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ABSTRACT. Starting from a microscopic model for a system of neurons evolving in time
which individually follow a stochastic integrate-and-fire type model, we study a mean-
field limit of the system. Our model is described by a system of SDEs with discontinuous
coefficients for the action potential of each neuron and takes into account the (random)
spatial configuration of neurons allowing the interaction to depend on it. In the limit as the
number of particles tends to infinity, we obtain a nonlinear Fokker-Planck type PDE in two
variables, with derivatives only with respect to one variable and discontinuous coefficients.
We also study strong well-posedness of the system of SDEs and prove the existence and
uniqueness of a weak measure-valued solution to the PDE, obtained as the limit of the laws
of the empirical measures for the system of particles.

1. Introduction. We propose a model for the action potential ofN neurons, with positions
fixed in time, that follow integrate-and-fire type dynamics subject to noise and interact with
each other through their spikes. The interaction we consider depends also on the positions
of the neurons and is of mean-field type. Therefore, in the limit as N tends to infinity each
neuron interacts with infinitely many other neurons.
The presence of noise in the neuronal dynamics is experimentally confirmed and has been
considered by various authors (see the monographs [9], [19]). Integrate-and-fire (IF) mod-
els describe a simplified dynamics in which such effect can be studied in detail. Consid-
ering large networks of interacting neurons, each one having a membrane potential that
evolves following a IF dynamic, leads to modeling the mean-firing rate of the network as
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the solution to a nonlinear partial differential equation that, at least for mean-field type in-
teractions, is of Fokker-Planck type.
Fokker-Planck PDEs for neural networks have been studied recently in [14], [7], [1], [2],
[4], based on an IF model for the potential of each neuron given in [12]. As pointed out
in [4], not much attention is paid in the literature to how the Fokker-Planck PDE is ob-
tained; in particular one expects that the empirical measures of a network with N neurons
converge as N → ∞ to the solution of the PDE. This has been rigorously shown only in
[3], proving convergence to a McKean-Vlasov stochastic differential equation, and in [5],
where the hydrodynamic limit is considered.
The Fokker-Planck PDE obtained in the cited works exhibits blow-up in finite time, thus
there is no global well-posedness, for certain ranges of parameters, due to the interaction
term.
The model we propose here is simpler but it incorporates two additional aspects: a refrac-
tory period after the spike and a localized version of the interaction term, that is, an explicit
dependence of the interaction on the positions of the neurons. The refractory period ac-
counts for the fact that after emitting a spike, each neuron is inhibited from interaction.
The dependence on a space variable allows to precisely prescribe the interation between
different parts of the network; it can also describe the subdivision of the network in sub-
populations, whose interaction with each other is of particular interest in neuroscience (see
e.g. [11], [16]). This leads to a description of finite speed signal propagation along the
network.
More precisely, our mean-field interaction term has two main features: first, it depends
both on the positions and on the voltage of the neurons, unlike many models available in
the literature; second, it contains indicator functions of suitable intervals in R, thus requir-
ing us to study a system of SDEs and a Fokker-Planck type PDE with irregular coefficients
and dependence on the positions of the neurons that we treat as stochastic parameters.
We allow for great generality in the choice of the law of the positions of the neurons, only
requiring finite first moment. Hence one can prescribe the geometry of the neural network
choosing the law accordingly.
We study the limit behaviour of the empirical measures of the network and prove that the
limit measure-valued function is the unique weak solution to a nonlinear PDE of Fokker-
Planck type and that it exists up to any fixed time T , thus not exhibiting blow-up. From the
technical point of view, to study the limit of the empirical measures we will also use some
ideas of [15].
Our model includes discontinuous coefficients, and is therefore a first step in the study of
stochastic interacting particle systems with irregular coefficients. Some of the results we
obtain can be immediately generalized to the case of SDEs with measurable and bounded
coefficients, but we are able to study the limit PDE only when the coefficients are discon-
tinuous on a set with 0 Lebesgue measure (see, in particular, Lemma 5.4). Therefore we
stick in the main part of the paper to the particular coefficients coming from the model, and
mention some possible generalizations in Appendix.

The potential V of each neuron is modeled, as a function of time, with a stochastic
differential equation whose solution is projected on a torus given by the interval [0, 2] with
the identification 0 ≡ 2. This choice allows to model the cycle of spikes of each neuron
as we describe below. It is important to notice that, similarly to what is done in most IF
models, we do not give a precise description of the spike phenomenon, but we model only
the charging phase from the resting potential vR = 0 to the firing threshold vF = 1 and
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the refractory period after the spike; moreover we assume that there are no external input
currents.

Consider a single cycle, that is 0 ≤ V ≤ 2. As 0 ≤ V < 1 the neuron charges, subject to
spikes by nearby neurons (i.e., to interaction), to randomness and to the effect of discharge
with constant rate (that corresponds to the fact that if no spikes happen in the connected
neurons then some charge is lost as time passes); when V reaches the threshold value 1
the neuron fires and emits a spike into the network. On a real neuron this would have two
effects: the potential would rapidly decrease below 0 and then be restored to 0, and the
neuron would be at rest, inhibited from interacting and spiking for a small amount of time
(the refractory period). We model this effect “switching off” the interaction term when
V > 1 and letting V evolve as dV = dt until it reaches the value 2, where it is restored
to 0 (through the equivalence relation that defines the torus) and the charging cycle begins
again. Therefore the values of V between 1 and 2 do not correspond to a real life situation
but are only a tool we resort to in order to have a convenient mathematical description of
the phenomenon.

To consider the interaction between N neurons we deal with three factors (see also
equation (2) below). Indeed if we consider the voltage V i,N and position Xi of the i-th
neuron, following the description above, a factor θ(Xi, Xj) accounts for the neuron being
connected to some of the other neurons with positions (Xj)j ; a factor 1[0,1](V

i) is due to
the fact that the neuron feels the interaction only if it is in the charging phase; finally a factor
1[1,1+δ](V

j) is due to the fact that the interaction considers contributions to the charging
process only from neurons that have just had their spike (δ ∈ (0, 1)). The choice of the
values 0, 1 and 2 is completely arbitrary, and is just used for our mathematical description;
we also do not specify explicitly the form of some of the functions involved, since we only
need to make assumptions on their regularity.

A possible more accurate model of the inhibition phase could require that also the noise
term be switched off during the refractory period, that is, in our setting, as V becomes
larger than 1. We are forced to include a small noise also in the inhibition phase, for math-
ematical reasons (i.e., we need ε below to be strictly positive, see in particular Theorems
2.2 and 3.2 and Lemma 5.1). The effect of oscillations due to the noise at the transition
between the active phase and the inhibition phase appears to be negligible on macroscopic
scales, thanks to the drift (see for example figure 1b). On the other hand, the analysis of a
model in which noise contributes only to the charging phase is mathematically extremely
interesting, and we will face it in a future work.

Now we will introduce precisely the equations describing the model and will give an
account of our results and of the following sections. We also include some figures obtained
simulating our model for a finite number of interacting neurons, showing that, even if
simple, the model we propose gives a realistic description of single neurons and networks.

1.1. The model. For a Borel set A in an euclidean space, we will denote by LA the
Lebesgue measure restricted to A.
Let (Ω,F ,P) be a probability space, let D be an open connected domain in R3 and
[0, T ] ⊂ R a time interval. The microscopic model is as follows: for eachN ∈ N consider
N neurons, each identified by

i. its position Xi
0 = ξi, where ξi, i ∈ N are i.i.d. random variables with finite first

moment and such that ∀i P
(
ξi ∈ D

)
= 1. We denote by ν the law of each ξi. Since
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(A) Solutions V i,3, i = 1, 2, 3 (B) Solutions V i,3 (mod 2), i = 1, 2, 3

FIGURE 1. Simulation of the system (2) for 3 neurons with no spatial interaction.

the neurons do not move, their position is modeled by the system of trivial equations

dXi
t = 0 , Xi

0 = ξi ; (1)

ii. its action potential given by V i,Nt (mod 2) ∈ [0, 2), where V i,Nt ∈ R is the strong
solution to

dV i,Nt = λ
(
V i,Nt (mod 2)

)
dt

+
1

N

N∑
j=1

θ
(
ξi, ξj

)
1[1,1+δ]

(
V j,Nt (mod 2)

)
1[0,1]

(
V i,Nt (mod 2)

)
dt

+ σε
(
V i,Nt (mod 2)

)
dBit , (2)

with initial condition V i,N0 = ηi ∈ [0, 2). We assume that all random variables ηi are
i.i.d with law ρ̃0L[0,2) and ρ̃0 ∈ L2(0, 2). Moreover, we assume that {ξ1, ..., ξN , η1, ...ηN}
are independent for any N ∈ N .

The functions appearing above are given by

λ(v) = −λ̂v1[0,1](v) + 1(1,2)(v), with λ̂ > 0 ;

θ(x, y) is a bounded uniformly continuous function on D ×D ;

σε(v) is a C1
b ([0, 2])-function such that σε ≥

√
2ε > 0

and σε(v) =
√

2ε on [1, 2], σε(2) = σε(0) =
√

2ε,

dσε

dx
(0) =

dσε

dx
(2) = 0 , with ε fixed.

For each i ∈ N the processes
(
Bit
)

are independent real-valued Brownian motions,
independent of

(
ξi
)

and
(
ηi
)
, and δ is a fixed real number in (0, 1).

One could use as λ any bounded function on [0, 2) that has a jump discontinuity in v = 1
and is continuous elsewhere; all the results herein apply in this case with no modifications
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in the arguments, therefore we stick to the simple case given just above.
We will show that for eachN the system of equations (2) has a unique solution

(
V i,N

)
i=1,...,N

with V i,N having continuous trajectories inR. This forces the trajectories of V i,N (mod 2)

to have jump discontinuities at every t such that V i,Nt ∈ 2Z . However continuity is easily
restored seeing V i,N (mod 2) as a process with values on the torus T := R/2Z (where
2Z is seen as a subgroup of translations on R). This corresponds to considering the inter-
val [0, 2] with the identification 0 ≡ 2. Moreover T is homeomorphic to 1/πS1 ⊂ R2, the
circle with radius 1/π.

