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ABSTRACT. Starting from a microscopic model for a system of neurons evolving in time
which individually follow a stochastic integrate-and-fire type model, we study a mean-
field limit of the system. Our model is described by a system of SDEs with discontinuous
coefficients for the action potential of each neuron and takes into account the (random)
spatial configuration of neurons allowing the interaction to depend on it. In the limit as the
number of particles tends to infinity, we obtain a nonlinear Fokker-Planck type PDE in two
variables, with derivatives only with respect to one variable and discontinuous coefficients.
We also study strong well-posedness of the system of SDEs and prove the existence and
uniqueness of a weak measure-valued solution to the PDE, obtained as the limit of the laws
of the empirical measures for the system of particles.

1. Introduction. We propose a model for the action potential of N neurons, with positions
fixed in time, that follow integrate-and-fire type dynamics subject to noise and interact with
each other through their spikes. The interaction we consider depends also on the positions
of the neurons and is of mean-field type. Therefore, in the limit as NV tends to infinity each
neuron interacts with infinitely many other neurons.

The presence of noise in the neuronal dynamics is experimentally confirmed and has been
considered by various authors (see the monographs [9], [19]). Integrate-and-fire (IF) mod-
els describe a simplified dynamics in which such effect can be studied in detail. Consid-
ering large networks of interacting neurons, each one having a membrane potential that
evolves following a IF dynamic, leads to modeling the mean-firing rate of the network as
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the solution to a nonlinear partial differential equation that, at least for mean-field type in-
teractions, is of Fokker-Planck type.

Fokker-Planck PDEs for neural networks have been studied recently in [14], [7], [1], [2],
[4], based on an IF model for the potential of each neuron given in [12]. As pointed out
in [4], not much attention is paid in the literature to how the Fokker-Planck PDE is ob-
tained; in particular one expects that the empirical measures of a network with /N neurons
converge as N — oo to the solution of the PDE. This has been rigorously shown only in
[3], proving convergence to a McKean-Vlasov stochastic differential equation, and in [5],
where the hydrodynamic limit is considered.

The Fokker-Planck PDE obtained in the cited works exhibits blow-up in finite time, thus
there is no global well-posedness, for certain ranges of parameters, due to the interaction
term.

The model we propose here is simpler but it incorporates two additional aspects: a refrac-
tory period after the spike and a localized version of the interaction term, that is, an explicit
dependence of the interaction on the positions of the neurons. The refractory period ac-
counts for the fact that after emitting a spike, each neuron is inhibited from interaction.
The dependence on a space variable allows to precisely prescribe the interation between
different parts of the network; it can also describe the subdivision of the network in sub-
populations, whose interaction with each other is of particular interest in neuroscience (see
e.g. [11], [16]). This leads to a description of finite speed signal propagation along the
network.

More precisely, our mean-field interaction term has two main features: first, it depends
both on the positions and on the voltage of the neurons, unlike many models available in
the literature; second, it contains indicator functions of suitable intervals in R, thus requir-
ing us to study a system of SDEs and a Fokker-Planck type PDE with irregular coefficients
and dependence on the positions of the neurons that we treat as stochastic parameters.

We allow for great generality in the choice of the law of the positions of the neurons, only
requiring finite first moment. Hence one can prescribe the geometry of the neural network
choosing the law accordingly.

We study the limit behaviour of the empirical measures of the network and prove that the
limit measure-valued function is the unique weak solution to a nonlinear PDE of Fokker-
Planck type and that it exists up to any fixed time 7, thus not exhibiting blow-up. From the
technical point of view, to study the limit of the empirical measures we will also use some
ideas of [15].

Our model includes discontinuous coefficients, and is therefore a first step in the study of
stochastic interacting particle systems with irregular coefficients. Some of the results we
obtain can be immediately generalized to the case of SDEs with measurable and bounded
coefficients, but we are able to study the limit PDE only when the coefficients are discon-
tinuous on a set with 0 Lebesgue measure (see, in particular, Lemma 5.4). Therefore we
stick in the main part of the paper to the particular coefficients coming from the model, and
mention some possible generalizations in Appendix.

The potential V' of each neuron is modeled, as a function of time, with a stochastic
differential equation whose solution is projected on a torus given by the interval [0, 2] with
the identification 0 = 2. This choice allows to model the cycle of spikes of each neuron
as we describe below. It is important to notice that, similarly to what is done in most IF
models, we do not give a precise description of the spike phenomenon, but we model only
the charging phase from the resting potential vg = 0 to the firing threshold vy = 1 and
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the refractory period after the spike; moreover we assume that there are no external input
currents.

Consider a single cycle, thatis 0 < V < 2. As0 < V < 1 the neuron charges, subject to
spikes by nearby neurons (i.e., to interaction), to randomness and to the effect of discharge
with constant rate (that corresponds to the fact that if no spikes happen in the connected
neurons then some charge is lost as time passes); when V' reaches the threshold value 1
the neuron fires and emits a spike into the network. On a real neuron this would have two
effects: the potential would rapidly decrease below 0 and then be restored to 0, and the
neuron would be at rest, inhibited from interacting and spiking for a small amount of time
(the refractory period). We model this effect “switching off” the interaction term when
V > 1 and letting V' evolve as dV = dt until it reaches the value 2, where it is restored
to O (through the equivalence relation that defines the torus) and the charging cycle begins
again. Therefore the values of V' between 1 and 2 do not correspond to a real life situation
but are only a tool we resort to in order to have a convenient mathematical description of
the phenomenon.

