T ])

≤ (1 + o(1))

πmin
PT (x, v)Pv(Xs /∈ {y, y′}, ∀s ∈ [1, t − T ]),
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uniformly in x ∈ [n], where we used condition (i) in Lemma 4.1 to estimate 1 ≤
(1+o(1))

πmin
PT (x, v). Therefore, using (4.26)

∣∣∣Px

(
AT

y (t) ∩ AT
y′(t)

)
− P∗

x

(
AT

y∗(t)
)∣∣∣

≤
∑

v 
=y,y′
|π(v) − π∗(v) + O(n−3)|Pv(Xs /∈ {y, y′}, ∀s ∈ [1, t − T ])

≤ (a + O(n−3))
(1 + o(1))

πmin

∑

v 
=y,y′
PT (x, v)Pv(Xs /∈ {y, y′}, ∀s ∈ [1, t − T ])

≤ 2a

πmin
Px (Ay(t) ∩ Ay′(t)).

By definition of a we have a/πmin → 0 so that

Px (AT
y (t) ∩ AT

y′(t)) = (1 + o(1))P∗
x (AT

y∗(t)). (4.27)

Using (4.21), (4.25) and (4.26) we conclude that

Px

(
AT

y (t) ∩ AT
y′(t)

)
= (1 + o(1)) exp

(−(1 + o(1))(π(y) + π(y′))t
)

= (1 + o(1))Px

(
AT

y (t)
)
Px

(
AT

y′(t)
)

.

��

Lemma 4.9 The stationary distributions π, π∗ satisfy (4.26).

Proof We follow the proof of Eq. (107) in [17]. The stochastic matrix of the simple
random walk on G∗ is given by

P∗(v,w) =

⎧
⎪⎨

⎪⎩

P(v,w) if v,w 
= y∗
1
2

(
P(y, w) + P(y′, w)

)
if v = y∗

P(v, y) + P(v, y′) if w = y∗.

Let V ∗ denote the vertices of G∗. Define the vector ζ(v), v ∈ V ∗ via

ζ(v) =
{

π∗(v) − π(v) v 
= y∗
π∗(y∗) − (π(y) + π(y′)) v = y∗

We are going to show that

max
v∈V ∗ |ζ(v)| = o(πmin log

−1(n)), (4.28)
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which implies (4.26). A computation shows that

ζ P∗(w) =
∑

v∈V ∗
ζ(v)P∗(v,w)

=

⎧
⎪⎨

⎪⎩

ζ(w) if w /∈ B+
1 (y) ∪ B+

1 (y′)
ζ(w) + π(y′)−π(y)

2 P(y, w) if w ∈ B+
1 (y)

ζ(w) + π(y)−π(y′)
2 P(y′, w) if w ∈ B+

1 (y′).

Therefore, the vector φ := ζ(I − P∗) satisfies

|φ(w)| ≤
{
0 if w /∈ B+

1 (y) ∪ B+
1 (y′)

|π(y) − π(y′)| otherwise .

Hence φ(v) = 0 for all but at most 2� vertices v, and recalling (4.20) we have

|φ(w)| ≤ πmin log
−K (n). (4.29)

Next, consider the matrix

M =
T−1∑

s=0

Ps∗ ,

and notice that
ζ(I − PT∗ ) = φM .

Since P∗ and π∗ satisfy condition (i) in Lemma 4.1,

PT∗ = �∗ + E, with |E(u, v)| ≤ n−3, ∀u, v ∈ V ∗, (4.30)

where �∗ denotes the matrix with all rows equal to π∗. We rewrite the vector ζ as

ζ = απ∗ + ρ,

where α ∈ R and ρ is orthogonal to π∗, that is

〈ρ, π∗〉 =
∑

v∈V ∗
ρ(v)π∗(v) = 0.

Therefore,

〈φM, ρ〉 = 〈ρ, (I − E)ρ〉.

Moreover,

|〈φM, ρ〉| ≤
T−1∑

s=0

|〈φ, Ps∗ρ〉| ≤ T
π∗
max

π∗
min

‖φ‖2‖ρ‖2, (4.31)
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where we use

〈Ps∗ψ, Ps∗ ψ〉 ≤ 1

π∗
min

∑

v

π∗(v)(Ps∗ψ)2(v)

≤ 1

π∗
min

∑

u,v

π∗(v)Ps∗ (v, u)ψ2(u)

= 1

π∗
min

∑

u

π∗(u)ψ2(u) ≤ π∗
max

π∗
min

‖ψ‖22,

for any vector ψ : V ∗ �→ R. On the other hand,

|〈ρ, (I − E)ρ〉| ≥ ‖ρ‖22 − n−3

(
∑

v

|ρ(v)|
)2

≥ ‖ρ‖22(1 − n−2). (4.32)

Using (4.29), from (4.31) and (4.32) we conclude that

‖ρ‖2 ≤ 2T
π∗
max

π∗
min

‖φ‖2 = 2T
π∗
max

π∗
min

× O(πmin log
−K (n)).