On T we consider the metric

dT (v1, v2) = min {(v1 − v2) (mod 2), (v2 − v1) (mod 2)} (3)

where on the right-had side v1 and v2 are seen as elements in [0, 2) ⊂ R; this corresponds
to the shortest-path (or geodesic) metric, which is the arc-length on S1. This metric induces
the quotient topology on T .
We will always consider the Euclidean metric on D and endow D × T with the product
metric, denoted by dD×T .
The choice to represent solutions on the torus is natural since the coefficients we introduced
above are clearly 2-periodic. To stress periodicity and also to lighten notation for v ∈ R
and x, y ∈ D we define the functions

λ2(v) := λ
(
v (mod 2)

)
,

g2(x, v, y, w) := θ(x, y)1[1,1+δ]

(
w (mod 2)

)
1[0,1]

(
v (mod 2)

)
,

σε2(v) := σε
(
v (mod 2)

)
so that equation (2) takes the more readable form

dV i,Nt = λ2

(
V i,Nt

)
dt+

1

N

N∑
j=1

g2

(
ξi, V i,Nt , ξj , V j,Nt

)
dt+ σε2

(
V i,Nt

)
dBit . (4)

Since T is homeomorphic to 1/πS1 ⊂ R2, one can define the Lebesgue measure on T as
the push-forward of the Lebesgue measure on [0, 2) through the map t 7→ (cos(πt), sin(πt));
since T is endowed with the quotient topology, any measure on the Borel sets of T can
be obtained in this way. Therefore we can interpret a Borel measure on D × T as a Borel
measure on D × [0, 2), and we will do so henceforth. Notice that any Borel measure on T
defines a Borel measure on the whole R by 2-periodic replication; we will not distinguish
between the two in the sequel.
We will show that the solution to (4) has a density which is 2-periodic, thanks to the form
of the coefficients; hence this density can be identified with a Borel measure on D ×T .

Let SNt denote the empirical measure

SNt =
1

N

N∑
i=1

δ(ξi,V i,Nt (mod 2)) =
1

N

N∑
i=1

δ(ξi,V i,Nt (mod 2)) (5)

and set for every x, y ∈ D and v ∈ R

σε2(x, v) := σε2(v) , θ(x, y, v) := θ(x, y) and λ2(x, v) := λ2(v)

for later use (see for instance (8)). To any function φ on D × T which is continuous
corresponds a unique continuous function on D × R that is 2-periodic with respect to its
second variable, given by (x, v) 7→ φ(x, v (mod 2)); in the sequel we will identify these
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(A) Solutions V i,10 (B) Spikes of each neuron in time

FIGURE 2. Solution of system (2) for 10 neurons with strong interaction uniform in space. A spike from one
neuron propagates to all other neurons in the network

two functions and denote by φ also its 2-periodic representation on D × R. With this
convention, for any smooth and compactly supported function φ on D ×T we have

d〈SNt , φ〉 = d
1

N

N∑
i=1

φ
(
Xi

0, V
i,N
t

)

=
1

N

N∑
i=1

∂vφ
(
Xi

0, V
i,N
t

)λ2

(
V i,Nt

)
+

1

N

N∑
j=1

g2

(
Xi

0, V
i,N
t , Xj

0 , V
j,N
t

) dt

+
1

N

N∑
i=1

σε2

(
V i,Nt

)
∂vφ

(
Xi

0, V
i,N
t

)
dBit +

1

N

N∑
i=1

σε2

(
V i,Nt

)2

2
∂2
vφ
(
Xi

0, V
i,N
t

)
dt

= 〈SNt , λ2∂vφ〉dt+ 〈SNt , 〈SNt , g2(x, v, ·, ·)〉∂vφ〉dt+ 〈SNt ,
(σε2)

2

2
∂2
vφ〉dt+ dMN,φ

t

(6)

where we use the notation

〈SNt , 〈SNt , g2(x, v, ·, ·)〉∂vφ〉

=

∫
D×T

∂vφ(x, v)SNt ( dx, dv)

∫
D×T

g2(x, v, y, w)SNt ( dy, dw) (7)

and

MN,φ
t =

∫ t

0

1

N

N∑
i=1

σε2
(
V i,Ns

)
∂vφ

(
Xi, V i,Ns

)
dBis

is a martingale such thatE
[

supt

∣∣∣MN,φ
t

∣∣∣2 ]→ 0 asN →∞ (due to the stochastic integrals
being uncorrelated).
If we suppose that the sequence of random measures SNt ( dx, dv) converges in probability
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FIGURE 3. A network made of two subnetworks with localized strong interaction. Each blue line corresponds to
the presence of interaction; only one neuron of the first subnetwork interacts with a single neuron of the second one.
The vertical axis represents time; the network is drawn on the t = 0 plane and to each spike of a neuron corresponds
a sphere above it, with the same color as the neuron. Near time t = 1 many neurons in the first network spike and
the signal is propagated to the second network, while at time t = 2 the signal does not propagate to the second
network.

(in a suitable space) to a probability measure ρt(x, v) dxdv on D×T , then, heuristically,
a passage to the limit in N suggests that ρt solves weakly the partial differential equation
of Fokker-Planck type

∂

∂t
ρt(x, v) =

1

2

∂2

∂v2

(
(σε2)

2
ρt

)
(x, v)− ∂

∂v
(λ2ρt) (x, v)

− ∂

∂v

(
ρt

∫
g2(·, ·, y, w)ρt(y, w) dy dw

)
(x, v) . (8)

In the sequel we will prove rigorously a similar assertion involving measures µt instead of
densities ρt.

1.2. Main results. The main aim of the paper is to show that the empirical measure actu-
ally converges in a weak sense to a limiting probability measure µt( dx, dv) such that the
marginal with respect to v has a L2-density and which is the unique solution to the above
PDE (8). This is the content of Theorem 5.6.
The paper is organized as follows. In Section 2 we will prove strong well-posedness for the
system of SDEs (2); a modification of the standard theory for finite-dimensional SDEs with
bounded and measurable drift is needed here to deal with the dependence of the equations
on the random variables Xi

0. In Section 3 we define a weak measure-valued solution and
show that the PDE (8) has at most one such solution.
To show existence of a solution to the PDE we first prove that the lawsQN of the empirical
measures of (Xi, V i,N (mod 2)) (see (5)) are tight as probability measures on the space
of continuous measure-valued functions of time (Section 4). Then we prove that any limit
point Q of QN gives full measure to the set of functions with values that are continuous
measures with marginal with respect to v having a L2-density, that Q is supported by the
set of weak measure-valued solutions to the Fokker-Planck PDE and that actually all the
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sequence QN converges to the same limit. This provides existence of a solution and is
discussed in Section 5.
Section 6 briefly shows that well-posedness of the Fokker-Planck PDE implies existence
of a unique strong solution to the McKean-Vlasov SDE associated with the particle sys-
tem. We conclude with an appendix giving some immediate generalizations of our results
together with some indications on how the proofs have to be adapted to this more general
setting.

2. The system of particles. Consider independent Brownian motions Bi, i ∈ N and as-
sume that the random variables ηi introduced in the previous section are i.i.d. and indepen-
dent from allBi; denote by (F0

t )t the filtrationF0
t = σ

(
Bis, 0 ≤ s ≤ t, i ∈ N

)
∨σ(ηi, i ∈

N ) augmented with the P-null sets.
We also denote by G the σ-algebra σ

(
ξi, i ∈ N

)
and assume that for any t ≥ 0, G and F0

t

are independent.
Finally we introduce the filtration (Ft) where Ft is the completion of F0

t ∨ G.

Let us write our system of equations in vector form: we fix N ∈ N and introduce, for
the variables v = (v1, . . . , vN )> ∈ RN , x = (x1, . . . , xN )> ∈ DN , the functions

λ̄2 : RN → RN

λ̄2(v) =
(
λ2(v1), . . . , λ2(vN )

)>
,

ḡ2 : (D ×R)
N+1 → RN

ḡ2(x,v, y, w) =
(
g2(x1, v1, y, w), . . . , g2(xN , vN , y, w)

)>
,

σ̄ε2 : RN → RN×N

σ̄ε2(v) = diag
(
σε2(v1), . . . , σε2(vN )

)
.

Setting Ξ =
(
ξ1, . . . , ξN

)
, Ψ =

(
η1, . . . , ηN

)
, we want to show existence and uniqueness

of strong solutions to{
dVt = λ̄2 (Vt) dt+ 1

N

∑N
j=1 ḡ2

(
Ξ,Vt,Ξ

j , V jt

)
dt+ σ̄ε2 (Vt) dBt

V0 = Ψ .
(9)

The classical reference for existence of a strong solution for SDEs with bounded measur-
able drift is [20]. However, the results proved therein do not apply directly to equation
(9), because they do not guarantee the measurable dependence of the solution V on the
stochastic parameter Ξ. Therefore we introduce the following definition.

Let us denote by S the Banach space of all continuous paths from [0, T ] into RN en-
dowed with the supremum norm |·|S . We also denote by νN the law of the random variable
Ξ on the Borel σ-algebra of DN .

Definition 2.1 (Strong solution). A strong solution to (9) is a family of continuous RN -
valued F0

t -adapted processes (Vx
t ), x ∈ DN , such that

(i) the mapping (x, ω) 7→ Vx
· (ω) ∈ S is measurable from (DN × Ω,B(DN ) × F) to

(S,B(S));
(ii) for νN -almost every x ∈ DN , (Vx

t ) satisfies equation (9) in the strong sense when
Ξ = x.
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The above definition is motivated by the fact that if (Vx
t ) is a strong solution, then the

Ft-adapted process (VΞ
t ) satisfies equation (9) P-almost surely for any t ∈ [0, T ]. In fact,

for Ξ random variable as above, the process (VΞ
t ) is well-defined with values in RN , has

continuous paths and is Ft-adapted.
To prove that

(
VΞ
t

)
satisfies (9) it is enough to compute, using conditional expectation with

respect to G and independence,

E

[∣∣∣∣∣Ψ +

∫ t

0

λ̄2

(
VΞ
r

)
dr +

1

N

N∑
j=1

∫ t

0

ḡ2

(
Ξ,VΞ

r ,Ξ
j , V Ξ,j

r

)
dr

+

∫ t

0

σ̄ε2
(
VΞ
r

)
dBr −VΞ

t

∣∣∣∣∣
]

= EE

[∣∣∣∣∣Ψ +

∫ t

0

λ̄2

(
VΞ
r

)
dr +

1

N

N∑
j=1

∫ t

0

ḡ2

(
Ξ,VΞ

r ,Ξ
j , V Ξ,j

r

)
dr

+

∫ t

0

σ̄ε2
(
VΞ
r

)
dBr −VΞ

t

∣∣∣∣∣
∣∣∣∣ G
]

= EE

[∣∣∣∣∣Ψ +

∫ t

0

λ̄2 (Vx
r ) dr +

1

N

N∑
j=1

∫ t

0

ḡ2

(
x,Vx

r , x
j , V x,j

r

)
dr

+

∫ t

0

σ̄ε2 (Vx
r ) dBr −Vx

t

∣∣∣∣∣
x=Ξ

]
= 0.

Theorem 2.2. For every N ∈ N there exists a strong solution to (4). Two strong solutions
on the same probability space associated to the same initial condition Ψ are indistinguish-
able for νN -almost every x ∈ DN .

Proof. Existence. First fix x ∈ DN ; the SDE{
dVx

t = λ̄2 (Vx
t ) dt+ 1

N

∑N
j=1 ḡ2

(
x,Vx

t , x
j , V x,j

t

)
dt+ σ̄ε2 (Vx

t ) dBt

Vx
0 = Ψ .

(10)

admits a unique strong solution Vx by the results proved in [20]. We now clarify the
measurability of Vx with respect to x. One difficulty is that the proof of the main well-
posedness results in [20] is based on the Yamada-Watanabe theorem and is indeed abstract
and non-contructive. This is why to prove such a measurability property we follow the
approach in [8]. Fix a sequence of partitions {πn}n∈N of [0, T ], where each πn is given
by points 0 = tn0 < tn1 < · · · < tnn = T , set κn(t) =

∑n−1
i=0 t

n
i 1[tni ,t

n
i+1)(t) and consider

Euler’s approximations to equation (10) given by
dVx,n

t = λ̄2 (Vx,n(κn(t))) dt+ 1
N

∑N
j=1 ḡ2

(
x,Vx,n(κn(t)), xj , V x,n,j(κn(t))

)
dt

+ σ̄ε2 (Vx,n(κn(t))) dBt,

Vx,n
0 = Ψ .

(11)
In the next steps, we will use that, for any n ≥ 1, the processes Vx,n enjoy all the measur-
ability properties we need.
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By Theorem 2.8 in [8] we know that, for any x ∈ DN and δ > 0

P (|Vx,n −Vx|S > δ)→ 0, as n→∞. (12)

Note that, for any p ≥ 2 (using the boundedness of the coefficients of the SDEs) there
exists Cp > 0 (independent of n and x ∈ D) such that, for any n ≥ 1, E [|Vx,n −Vx|pS ]
≤ Cp. Writing

E |Vx,n −Vx|2S
= E

[
|Vx,n −Vx|2S 1{|Vx,n−Vx|S>δ}

]
+ E

[
|Vx,n −Vx|2S 1{|Vx,n−Vx|S≤δ}

]
and using also the Hölder inequality, we easily deduce that, for any x ∈ DN ,

E
[
|Vx,n −Vx|2S

]
→ 0, as n→∞ . (13)

Hence, for any x ∈ DN , Vx,n converges to Vx in the Banach space L2(Ω;S) and so the
mapping x 7→ Vx ∈ L2(Ω;S) is Borel measurable on

(
DN ,B(DN )

)
. By the dominated

convergence theorem we infer∫
DN

E
[
|Vx,n −Vx|2S

]
νN ( dx)→ 0, as n→∞ , (14)

i.e., (V·,n) converges to V· in Z = L2
(
(DN , νN );L2(Ω;S)

)
. It follows that (Vx,n) is a

Cauchy sequence in Z . Using that, for any n,m ≥ 1,∫
DN

E
[
|Vx,n −Vx,m|2S

]
νN ( dx) =

∫
DN×Ω

|Vx,n(ω)−Vx,m(ω)|2S νN ( dx)P( dω) ,

(15)
we get that (V·,n) converges to some Ṽ· in L2

(
(DN × Ω, νN × P);S

)
. In particular, Ṽ·

is measurable on (DN × Ω,B(DN )×F) with values in S.
It follows that, for a.e. x ∈ DN , we have Ṽx = Vx in S, P-a.s. (we have obtained a
version of the strong solution which has the required measurability properties with respect
to x).
Uniqueness. It follows directly from the celebrated Veretennikov result.

Remark 1. To show existence and uniqueness of a solution one could weaken the assump-
tions on the regularity of σε, similarly to what is done in the references [20] and [8]. What
is needed above is that pathwise uniqueness holds for equation (10), and there are many
well-known conditions assuring that this happens. However at a later stage in the paper
(Section 5) we will need to assume that σε is differentiable with bounded derivative. This
does not seem to be a limitation on the model, since there is no reason to assume that the
diffusion coefficient be particularly rough.

3. The limit PDE: uniqueness of measure-valued solutions. Let Pr(D × T ) be the
space of Borel probability measures over D × T . Let Pr1(D × T ) ⊂ Pr(D × T ) be
the space of probability measures over D × T with finite first moment, endowed with the
1-Wasserstein metricW1.
Suppose as above that the empirical measures SNt converge in a weak sense to a probability
measure µt on D × T . Without assuming that µt has a density, we expect that it solve the
PDE

∂

∂t
µt =

1

2

∂2

∂v2

(
(σε2)

2
µt

)
− ∂

∂v
(λ2µt)−

∂

∂v

(
µt

∫
g2(·, ·, y, w)µt( dy, dw)

)
, (16)
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with initial condition ν × ρ̃0LT , meaning that µ0( dx, dv) = ν( dx)ρ̃0(v)LT ( dv). Fix
T > 0; we will denote by C the space

C := C ([0, T ]; Pr1(D ×T ))

and for a measure ζ ∈ Pr(D ×T ) we will adopt the notation

b(ζ)(x, v) := λ2(v) +

∫
D×T

g2(x, v, y, w)ζ( dy, dw), x ∈ D, v ∈ T , (17)

throughout the rest of the paper.
In the sequel we will often use that if g : R→ R is 2-periodic and differentiable onR then
its derivative is also 2-periodic (thus g can be identified with a differentiable function on
T ). Recall the Banach space Bb(D × T ) consisting of all Borel and bounded functions
f : D × T → R endowed with the supremum norm ‖ · ‖∞. We will also consider
Cb(D × T ) ⊂ Bb(D × T ) consisting of all bounded continuous functions. We introduce
the space of test functions

T ⊂ Cb(D ×T )

defined as the space of all φ ∈ Cb(D ×T ) such that there exist the partial derivatives ∂vφ
and ∂2

vφ which both belong to Cb(D ×T ).

Definition 3.1. We say that µ ∈ C is a weak measure-valued solution of the nonlinear
Fokker-Planck equation (16), with initial condition µ0 ∈ Pr1 (D ×T ), if

〈µt, φ〉 =
〈
µ0, φ

〉
+

∫ t

0

〈µs, b(µs)∂vφ〉 ds+

∫ t

0

〈
µs,

(σε2)
2

2
∂2
vφ

〉
ds, (18)

for every test function φ ∈ T .

Consider now the total variation distance on Borel probability measures on D ×T
dTV(ν1, ν2) : = sup

{∣∣〈ν1, φ〉 − 〈ν2, φ〉
∣∣ : φ ∈ Bb(D ×T ), ‖φ‖∞ ≤ 1

}
= sup

{∣∣〈ν1, φ〉 − 〈ν2, φ〉
∣∣ : φ ∈ Cb(D ×T ), ‖φ‖∞ ≤ 1

}
.

Remark 2. Let µ1, µ2 ∈ C . One can show that the mapping

t 7→ dTV(µ1
t , µ

2
t ) is Borel and bounded on [0, T ].

To this purpose we first remark that, for given probability measures ν1 and ν2 on Borel sets
of D ×T , one has

dTV(ν1, ν2) = sup
{∣∣〈ν1, φ〉 − 〈ν2, φ〉

∣∣ : φ ∈ C∞c (D ×T ), ‖φ‖∞ ≤ 1
}
. (19)

(recall that φ ∈ C∞c (D × T ) if φ ∈ C∞(D × T ) and has compact support). As before
if f : D × T → R we identify the function (x, v) 7→ f(x, v (mod 2)) ∈ R defined on
D ×R with f .

To prove (19) let f ∈ Cb(D × T ) with ‖f‖∞ ≤ 1, by truncating f and by considering
standard mollifiers (defined on R4) we can find a sequence (fn) ⊂ C∞c (D ×T ) such that
‖fn‖∞ ≤ 1 and fn(z)→ f(z), as n→∞, for any z = (x, v) ∈ D ×T . By using∣∣〈ν1, fn〉 − 〈ν2, fn〉

∣∣ ≤ sup
{∣∣〈ν1, φ〉 − 〈ν2, φ〉

∣∣ : φ ∈ C∞c , ‖φ‖∞ ≤ 1
}
, n ≥ 1,

and the Lebesgue convergence theorem we obtain that the previous formula holds even
when fn is replaced by f ; this leads to (19).

Then we show that there exists a countable set K∞ ⊂ C∞c such that for any f ∈ C∞c ,
we can find a sequence (fk) ⊂ K∞ satisfying

lim
k→∞

‖f − fk‖∞ = 0. (20)



12 FRANCO FLANDOLI AND ENRICO PRIOLA AND GIOVANNI ZANCO

As a simple consequence we get that

dTV(ν1, ν2) = sup
{∣∣〈ν1, φ〉 − 〈ν2, φ〉

∣∣ : φ ∈ K∞, ‖φ‖∞ ≤ 1
}
. (21)

To prove assertion (20) set Fn = {f ∈ C∞c with support(f)⊂ Bn} whereBn = {(x, v) ∈
D × T : dist(x, ∂D) ≥ 1/n and |x| ≤ n}. Each Fn is separable: indeed Fn ⊂ C(Bn)
and so there exists a countable set Kn ⊂ Fn which is dense in Fn. To finish we define
K∞ = ∪n≥1Kn.

Theorem 3.2. Let µ0 ∈ Pr1(D×T ). There exists at most a unique weak measure-valued
solution to equation (16), with initial condition µ0, in C .

Proof. Given a function f : T → R we still denote by f its 2-periodic version defined on
R. Let ψ ∈ T and define the operator

Aψ(x, v) = Aψ(x, ·)(v) =
σε2(v)

2

∂2ψ

∂v2
(x, v) .

It is well known that A is the infinitesimal generator of a diffusion semigroup Tt : Bb(D×
R)→ Bb(D ×R):

Ttζ(x, v) =

∫
R

ζ(x, v′)pt(v, v
′)dv′, x ∈ D, v ∈ R, ζ ∈ Bb(D ×R), t ≥ 0, (22)

where the density pt(·, v′) ∈ C2(R), for any v′ ∈ R, t > 0 (see, for instance, Chapter 6 in
[6]). Moreover, for t > 0, pt(v, v′), ∂vpt(v, v′) and ∂2

vpt(v, v
′) are continuous functions

on R2. In addition, for any g ∈ Cb(D ×R), t ∈ (0, T ), we have

‖∂vTtg‖∞ ≤
c√
t
‖g‖∞, ‖∂2

vTtg‖∞ ≤
c

t
‖g‖∞. (23)

Finally, if f ∈ C2
b (D × R), we have Ttf ∈ C2

b (D × R), t ≥ 0, and ∂tTtf(x, v) =
TtAf(x, v) = ATtf(x, v), t ≥ 0, x ∈ D, v ∈ R.