From Theorem 1.3 applied to G∗ we can assume that π∗
max

π∗
min

= O(logK/3(n)) if K is a

large enough constant. Since T = log3(n), with K sufficiently large one has

‖ρ‖2 ≤ πmin log
−K/2(n).

Next, notice that

0 = 〈ζ, 1〉 = 〈απ∗ + ρ, 1〉 = α + 〈ρ, 1〉.

Hence
|α| = |〈ρ, 1〉| ≤ √

n ‖ρ‖2 ≤ √
n πmin log

−K/2(n).

In conclusion,

ζ(v)2 ≤ 2α2π∗(v)2 + 2ρ(v)2 ≤ 2nπ2
min log

−K (n)(π∗
max)

2 + 2‖ρ‖22
≤ 2nπ2

min log
−K (n)(π∗

max)
2 + 2π2

min log
−K (n) ≤ 4π2

min log
−K (n),

which implies (4.28). ��

4.4 The Eulerian case

We prove Theorem 1.12. The strategy is the same as for the proof of Theorem 1.9,
with some significant simplifications due to the explicit knowledge of the invariant
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measure π(x) = dx/m. For the upper bound, it is then sufficient to prove that, setting
t∗ = (1 + ε)βn log n,

∑

y∈V1

∑

s≥t∗
Px (AT

y (s)) +
∑

y∈V2

∑

s≥t∗
Px (AT

y (s)) = o(n log n). (4.33)

Letting Vd denote the set of vertices with degree d, reasoning as in (4.11) we have

∑

y∈V1

∑

s≥t∗
Px (AT

y (s)) ≤ (1 + o(1))
�∑

d=δ

|Vd | m

d(1 + (1 + o(1))d/m)t∗

Since |Vd | = nαd+o(1), m = d̄n, for any fixed ε > 0 we obtain

∑

y∈V1

∑

s≥t∗
Px (AT

y (s)) ≤ 2m

δ

�∑

d=δ

exp
(
−

(
dβ

d̄
− αd

)
log n

)
= O(n), (4.34)

since by definition dβ

d̄
− αd ≥ 0. Concerning the vertices y ∈ V2 one may repeat the

argument in (4.14) without modifications, to obtain

∑

y∈V2

∑

s≥t∗
Px (AT

y (s)) = o(n log n). (4.35)

Thus, (4.33) follows from (4.34) and (4.35).
It remains to prove the lower bound. We shall prove that for any fixed d such that

|Vd | = nαd+o(1), αd ∈ (0, 1], for any ε > 0,

min
x∈[n] Px

(
τcov ≥ (1 − ε)

d̄αd

d
n logγ1 n

)
= 1 − o(1). (4.36)

We proceed as in the proof of Lemma 4.7. Here we choose W as the subset of Vd

consisting of LTL vertices in the sense of Definition 4.2 and such that for all x, y ∈ W
one has min{d(x, y), d(y, x)} > 2ϑ . Let us check that this set satisfies

|W | ≥ nαd+o(1). (4.37)

Indeed, the vertices that are not LTL are at most �9ϑ by Proposition 4.3. Therefore
there are at least |Vd |−�9ϑ = nαd+o(1) LTL vertices in Vd . Moreover, since there are
at most �2ϑ vertices at undirected distance 2ϑ from any vertex, we can take a subset
W of LTL vertices of Vd satisfying the requirement that min{d(x, y), d(y, x)} > 2ϑ
for all x, y ∈ W and such that |W | ≥ (|Vd | − �9ϑ)�−2ϑ = nαd+o(1). From here on
all arguments can be repeated without modifications, with the simplification that we
no longer need a proof of Lemma 4.9 since a can be taken to be zero in (4.26) in the
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Eulerian case. The only thing to control is the validity of the bound (4.23) with the
choice

t = (1 − ε)
d̄αd

d
n log n.

As in (4.23), it suffices to check that with high probability

∑

y∈W
P(AT

y (t)) − T → ∞. (4.38)

From (4.21) we obtain

∑

y∈W
P

(
AT

y (t)
)

= (1 + o(1))|W | exp
(
− (1+o(1))d

m t
)
. (4.39)

Using (4.37) and dt/m = (1 − ε)αd log n, (4.39) is at least nεαd/2 for all n large
enough. Since T = log3(n) this proves (4.38).
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