Since in our case σ2 is also 2-periodic, it is not difficult to prove that, for t > 0, pt
is 2-periodic in both variables, i.e., pt(v + 2, v′ + 2) = pt(v, v

′), v, v′ ∈ R. It follows
that if ψ ∈ Bb(D × R) is 2-periodic in the v-variable then also Ttψ is 2-periodic in
the v-variable. Differentiating, we obtain that ∂vpt(v, v′) and ∂2

vpt(v, v
′) are 2-periodic

continuous functions in both variables. Hence, in particular, Ttψ ∈ T if ψ ∈ T , t ≥ 0.
One can prove that µ ∈ C is a weak solution to (16) if and only if it is a mild solution, i.e.,

if and only if

〈µt, φ〉 = 〈µ0, Ttφ〉+

∫ t

0

〈µs, b(µs)
∂

∂v
Tt−sφ〉ds, φ ∈ T , t ∈ [0, T ]. (24)

We only show that any weak solution is a mild solution (this is the part we need to prove
our uniqueness claim). We fix φ and t > 0. Differentiating with respect to s ∈ (0, t) the
mapping

s 7→ 〈Tt−sφ, µs〉 =

∫
D×R

µs(dx, dv)

∫
R

φ(x, v′)pt−s(v, v
′)dv′

we get

d

ds
(〈Tt−sφ, µs〉) = −〈Tt−sAφ, µs〉) + 〈µs, b(µs)∂vTt−sφ〉+ 〈µs, Tt−sAφ〉 .

Integrating with respect to s on [0, t] we find the assertion.
Now we prove the claim of the theorem. Let µ1, µ2 ∈ C be two solutions to (16) with the
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same initial condition µ0; then for every t (in the sequel we can consider the supremum
over φ ∈ K∞ ⊂ C∞c such that ‖φ‖∞ ≤ 1 as in the previous remark)

dTV(µ1
t , µ

2
t ) = sup

‖φ‖∞≤1

∣∣∣∣∫ t

0

[
〈µ1
s, b(µ

1
s)∂vTt−sφ〉 − 〈µ2

s, b(µ
2
s)∂vTt−sφ〉

]
ds

∣∣∣∣
≤ sup
‖φ‖∞≤1

∣∣∣∣∫ t

0

〈µ1
s,
[
b(µ1

s)− b(µ2
s)
]
∂vTt−sφ〉ds

∣∣∣∣ (25)

+ sup
‖φ‖∞≤1

∣∣∣∣∫ t

0

〈µ1
s − µ2

s, b(µ
2
s)∂vTt−sφ〉ds

∣∣∣∣ . (26)

The function b(µ2
s)∂vTt−sφ is bounded and measurable and we have the estimate (cf. (23))

‖∂vTt−sφ‖∞ ≤
C√
t− s

‖φ‖∞;

we can thus bound the term (26) by

sup
‖φ‖∞≤1

∫ t

0

dTV(µ1
s, µ

2
s)
∥∥b(µ2

s)∂vTt−sφ
∥∥
∞ ds

≤ (‖θ‖∞ + ‖λ‖∞)

∫ t

0

C√
t− s

dTV(µ1
s, µ

2
s) ds .

Similarly, (25) is bounded by

sup
‖φ‖∞≤1

∫ t

0

∥∥(b(µ1
s)− b(µ2

s)
)
∂vTt−sφ

∥∥
∞ ds ≤ ‖θ‖∞

∫ t

0

C√
t− s

dTV(µ1
s, µ

2
s) ds .

An application of a generalized version of Gronwall’s lemma (see, for instance, [10, Section
1.2.1]) yields that µ1

t = µ2
t for every t.

4. The laws of the empirical measures. We denote by QN the law of SN on C (we are
considering each SN as a r.v. with values in C ). As explained in the introduction, we need
to show tightness of the family QN .

Theorem 4.1. The sequence
{
QN

}
N∈N is tight in C .

Proof. Fix any (x0, v0) ∈ D ×T and consider the set

KM,R =

{
µ ∈ C : sup

t∈[0,T ]

∫
D×T

dD×T
(
(x0, v0), (x, v)

)
µt ( dx, dv) ≤M,∫ T

0

∫ T

0

W1 (µt, µs)
p

|t− s|1+αp
dtds ≤ R

}
where we choose α ∈ (0, 1) and p ≥ 1 such that αp > 1.
We show that KM,R is relatively compact in C . Let B(x0,v0)(r) denote the open ball with
radius r and center (x0, v0) in D ×T . Then for µ ∈ KM,R and t ∈ [0, T ]

µt

(
B(x0,v0)(r)

{
)
≤ 1

r

∫
D×T

dD×T
(
(x0, v0), (x, v)

)
µt( dx, dv) ≤ M

r
.

Therefore for every e > 0 and for every t ∈ [0, T ] we can find r = r(e, t) such that

µt
(
B(x0,v0)(r)

)
> 1− e (27)
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for every µ ∈ KM,R.
By the Sobolev embedding theorem, if β < (αp − 1)/p, we have that, for any Lipschitz
continuous function φ on D ×T and any t, s ∈ [0, T ],

|〈µt, φ〉 − 〈µs, φ〉| ≤ C|t− s|β
(∫ T

0

∫ T

0

|〈µt, φ〉 − 〈µs, φ〉|p

|t− s|1+αp
dtds

) 1
p

so that, thanks to Kantorovich-Rubinstein characterization of the 1-Wasserstein distance,
we can take the supremum over Lipschitz functions on D × T with Lipschitz seminorm
bounded by 1 on both sides of the previous inequality, obtaining

sup
t6=s

W1(µt, µs)

|t− s|β
≤ C

(∫ T

0

∫ T

0

W1(µt, µs)
p

|t− s|1+αp
dtds

) 1
p

.

Therefore the collection of measures KM,R is equicontinuous; this together with (27) im-
plies relative compactness by the Ascoli-Arzelà theorem.

To show tightness we now compute

QN
(
K{
M,R

)
= P

(
SN ∈ K{

M,R

)
≤ P

(
sup
t∈[0,T ]

∫
D×T

dD×T
(
(x0, v0), (x, v)

)
SNt ( dx, dv) > M

)

+ P

(∫ T

0

∫ T

0

W1

(
SNt , S

N
s

)p
|t− s|1+αp

dtds > R

)
.

For the first term we have

P

(
sup
t∈[0,T ]

∫
D×T

dD×T
(
(x0, v0), (x, v)

)
SNt ( dx, dv) > M

)

≤ 1

M
E

[∣∣∣∣∣ sup
t∈[0,T ]

∫
D×T

dD×T
(
(x0, v0), (x, v)

)
SNt ( dx, dv)

∣∣∣∣∣
]

≤ 1

MN
E

 sup
t∈[0,T ]

N∑
j=1

dD×T

(
(x0, v0),

(
Xi

0, V
i,N
t (mod 2)

))
≤ 1

M
+

1

MN

N∑
i=1

E

[
sup
t∈[0,T ]

∣∣∣(Xi
0 − x0, V

i,N
t

)∣∣∣]

≤ 1

M
+

C

MN

N∑
i=1

E

[ ∣∣∣(Xi
0 − x0, V

i,N
0

)∣∣∣
+

∫ t

0

sup
t∈[0,T ]

∣∣∣∣∣∣λ2

(
V i,Ns

)
+

1

N

N∑
j=1

g2

(
Xi

0, V
i,N
s , Xj

0 , V
j,N
s

)∣∣∣∣∣∣ ds

+ sup
t∈[0,T ]

∣∣∣∣∫ t

0

σε2
(
V i,Ns

)
dBis

∣∣∣∣
]
≤ C

M

for a certain constant C = C(λ̂, θ, σε, T ), thanks to the Burkholder-Davis-Gundy inequal-
ity, the boundedness of λ2, g2 and σε2 and the fact that ν × ρ̃0LT has finite first moment.
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For the second term

P

(∫ T

0

∫ T

0

W1

(
SNt , S

N
s

)p
|t− s|1+αp

dtds > R

)
≤ 1

R

∫ T

0

∫ T

0

E
[
W1

(
SNt , S

N
s

)p]
|t− s|1+αp

dtds.

Let φ be a Lipschitz function on D ×T with Lipschitz constant Kφ ≤ 1. Then

∣∣〈SNt , φ〉− 〈SNs , φ〉∣∣ ≤ 1

N

N∑
i=1

dT

(
V i,Nt , V i,Ns

)
so that, by the Kantorovich characterization of the 1-Wasserstein distance and by Hölder’s
inequality,

E
[
W1

(
SNt , S

N
s

)p] ≤ 1

N

N∑
i=1

E
[
dT

(
V i,Nt , V i,Ns

)p]
.

Recalling (3), (4) and notation (17), we can write

dT

(
V i,Nt , V i,Ns

)
≤
∣∣∣V i,Nt − V i,Ns

∣∣∣ ≤ ∫ t

s

∣∣b(SNr )(Xi
0, V

i,N
r )

∣∣ dr +

∣∣∣∣∫ t

s

σε2(V i,Nr ) dBir

∣∣∣∣
so that

E
[
dT

(
V i,Nt , V i,Ns

)p∣∣∣ ≤ C ′|t− s|p/2
for a suitable constant C ′ = C ′(λ̂, θ, σε), again by boundedness of the coefficients and the
Burkholder-Davis-Gundy inequality. Choosing p > 2 and α such that αp < p/2 − 1 we
find

P

(∫ T

0

∫ T

0

W1

(
SNt , S

N
s

)p
|t− s|1+αp

dtds > R

)
≤ C ′

R
.

For any e > 0 we can now choose M and R so that QN
(
K{
M,R

)
< e, concluding the

proof.

An alternative approach to prove theorem 4.1 could be based on tightness results from
[18, Chapters I and II], using the boundedness of the coefficients and the interchangeability
of the V i,N . However, the above direct proof can be applied to more general situations as
well.

5. The limit PDE: existence and convergence.

5.1. Density Estimates. Recall that the empirical measure

SNt =
1

N

N∑
i=1

δ(ξi,V i,Nt (mod 2))

satisfies〈
SNt , φ

〉
=
〈
SN0 , φ

〉
+

∫ t

0

〈
SNr , λ2∂vφ

〉
dr

+

∫ t

0

〈
SNr ,

〈
SNr , g2 (x, v, ·, ·)

〉
∂vφ

〉
dr +

∫ t

0

〈
SNr ,

(σε2)
2

2
∂2
vφ

〉
dr +MN,φ

t

where

MN,φ
t =

1

N

N∑
i=1

∫ t

0

σε2
(
V i,Nr

)
∂vφ

(
Xi

0, V
i,N
r

)
dBir.
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We consider a smooth probability density γ : T → R defined as follows:

γ(v) =

{
c exp

(
− 1

1
4−(dT (v,0))2

)
· ( 1

4 − dT (v, 0)2)2, if dT (v, 0) < 1/2,

0 otherwise.

and introduce a correspondent family of mollifiers γN (v) = α−1
N γ

(
α−1
N v

)
on T . Note

that there exists C > 0 such that

|γ′ (w)w| ≤ Cγ (w) , w ∈ T .

Concerning the positive scaling factor, we assume that αN → 0 as N →∞ and

α−3
N ≤ N.

Consider the empirical density

uNt (v) : =
1

N

∑
i

∫
D×T

γN (v − v′) δ(Xi0,V i,Nt (mod 2)) ( dx′, dv′)

=
1

N

∑
i

γN

(
v − V i,Nt (mod 2)

)
=

∫
D×T

γN (v − v′)SNt ( dx′, dv′)

(where sums and differences are understood onT , i.e. for v1, v2 ∈ T , v1±v2 = (v1±Rv2)
(mod 2) ∈ T ). It satisfies

duNt (v) = −〈SNt , λ2∂vγN (v − ·)〉dt
−
〈
SNt , 〈SNt , g2(x′, v′, ·, ·)〉∂vγN (v − v′)

〉
dt

+ 〈SNt ,
(σε2)2

2
∂2
vγN (v − ·)〉dt+ dM

N

t (v)

where

M
N

t (v) = − 1

N

N∑
i=1

∫ t

0

∂vγN
(
v − V i,Nr

)
σε2
(
V i,Nr

)
dBir

and according to (7) we write 〈
SNt ,

(〈
SNt , g2 (x′, v′, ·, ·)

〉)
∂vγN (v − v′)

〉
=

∫
D×T

∂vγN (v − v′)
∫
D×T

g2(x′, v′, y, w)SNt ( dy, dw)SNt ( dx′, dv′).

In the next lemma we will use that σε2 (v) is differentiable with bounded derivative and

0 < ε ≤ (σε2 (v))
2

2
≤ C.

Lemma 5.1. There exists a constant Cε > 0 such that

sup
t∈[0,T ]

E

∫
T

∣∣uNt (v)
∣∣2 dv + E

∫ T

0

∫
T

∣∣∂vuNt (v)
∣∣2 dv dt ≤ Cε

for every N ∈ N .
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Proof. Step 1 (energy identity). One has by Itô’s formula, integrating by parts,

1

2
d

∫
T

∣∣uNt (v)
∣∣2 dv =

∫
T

(σε2 (v))
2

2
uNt (v) ∂2

vu
N
t (v) dv dt

+

∫
T

〈
SNt ,

(
λ2 +

〈
SNt , g2 (x′, v′, ·, ·)

〉)
γN (v − ·)

〉
∂vu

N
t (v) dv dt

−
∫
T

RNt (v) ∂vu
N
t (v) dv dt+

∫
T

uNt (v) dM
N

t (v) dv +
1

2

∫
T

d
[
M

N
(v)
]
t

dv

where

RNt (v) = ∂v

∫
D×T

γN (v − v′)

[
− (σε2 (v))

2

2
+

(σε2 (v′))
2

2

]
SNt ( dx′, dv′) ,

and we write
∫
T
uNt (v) dM

N

t (v) dv for∫
T

uNt (v) dM
N

t (v) dv =
1

N

N∑
i=1

(∫
T

∂vγN

(
v − V i,Nt

)
uNt (v) dv

)
σε2

(
V i,Nt

)
dBit

and
∫
T

d
[
M

N
(v)
]
t

dv for

∫
T

d
[
M

N
(v)
]
t

dv =
1

N2

N∑
i=1

∫
T

∣∣∣∂vγN (v − V i,Nt )∣∣∣2 dv
∣∣∣σε2 (V i,Nt )∣∣∣2 dt.

Step 2 (deterministic terms). Using the assumptions on σε2 (v), one has integrating by parts∫
T

(σε2 (v))
2

2
uNt (v) ∂2

vu
N
t (v) dv ≤ − ε

2

∫
T

∣∣∂vuNt (v)
∣∣2 dv + Cε

∫
T

∣∣uNt (v)
∣∣2 dv

Since (due to the boundedness of λ2 and g2)∣∣λ2 +
〈
SNt , g2 (x, v, ·, ·)

〉∣∣ ≤ C
one has ∣∣〈SNt , (λ2 +

〈
SNt , g2 (x′, v′, ·, ·)

〉)
γN (v − ·)

〉∣∣ ≤ CuNt (v) .

Therefore, P-a.s.,∫
T

〈
SNt ,

(
λ2 +

〈
SNt , g2 (x′, v′, ·, ·)

〉)
γN (v − ·)

〉
∂vu

N
t (v) dv

≤ ε

4

∫
T

∣∣∂vuNt (v)
∣∣2 dv + Cε

∫
T

∣∣uNt (v)
∣∣2 dv.

We have got that P-a.s.

1

2
d

∫
T

∣∣uNt (v)
∣∣2 dv +

ε

4

∫
T

∣∣∂vuNt (v)
∣∣2 dv dt ≤ Cε

∫
T

∣∣uNt (v)
∣∣2 dv

−
∫
T

RNt (v) ∂vu
N
t (v) dv dt+

∫
T

uNt (v) dM
N

t (v) dv +
1

2

∫
T

d
[
M

N
(v)
]
t

dv.
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Finally, using also the assumption |γ′ (w)w| ≤ Cγ (w),∣∣RNt (v)
∣∣ ≤ C ∫

D×T
[|∂vγN (v − v′)| |v − v′|+ γN (v − v′)]SNt ( dx′, dv′)

= C

∫
D×T

[
α−1
N

∣∣γ′ (α−1
N (v − v′)

)∣∣α−1
N |v − v

′|+ γN (v − v′)
]
SNt ( dx′, dv′)

≤ C ′
∫
D×T

α−1
N γ

(
α−1
N (v − v′)

)
SNt ( dx′, dv′)

= C ′uNt (v)

which yields∣∣∣∣∫
T

RNt (v) ∂vu
N
t (v) dv

∣∣∣∣ ≤ ε

8

∫
T

∣∣∂vuNt (v)
∣∣2 dv + Cε

∫
T

∣∣uNt (v)
∣∣2 dv.

This implies

1

2
d

∫
T

∣∣uNt (v)
∣∣2 dv +

ε

8

∫
T

∣∣∂vuNt (v)
∣∣2 dv dt

≤ Cε
∫
T

∣∣uNt (v)
∣∣2 dv +

∫
T

uNt (v) dM
N

t (v) dv +
1

2

∫
T

d
[
M

N
(v)
]
t

dv ,

P almost surely.
Step 3 (martingale terms and conclusion). It remain to handle the sum∫

T

uNt (v) dM
N

t (v) dv +
1

2
d
[
M

N
(v)
]
t
.

The term
∫
T
uNt (v) dM

N

t (v) dv is a martingale, hence it has mean zero. Indeed, for
every N and i = 1, ..., N ,

E

∫ T

0

∣∣∣∣(∫
T

∂vγN

(
v − V i,Nt

)
uNt (v) dv

)
σε2

(
V i,Nt

)∣∣∣∣2 dt

≤ CE
∫ T

0

∣∣∣∣∫
T

∂vγN

(
v − V i,Nt

)
uNt (v) dv

∣∣∣∣2 dt

≤ CNE
∫ T

0

∣∣∣∣∫
T

uNt (v) dv

∣∣∣∣2 dt = CNT

(because
∫
T
uNt (v) dv = 1). As to the corrector, we have∫

T

∣∣∂vγN (v − V i,Nr )∣∣2 dv =

∫
T

|∂vγN (v)|2 dv

= α−2
N α−2

N

∫
T

∣∣γ′ (α−1
N v

)∣∣2 dv = Cα−3
N

where C =
∫
T
|γ′ (v)|2 dv. Hence, P-a.s.,∫

T

[
M

N
(v)
]
t
dv =

1

N2

N∑
i=1

∫ t

0

∫
T

∣∣∂vγN (v − V i,Nr )∣∣2 dv
∣∣σε2 (V i,Nr )∣∣2 dr

≤ C 1

N2

N∑
i=1

∫ t

0

(∫
T

∣∣∂vγN (v − V i,Nr )∣∣2 dv

)
dr = C

α−3
N

N
t ≤ Ct

under the assumption α−3
N ≤ N .

Using the assumption that the law of the initial data ηi has an L2 density, it is not difficult
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to show that the L2 norm of uN0 is bounded uniformly with respect to N . To this purpose
let us recall that we denote by ρ̃ the density of each ηi. Using also standard property of
convolutions we get:

E

∫
T

|uN0 (v)|2 dv =

∫
T

E

∣∣∣ 1

N

∑
i

γN
(
v − ηi

) ∣∣∣2 dv

=
1

N2

1

α2
N

∫
T

∑
i

E
∣∣γ (v − ηi

αN

) ∣∣2 dv =
1

N

1

α2
N

∫
T

dv

∫
T

∣∣∣γ (v − w
αN

) ∣∣∣2ρ̃(w) dw

≤ ‖ρ̃‖L1(T )
1

N

1

α2
N

∫
T

∣∣∣γ ( v

αN

) ∣∣∣2 dv = ‖ρ̃‖L1(T )
1

N

1

αN

∫
T

∣∣∣γ (v′)
∣∣∣2 dv′ ≤ C,

whereC > 0 is independent ofN . We can therefore take expectation and apply Gronwall’s
lemma, thus deducing the claim from the results of the two previous steps.

Lemma 5.2. There exists α > 0 small enough such that

E

∫ T

0

∫ T

0

∥∥uNt − uNs ∥∥2

H−2

|t− s|1+2α dsdt ≤ Cε.

where H−2 = H−2(T ).

Proof. Arguing as in Lemma 5.1, we have, P-a.s., for any 0 ≤ s ≤ t ≤ T , φ ∈ H2(T ),∫
T

[uNt (v)− uNs (v)]φ(v)dv =

∫ t

s

dr

∫
T

(σε2 (v))
2

2
uNr (v) ∂2

vφ(v) dv

+

∫ t

s

dr

∫
T

〈
SNr ,

(
λ2 +

〈
SNr , g2 (x′, v′, ·, ·)

〉)
γN (v − v′)

〉
∂vφ(v) dv

−
∫ t

s

dr

∫
T

RNr (v) ∂vφ(v) dv +

∫
T

[M
N

t (v)−MN

s (v)]φ(v)dv

where RNt (v) and M
N

t (v) are given in Step 1 of the previous lemma. Then (using the
same inequalities proved above in Step 2 of the previous lemma)

∥∥uNt − uNs ∥∥2

H−2 ≤ 3× C (t− s)
∫ t

s

∥∥uNr ∥∥2

L2 dr + C
∥∥∥MN

t −M
N

s

∥∥∥2

H−2
.

It is sufficient (because of the claim of the previous lemma) to prove that

E

∫ T

0

∫ T

0

∥∥∥MN

t −M
N

s

∥∥∥2

H−2

|t− s|1+2α dsdt ≤ Cε.

Recall that

M
N

t (v) = ∂v

(
1

N

N∑
i=1

∫ t

0

γN
(
v − V i,Nr

)
σε2
(
V i,Nr

)
dBir

)
.
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Then

E

[∥∥∥MN

t −M
N

s

∥∥∥2

H−2

]
≤ CE

∥∥∥∥∥ 1

N

N∑
i=1

∫ t

s

γN
(
v − V i,Nr

)
σε2
(
V i,Nr

)
dBir

∥∥∥∥∥
2

L2


=

C

N2

∫
T

E

∣∣∣∣∣
N∑
i=1

∫ t

s

γN
(
v − V i,Nr

)
σε2
(
V i,Nr

)
dBir

∣∣∣∣∣
2
 dv

=
C

N2

∫
T

N∑
i=1

E

[∫ t

s

∣∣γN (v − V i,Nr )
σε2
(
V i,Nr

)∣∣2 dr

]
dv

≤ C

N2

∫
T

N∑
i=1

E

[∫ t

s

∣∣γN (v − V i,Nr )∣∣2 dr] dv

=
C

N2

N∑
i=1

∫ t

s

E

[∫
T

∣∣γN (v − V i,Nr )∣∣2 dv

]
dr

=
C

N2

N∑
i=1

∫ t

s

∫
T

|γN (v)|2 dv dr ≤ C
α−1
N

N
(t− s) ≤ C (t− s)

where we have used the estimate
∫
T
|γN (v)|2 dv ≤ Cα−1

N and the assumption α−3
N ≤ N .

The proof is complete.

Now let Q uN denote the law of the process uN . From the previous two lemmas, we
deduce that the family (Q uN ) is tight in

L2
(
0, T ;L2 (T )

)
due to a generalized version of Aubin-Lions lemma, which claims that the space

L2
(
0, T ;W 1,2 (T )

)
∩Wα,2

(
0, T ;H−2 (T )

)
is relatively compact in L2

(
0, T ;L2 (T )

)
, for α > 0 (cf. [17]).

Remark 3. Introducing the mollifiers γn (v) = α−1
n γ

(
α−1
n v

)
, n ≥ 1, with |γ′ (w)w| ≤

Cγ (w) , w ∈ T , αn → 0 as n→∞, and α−3
n ≤ N, and following the proof of Lemma

5.1, we can obtain that there exists a constant Cε > 0 such that

sup
t∈[0,T ]

E

∫
T

∣∣∣un,Nt (v)
∣∣∣2 dv + E

∫ T

0

∫
T

∣∣∣∂vun,Nt (v)
∣∣∣2 dv dt ≤ Cε, (28)

for every n, N ∈ N , where un,Nt (v) =
∫
D×T γn (v − v′)SNt ( dx′, dv′) .

Now note that given a Borel probability measure ν onT , if there exists c > 0, such that,
for any n ≥ 1,

‖ν ∗ γn‖L2(T ) ≤ c, (29)

then ν ∈ L2(T ) and ‖ν‖L2(T ) ≤ c. Indeed, by (29), for any φ ∈ L2(T ), we have∣∣∣ ∫
T

φ(y)dy

∫
T

γn(y − y′)ν(dy′)
∣∣∣ =

∣∣∣ ∫
T

ν(dy′)

∫
T

φ(y)γn(y − y′)dy
∣∣∣ ≤ c‖φ‖L2(T ).

Passing to the limit as n→∞ and using the Riesz theorem we get the assertion.
Estimate (28) and the previous argument could be used to prove existence of solutions

to (16) in X̃ (see the next section) avoiding the previous Aubin-Lions lemma.
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5.2. Convergence and existence of solutions. Set for notational convenience

X̃ =

{
µ ∈ C : πvµt � LT with

d (πvµt)

dLT

∈ L2(T ), for a.e. t ∈ [0, T ]

}
(30)

where πvµt is the marginal on the v-component of µt:∫
T

f (v) (πvµt) (dv) :=

∫
D×T

f (v)µt (dx, dv) , f ∈ C (T ) .

Lemma 5.3. The space X̃ is a Borel subset of C .

Proof. It is enough to show that

Λ =

{
µ ∈ Pr1 (D ×T ) : πvµ� LT with

d (πvµ)

dLT

∈ L2(T )

}
is a Borel subset of Pr1 (D ×T ) .

We consider the continuous mapping J : Pr1 (D ×T ) → Pr1 (T ) given by J µ =
πvµ, for any µ ∈ Pr1 (D ×T ). If we prove that

Γ =

{
µ ∈ Pr1 (T ) : µ� LT with

dµ

dLT

∈ L2(T )

}
is Borel in Pr1 (T ) then we get that Λ = J−1(Γ) is Borel and this finishes the proof. Let
us check the assertion on Γ.

Let µ ∈ Pr1 (T ) . Using the Riesz theorem and the fact that C(T ) is dense in L2(T ),
we know that µ ∈ Γ if and only if there exists c > 0 such that∣∣ ∫

T

f(y)µ(dy)
∣∣ ≤ c‖f‖L2 , for all f ∈ C(T ) (31)

(indeed if (31) holds for µ ∈ Pr1 (T ) then µ can be uniquely extended to a linear functional
on L2(T )). Let us define, for integers N ≥ 1,

ΓN = {µ ∈ Pr1 (T ) : (31) holds with c replaced by N}

It is easy to check that each ΓN is closed in Pr1 (T ). We have Γ =
⋃
N≥1 ΓN and this

shows that Γ is Borel.

For any test function φ ∈ T and any µ0 ∈ Pr(D ×T ) define on C the functional

Φµ
0

φ (µ)

= sup
t∈[0,T ]

∣∣∣∣∣〈µt, φ〉 − 〈µ0, φ
〉
−
∫ t

0

〈µs, b (µs) ∂vφ〉 ds−
∫ t

0

〈
µs,

(σε2)
2

2
∂2
vφ

〉
ds

∣∣∣∣∣ ∧ 1

(32)

where
b (µs) (x, v) = λ2 (v) + 〈µs, g2 (x, v, ·, ·)〉 .

Lemma 5.4. For every φ ∈ T and every µ0 ∈ Pr(D×T ), the bounded Borel measurable
functional Φµ

0

φ : C → R is continuous at every point of X̃ .
Therefore, if

{
QN
}
N∈N and Q are probability measures on C such that QN → Q

weakly and Q
(
X̃
)

= 1, then∫
C

Φµ
0

φ dQN →
∫

C

Φµ
0

φ dQ as N →∞ .
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Proof. Since in the definition of Φµ
0

φ we can consider the supremum over rational numbers

in [0, T ], to prove the measurability of Φµ
0

φ we can fix t ∈ [0, T ] and study separately the
measurability of three functionals:

Φ1(µ) = 〈µt, φ〉 − 〈µ0, φ〉 ,

Φ2(µ) =

∫ t

0

〈µs, b (µs) ∂vφ〉 ds,

Φ3(µ) =

∫ t

0

〈
µs,

(σε2)
2

2
∂2
vφ

〉
ds,

for µ ∈ C . Note that Φ1 and Φ3 are even continuous mappings on C . Concerning the
measurability of Φ2 we first approximate pointwise the functions λ2 and g2 by regular
functions λn2 and gn2 (indeed λ2(·) and g2(x, ·, y, ·) have only simple discontinuities) and
then consider the corresponding functions bn given by

bn (µs) (x, v) = λn2 (v) + 〈µs, gn2 (x, v, ·, ·)〉 . (33)

It is not difficult to prove that for each n the functional Φn2 : C → R,

Φn2 (µ) =

∫ t

0

〈µs, bn (µs) ∂vφ〉 ds

is continuous on C . By the dominated convergence theorem we deduce that Φn2 (µ) →
Φ2(µ) as n→∞, for any µ ∈ C . This shows that also Φ2 is measurable.

Let now µ ∈ X̃ and µn ∈ C be given with µn → µ in C . This implies µnt → µt
in weak sense, hence 〈µnt , φ〉 → 〈µt, φ〉, uniformly in t ∈ [0, T ]. The convergence of〈
µns ,

(σε2)2

2 ∂2
vφ
〉

to
〈
µs,

(σε2)2

2 ∂2
vφ
〉

for every s ∈ [0, T ] is similar and, by Lebesgue domi-

nated convergence theorem, the last integral in the definition of Φµ
0

φ converges, uniformly
in t ∈ [0, T ]. It remains to prove that the first integral converges. Again by Lebesgue
dominated convergence theorem, the problem is reduced to prove that, for a.e. s ∈ [0, T ],

〈µns , b (µns ) ∂vφ〉 → 〈µs, b (µs) ∂vφ〉 .

This is more difficult since λ2 and g2 contain discontinuities. Since µ ∈ X̃ , we know that
πvµs � LT for a.e. s ∈ [0, T ], thus in the sequel we restrict to such values of s.

Let us first explain why

〈µns , λ2∂vφ〉 → 〈µs, λ2∂vφ〉 . (34)

The function (x, v) 7→ λ2 (v) ∂vφ (x, v) is bounded; and it is continuous except on the set

S = D × {0, 1} ⊂ D ×T .

These sets are exceptional for the measure µs:∫
S

µs ( dx, dv) =

∫
D×{v=0}

µs ( dx, dv) +

∫
D×{v=1}

µs ( dx, dv)

=

∫
{v=0}∪{v=1}

(πvµs) ( dv) = 0 .

Now, the following fact is known: if a sequence of probability measures ρn on a Polish
space Y converges weakly to a probability measures ρ and f : Y → R is a bounded
Borel measurable function, continuous on a set Ỹ ⊂ Y with ρ

(
Ỹ
)

= 1, then
∫
Y
fdρn →
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Y
fdρ. The proof is easy using Skorohod representation theorem. We apply this fact with

Y = D ×T , ρn = µns , ρ = µs, Ỹ = Sc, f = λ2∂vφ and deduce (34).
Finally, let us explain why

〈µns , 〈µns , g2 (x, v, ·, ·)〉 ∂vφ〉 − 〈µs, 〈µs, g2 (x, v, ·, ·)〉 ∂vφ〉 → 0. (35)

The previous difference can be rewritten as the sum of two terms:

〈µns , 〈(µns − µs) , g2 (x, v, ·, ·)〉 ∂vφ〉

and
〈(µns − µs) , 〈µs, g2 (x, v, ·, ·)〉 ∂vφ〉 .

The convergence to zero of the second term is similar to (34), because the function

D ×T 3 (x, v) 7→ 〈µs, g2 (x, v, ·, ·)〉 =

∫
D×T

g2 (x, v, x′, v′)µs ( dx′, dv′)

= 1[0,1] (v)

∫
D×T

θ (x, x′)1[1,1+δ] (v′)µs ( dx′, dv′)

is continuous on Sc. To treat the first term in the sum, we first fix τ > 0. By the weak
convergence, we know that (µns ) is tight and so there exists a compact set Kτ ⊂ D such
that

µns ((Kτ ×T )c) < τ, µs((Kτ ×T )c) < τ, n ≥ 1.

We have

|〈µns , 〈(µns − µs) , g2 (x, v, ·, ·)〉 ∂vφ〉| ≤ τ‖∂vφ‖∞‖θ‖∞

+‖∂vφ‖∞
∫
Kτ×T

|〈(µns − µs) , g2 (x, v, ·, ·)〉|µns (dx, dv).

Now, for any (x, v) ∈ Kτ ×T , n ≥ 1,

| 〈(µns − µs), g2 (x, v, ·, ·)〉 | ≤ |gn (x)− g (x)|

where

gn (x) :=

∫
D×T

θ (x, x′)1[1,1+δ] (v′)µns ( dx′, dv′) ,

g (x) :=

∫
D×T

θ (x, x′)1[1,1+δ] (v′)µs ( dx′, dv′) .

To check (35) we have to prove that gn → g uniformly on Kε. We know it converges
pointwise, by the same argument used above for (34), because the function T 3 v′ 7→
1[1,1+δ] (v′) is continuous apart in v′ = 1 and v′ = 1 + δ. Uniform convergence then
follows from the fact that the family {gn} is equi-bounded and equi-uniformly continuous;
the last fact is a consequence of the assumption that θ is uniformly continuous on D ×D.

This completes the proof of the first claim of the lemma. The second claim is a simple
consequence using the convergence criterion recalled above in this proof, applied with
Y = X , Ỹ = X̃ , ρn = Qn, ρ = Q, f = Φµ

0

φ .

Lemma 5.5. Recall that QN are the laws on C of the empirical process SN . If Q is a
weak limit point of any subsequence of

{
QN

}
then

Q
(
X̃
)

= 1.
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Proof. Step 1. We have already proved not only tightness of the family
{
QN

}
in C (see

Section 4) but also tightness of the family of laws of uN in H := L2 ([0, T ]×T ), where
uNt (v) =

∫
D×T γN (v − v′)SNt ( dx′, dv′) (see the end of Section 5.1). Consider the

pair
(
SN , uN

)
with values in C ×H; their laws ρn = L

(
SN , uN

)
form a tight family in

C × H. Given a weak limit point Q of
{
QN

}
, there is thus a subsequence Nk such that

ρNk converges weakly to a probability measure ρ on C ×H, with marginal Q on C .
By the Skorohod embedding theorem there exists a new probability space

(
Ω̂, F̂ , P̂

)
,

C×H-valued random variables
(
ŜNk , ûNk

)
and

(
Ŝ, û

)
, with laws ρNk and ρ respectively,

such that
(
ŜNk , ûNk

)
→
(
Ŝ, û

)
in the strong topology of C ×H, with P̂-probability one.

Notice that the law of Ŝ is Q .
Step 2. Let D be a countable dense family in C (T ). Let L[0,T ] be the Lebesgue

measure on [0, T ]. We claim that, given φ ∈ C (T ),
(
P̂⊗L[0,T ]

)
-almost everywhere,∫

T

φ (v)
(
πvŜt

)
( dv) =

∫
T

φ (v) ût (v) dv. (36)

To prove this claim, let us start from the definition

uNkt (v) :=

∫
D×T

γNk (v − v′)SNkt ( dx′, dv′) , t ∈ [0, T ], v ∈ T . (37)

Note that this implies that

0 = E

∫ T

0

dt

∫
T

∣∣∣uNkt (v)−
∫
D×T

γNk (v − v′)SNkt ( dx′, dv′)
∣∣∣2dv

= Ê

∫ T

0

dt

∫
T

∣∣∣ûNkt (v)−
∫
D×T

γNk (v − v′) ŜNkt ( dx′, dv′)
∣∣∣2dv.

It follows that given Nk, with P̂-probability one,

ûNkt (v) =

∫
D×T

γNk (v − v′) ŜNkt ( dx′, dv′)

as an identity inH. We can also say that
(
P̂⊗L[0,T ]

)
-almost everywhere, for any k ∈ N

the previous identity holds in L2(T ). Therefore given φ ∈ D, we have∫
T

φ (v) ûNkt (v) dv =

∫
D×T

(∫
T

γNk (v − v′)φ (v) dv

)
ŜNkt ( dx′, dv′) .

Up to passing to a subsequence N ′k we can assume that ûN
′
k converges to û in the strong

topology ofL2 (T ), for
(
P̂⊗L[0,T ]

)
-a.e. (ω̂, t) ∈ Ω̂×[0, T ]. Therefore

∫
T
φ (v) û

N ′k
t (v) dv

converges to
∫
T
φ (v) ût (v) dv for

(
P̂⊗L[0,T ]

)
-a.e. (ω̂, t) ∈ Ω̂× [0, T ]. And, for P̂-a.e.

ω̂ ∈ Ω̂, for every t ∈ [0, T ], ŜN
′
k

t converges in the weak topology of probability measures
to Ŝt, so

lim
k→∞

∫
D×T

(∫
T

γN ′k (v − v′)φ (v) dv

)
Ŝ
N ′k
t ( dx′, dv′) =

∫
D×T

φ (v′) Ŝt ( dx′, dv′)

=

∫
T

φ (v)
(
πvŜt

)
( dv)
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where we have used the property

lim
k→∞

∫
T

γN ′k (v − v′)φ (v) dv = φ (v′) , uniformly in v′ ∈ T ,

because φ is continuous and γN are mollifiers on the torus. This proves (36).
Step 3. Since D is countable, property (36) holds true uniformly in φ ∈ D. Hence we

can say that, for
(
P̂⊗L[0,T ]

)
-a.e. (ω̂, t) ∈ Ω̂ × [0, T ], πvŜt (ω̂) � LT with density in

L2 (T ). This implies that for P̂-a.e. ω̂ ∈ Ω̂, we have the property that πvŜt (ω̂) � LT

with density in L2 (T ) for L[0,T ]-a.e. t ∈ [0, T ]. Hence P̂
(
ω̂ ∈ Ω̂ : Ŝ (ω̂) ∈ X̃

)
= 1,

which implies Q
(
X̃
)

= 1 (recall that the law of Ŝ is Q ). The proof is complete.

Let us eventually study the nonlinear Fokker-Planck equation (16), that is

∂tµt + ∂v (µtb (µt)) = ∂2
v

(
(σε2)

2

2
µt

)
,

with initial condition µ0, where b (µt) is given by (17).

Theorem 5.6. Let µ0 = ν × ρ̃0LT with ν ∈ Pr1(D) and ρ̃ ∈ L2(0, 2) (cf. Section 1.1).
Then:

i) the nonlinear Fokker-Planck equation (16), with initial condition µ0, has one and
only one weak measure-valued solution µ ∈ C ; this measure belongs to the space X̃
(see (30));

ii) let QN be the laws on C of the empirical process SN : then QN converges weakly
to δµ. Moreover, SN converges in probability to µ, in the topology of C .

Proof. Let us consider the sequence (γN ) of Section 5.1. Note that the L2 norm of

uN0 (v) :=

∫
D×T

γN (v − v′)µ0( dx′, dv′) =

∫
T

γN (v − v′)(πvµ0)( dv′)

is bounded uniformly in N .
From Section 4 we know that the family

{
QN

}
is tight. Let

{
QNk

}
be a weakly

convergence subsequence, with limit Q . We are going to prove below that Q is supported
by the set of weak measure-valued solutions of equation (16), with initial condition µ0.
This implies existence of at least one such solution. Uniqueness has been proved in Section
3; recalling Lemma 5.5, we then immediately have claim (i). Moreover, we also have
Q = δµ, by the uniqueness of weak measure-valued solutions; therefore, since any weak
limit point of

{
QN

}
is the same measure δµ, it follows that the full sequence

{
QN

}
converges weakly to δµ. Since SN converges in law to a constant, it also converges in
probability (in the topology of C ).

It remains to prove the claim made above that Q is supported by the set of weak
measure-valued solutions of equation (16) with initial condition µ0, i.e., the following set
(cf. (32))

Σ =
{
µ ∈ C : Φµ

0

φ (µ) = 0 for all φ ∈ T
}

is a Borel subset of C and Q (Σ) = 1. Arguing as in Remark 2 it is not difficult to show
that given φ ∈ T there exists a sequence (φn) ⊂ C2

c (D × T ) (i.e. φn is a C2 function
with compact support) such that ‖φn‖∞ +‖∂vφn‖∞ +‖∂2

vvφn‖∞ ≤M (for some M > 0
independent of n) and φn(z) → φ(z), ∂vφn(z) → ∂vφ(z), ∂2

vvφn(z) → ∂2
vvφ(z) as
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n → ∞, for any z = (x, v) ∈ D × T . Hence by the dominated convergence theorem we
have

Σ =
{
µ ∈ C : Φµ

0

φ (µ) = 0 for all φ ∈ C2
c (D ×T )

}
.

Moreover, since there exists a countable set H0 ⊂ C2
c (D × T ) such that for any φ ∈

C2
c (D ×T ) we can find a sequence (φk) ⊂ H0 satisfying

lim
k→∞

(‖φ− φk‖∞ + ‖∂vφk − ∂vφ‖∞ + ‖∂2
vvφk − ∂2

vvφ‖∞) = 0,

we obtain that Σ = {µ ∈ C : Φφ (µ) = 0 for all φ ∈ H0} which is a Borel subset of C. To
finish the proof we need to prove that

Q
(
µ ∈ C : Φµ

0

φ (µ) = 0
)

= 1 ,

for every φ ∈ H0. Since Φµ
0

φ ≥ 0, it is equivalent to prove
∫

C Φµ
0

φ dQ = 0, for every
φ ∈ H0. Due to Lemma 5.4, it is enough to show

lim
N→∞

∫
C

Φµ
0

φ dQN = 0 (38)

for every φ ∈ H0. Using identity (6) we have∫
C

Φµ
0

φ dQN = E

[
sup
t∈[0,T ]

∣∣∣∣∣ 〈SNt , φ〉− 〈µ0, φ
〉
−
∫ t

0

〈
SNs , b

(
SNs
)
∂vφ

〉
ds

−
∫ t

0

〈
SNs ,

(σε2)
2

2
∂2
vφ

〉
ds

∣∣∣∣∣ ∧ 1

]

= E

[
sup
t∈[0,T ]

∣∣∣MN,φ
t

∣∣∣ ∧ 1

]
≤ E

[
sup
t∈[0,T ]

∣∣∣MN,φ
t

∣∣∣2]1/2

where

MN,φ
t =

∫ t

0

1

N

N∑
i=1

σε2
(
V i,Ns

)
∂vφ

(
Xi

0, V
i,N
s

)
dBis.

Therefore, from Doob’s inequality and the boundedness of σε2 and ∂vφ, for some constants
generically denoted by C > 0, we have(∫

C

Φµ
0

φ dQN

)2

≤ C
∫ T

0

1

N2

N∑
i=1

E
[∣∣σε2 (V i,Ns )

∂vφ
(
Xi

0, V
i,N
s

)∣∣2] ds ≤ C

N

which implies (38) and completes the proof.

6. The McKean-Vlasov SDE. Similarly to what is done in Section 2, let B be a stan-
dard real Brownian motion defined on (Ω,F ,P), let η be a T -valued random variable
independent of B with density ρ̃0 ∈ L2(0, 2) and denote by G0

t the augmentation of
σ(Bs, 0 ≤ s ≤ t) ∨ σ(η) with the P-null sets. Let then ξ be a random variable with
values in D and law ν, having finite first moment, independent of G0

t for every t. Finally
denote by Gt the completion of G0

t ∨ σ(ξ).
Let us consider the so-called McKean-Vlasov SDE associated with the system (10)

dVt = λ2(Vt) dt+
∫
D×T g2(ξ, Vt, y, w)µt( dy, dw) dt+ σε2(Vt) dBt

dXt = 0

(X0, V0) = (ξ, η)

µt = L(Xt, Vt) .

(39)
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In analogy with Definition 2.1, we say that a strong solution to equation (39) is a family
of continuous G0

t -adapted processes (V xt , µ
x
t ), x ∈ D, with values in R × Pr1(D × T )

such that the mapping: (x, ω) 7→ (V x· (ω), µx· (ω)) is measurable (D × Ω,B(D) × F) →
(S × C ,B(S) × B(C )) and for ν-almost every x ∈ D the process (V x, µx) satisfies (39)
for ξ = x. If (V x, µx) is a strong solution then (ξ, V ξt , µ

ξ
t = L(ξ, V ξt )) is a well-defined

continuous Gt-adapted process with values inD×R×Pr1(D×T ) which satisfies equations
(39) P-almost surely for any t ∈ [0, T ].

Theorem 6.1. There exist a unique strong solution (V, µ) to equation (39).

Proof. Fix a measure µ̃· ∈ C and set

b(µ̃t)(x, v) := λ2(v) +

∫
R3

∫
R

g2(x, v, y, w)µ̃t( dw, dy) .

By the same arguments as in Section 2 it can be proved that there exist a unique strong
solution (V µ̃,x)x to the SDE{

dV µ̃,xt = b(µ̃t)(x, V
µ̃,x
t ) dt+ σε2(V µ̃,xt ) dBt ,

V µ̃,x0 = η .
(40)

Hence for X0 as in (39) we have that V µ̃ := V µ̃,X0 satisfies{
dV µ̃t = b(µ̃t)(X0, V

µ̃
t ) dt+ σε2(V µ̃t ) dBt ,

V µ̃0 = η .
(41)

Now choose as µ̃ the unique weak solution in C to the nonlinear Fokker-Planck PDE (16)
with initial condition µ̃0 = ν × ρ̃0LT ; given the associated process V µ̃ as above, denote
by µt the law of the vector (ξ, V µ̃t ). Then µ is a solution in C to the linear PDE{

∂
∂tµt = 1

2
∂2

∂v2

(
(σε2)

2
µt

)
− ∂

∂v

(
µtb(µ̃t)

)
µ0 = µ̃0 .

Since there is uniqueness of measure-valued solution to the latter (the proof being a simpli-
fied version of that of uniqueness in the nonlinear case; see Theorem 3.2), and clearly also
µ̃ is a solution, we necessarily have µ̃ = µ and (V, µ) is a strong solution to (39).

Let now (V , µ̄) be another solution. Then µ̄x solves the Fokker-Planck equation (16)
with initial condition δx × ρ̃0LT , for ν-almost every x ∈ D, and therefore µ̄x = µx.
Finally V xt = V

x

t a.s. for every t and ν-almost every x ∈ D, since they both satisfy a
SDE like (41) with µ̃ = µx for which strong uniqueness holds. Hence (V, µ) is the unique
solution to (39).

Appendix A. Appendix: Extension of some results. We state here some further results
that are easy generalizations of what we presented so far; we will comment on the proofs
when needed.

Notice that in Section 2 neither the particular form of the coefficients nor the fact that
they are 2-periodic plays any role. Since the cited results we built our proof on apply
to multidimensional SDE with bounded and measurable drift, we immediately obtain the
following theorem, with proof identical to that of Theorem 2.2. Here, similarly to what
done previously, for k, l,m, n ∈ N we consider a m-dimensional Brownian motions W
and independent random variables Ξ =

(
Ξj
)
j=1,...,n

and Ψ =
(
Ψj
)
j=1,...,n

(independent

from W as well) with values in En ⊆
(
Rk
)n

and
(
Rl
)n

, respectively (E is an open subset
ofRk), all defined on the common probability space (Ω,F ,P) and with finite first moment.
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We assume that the Ξj’s are identically distributed with law ν and the Ψj’s are identically
distributed with absolutely continuous law ρ0LRl , with ρ0 ∈ L2(Rl). We define the σ-
algebra E = σ(Ξ), the filtration (A0

t )t as the augmentation of σ(Ws, 0 ≤ s ≤ t) ∨ σ(Φ)
with the P-null sets and the filtration (At)t as the completion of A0

t ∨ E . Finally we fix
T > 0.

Theorem A.1. Let b : [0, T ]×En ×Rl×n ×E ×Rl → Rl×n and σ : [0, T ]×Rl×n →
Rl×n×m be bounded and Borel measurable functions. Assume that σσ>(t, ·) is uniformly
elliptic and that σ(t, ·) is Lipschitz; both properties have to be satisfied uniformly in t.
Then there exists a unique strong solution Y =

(
Y j
)
j=1,...,n

, in the sense of Definition 2.1
and Theorem 2.2, to the SDE{

dYt =
〈
b (t,Ξ,Yt, ·, ·) , S

n

t

〉
dt+ σ(t,Yt) dWt , t ∈ [0, T ] ,

Y0 = Ψ
(42)

where

S
n

t =
1

n

n∑
j=1

δ(Ξj ,Y j) .

Finer refinements are possible: for example one can treat the cases when T =∞ and the
SDE is to be solved on a domain U ⊂ Rl×n, and the assumptions on σ can be weakened
(cf. Remark 1). We refer to [8] for details.

Also when studying our Fokker-Planck PDE the periodicity of the coefficients plays no
particular role, nor does the compactness of the torus T .
We need anyway some more assumptions on the coefficients b(t, x, y, x′, y′), t ∈ [0, T ],
x ∈ En, y ∈ Rt×n, x′ ∈ E, y′ ∈ Rl, and σ(t, y) above, namely:
(E1) b does not depend on t, is bounded and uniformly continuous in x and x′ (uniformly

in y and y′) and the set of discontinuities of the map

(y, y′) 7→ b(x, y, x′, y′)

has Lebesgue measure 0 in Rl×n ×Rl, for any x, x′;
(E2) σ does not depend on t and belongs to C1

b (Rl×n;Rl×n×m).
One can repeat the arguments of Sections 3, 4, 5 with minor modifications, working in the
space Pr1(E × Rl) with the 1-Wasserstein metric, using the Euclidean norm in place of
the metric dD×T and choosing all the test functions accordingly. If we solve equation (42)
above for Y and consider the empirical measure S

n
, we can define the empirical density

ūn as
ūnt (y) =

∫
E×Rl

γ̄n(y − y′)Snt ( dx′, dy′)

where (γ̄n) is a family of compactly supported mollifiers in Rl.
We say that f ∈ L2

loc(Rl) if f ∈ L2(K) for every compact set K ⊂ Rl. Consider a strictly
increasing sequence (Pj)j∈N of compact sets in Rl such that Rl = ∪jPj ; then

d(f, g) =
∑
j≥1

1

2j
‖f − g‖L2(Pj)

1 + ‖f − g‖L2(Pj)

is a metric on L2
loc(Rl). Lemmata 5.1 and 5.2 apply to ūn’s as well thanks to assumption

(E2), and imply tightness of their laws in the space L2
(
0, T ;L2

loc

(
Rl
))

due to a general-
ized version of Aubin-Lions lemma, which claims that the space

L2
(
0, T ;W 1,2

(
Rl
))
∩Wα,2

(
0, T ;H−2

(
Rl
))
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is relatively compact in L2
(
0, T ;L2

loc

(
Rl
))

.
Let C := C

(
[0, T ]; Pr1

(
E ×Rl

))
. The space X̃ of Subsection 5.2 has to be consequently

substituted with
�
X =

{
µ ∈ C : πvµt � LRl with

d (πvµt)

dL l
R

∈ L2(Rl), for a.e. t ∈ [0, T ]
}
.

To show that
�
X is Borel it is enough to repeat the argument in the proof of Lemma 5.3

using the density of Cc(Rl) in L2(Rl). The functionals Φµ
0

φ are now continuous on
�
X ,

because the proof of Lemma 5.4 can be repeated thanks to assumption (E1). To show that

any limit point of the family of laws of the S
n

gives full measure to
�
X one can repeat the

proof of Lemma 5.5, noting that it is enough to check identity (36) for φ ∈ Cb(Rl).
Now we can repeat verbatim the arguments in the proof of Theorem 5.6 obtaining:

Theorem A.2. Let ζ0 = ν × ρ0LRl . Then:
i) the nonlinear Fokker-Planck equation

∂tζt + divy (ζt〈b, ζt〉) = Tr
[
D2
y

(
σσT

2
ζt

)]
(43)

with initial condition ζ0, has one and only one weak measure-valued solution ζ; this

measure belongs to the space
�
X .

ii) Let Q n be the laws on C of the empirical process Sn; then Q n converges weakly to
δζ . Further Sn converges in probability to ζ, in the topology of C.

The extension fo the well-posedness result for the McKean-Vlasov equation given in Sec-
tion 6 is then straightforward. For related results on strong well-posedness for McKean-
Vlasov equations (without dependence on stochastic parameters) see [13] and references
therein.
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