To consider the interaction between N neurons we deal with three factors (see also
equation (2) below). Indeed if we consider the voltage V*" and position X of the i-th
neuron, following the description above, a factor #(X*, X7) accounts for the neuron being
connected to some of the other neurons with positions (X7);; a factor 1o 1)(V"*) is due to
the fact that the neuron feels the interaction only if it is in the charging phase; finally a factor
11146 (V'7) is due to the fact that the interaction considers contributions to the charging
process only from neurons that have just had their spike (§ € (0,1)). The choice of the
values 0, 1 and 2 is completely arbitrary, and is just used for our mathematical description;
we also do not specify explicitly the form of some of the functions involved, since we only
need to make assumptions on their regularity.

A possible more accurate model of the inhibition phase could require that also the noise
term be switched off during the refractory period, that is, in our setting, as V' becomes
larger than 1. We are forced to include a small noise also in the inhibition phase, for math-
ematical reasons (i.e., we need e below to be strictly positive, see in particular Theorems
2.2 and 3.2 and Lemma 5.1). The effect of oscillations due to the noise at the transition
between the active phase and the inhibition phase appears to be negligible on macroscopic
scales, thanks to the drift (see for example figure 1b). On the other hand, the analysis of a
model in which noise contributes only to the charging phase is mathematically extremely
interesting, and we will face it in a future work.

Now we will introduce precisely the equations describing the model and will give an
account of our results and of the following sections. We also include some figures obtained
simulating our model for a finite number of interacting neurons, showing that, even if
simple, the model we propose gives a realistic description of single neurons and networks.

1.1. The model. For a Borel set A in an euclidean space, we will denote by .Z4 the
Lebesgue measure restricted to A.

Let (Q,F,P) be a probability space, let D be an open connected domain in R? and
[0,7] C R atime interval. The microscopic model is as follows: for each N € IN consider
N neurons, each identified by

i. its position X} = ¢, where ¢, i € IN are i.i.d. random variables with finite first
moment and such that Vi P (¢ € D) = 1. We denote by v the law of each £°. Since
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FIGURE 1. Simulation of the system (2) for 3 neurons with no spatial interaction.

the neurons do not move, their position is modeled by the system of trivial equations
dX{ =0, Xij=¢; (1)
ii. its action potential given by V;"" (mod 2) € [0,2), where V;"" € R is the strong

solution to

aviN = A (Vf’N (mod 2)) dt
1 & o ) ,
— ;9 (66) T ava (VP (mod 2)) Ty (VY (mod 2)) dt

+o (VN (mod 2)) dBf, ()

with initial condition V¥ = 7’ € [0,2). We assume that all random variables 7’ are
i.i.d with law 5o 2) and po € L?(0,2). Moreover, we assume that {¢*, ..., £V, ', .n™}
are independent for any NV € IN.

The functions appearing above are given by
A(v) = _5‘1)]1[0,1] (v) + 1(1,9)(v), with A>0 ;

6(z,y) is a bounded uniformly continuous function on D x D ;

o¢(v) is a C} ([0, 2])-function such that ¢ > v/2¢ > 0
and o¢(v) = V2¢ on [1,2], 0¢(2) = 0¢(0) = V/2¢,
do® do®
0) =
dz ) dz
For each 7 € IN the processes (Bz) are independent real-valued Brownian motions,
independent of (fi) and (nz) ,and ¢ is a fixed real number in (0, 1).

One could use as A any bounded function on [0, 2) that has a jump discontinuity in v = 1
and is continuous elsewhere; all the results herein apply in this case with no modifications

(2) =0, with e fixed.
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in the arguments, therefore we stick to the simple case given just above.

We will show that for each IV the system of equations (2) has a unique solution (Vi’N )
with V&¥ having continuous trajectories in R. This forces the trajectories of V"V (mod 2)
to have jump discontinuities at every ¢ such that Vti’N € 27.. However continuity is easily
restored seeing V" (mod 2) as a process with values on the torus T := R/27Z (where
27, is seen as a subgroup of translations on R). This corresponds to considering the inter-
val [0, 2] with the identification 0 = 2. Moreover T is homeomorphic to 1/=S! C R2, the
circle with radius 1/x.

On T we consider the metric

dr (v1,v2) = min {(vy —v2) (mod 2),(vy —v1) (mod 2)} 3)

where on the right-had side v, and vy are seen as elements in [0,2) C R; this corresponds
to the shortest-path (or geodesic) metric, which is the arc-length on S*. This metric induces
the quotient topology on T'.

We will always consider the Euclidean metric on D and endow D x T with the product
metric, denoted by dpx -

The choice to represent solutions on the torus is natural since the coefficients we introduced
above are clearly 2-periodic. To stress periodicity and also to lighten notation for v € R
and z,y € D we define the functions

A2(v) :=A(v  (mod 2)),

g2(z,v,y,w) 1= 9(95731)]1[1,1+6] (w (mod 2))]1[0,1] (U (mod 2)) )
o5(v) :=0(v (mod 2))

so that equation (2) takes the more readable form
. ) 1 X o o ) )
VN =g (Vi) dt+ 3 0o (€N, VY ) at o5 (V) 4Bl @)
j=1

Since T is homeomorphic to /=S L < R2, one can define the Lebesgue measure on T as

i=1,...,

N

the push-forward of the Lebesgue measure on [0, 2) through the map ¢ — (cos(rt), sin(mt));

since T is endowed with the quotient topology, any measure on the Borel sets of T' can
be obtained in this way. Therefore we can interpret a Borel measure on D x T as a Borel
measure on D X [0, 2), and we will do so henceforth. Notice that any Borel measure on T
defines a Borel measure on the whole R by 2-periodic replication; we will not distinguish
between the two in the sequel.

We will show that the solution to (4) has a density which is 2-periodic, thanks to the form
of the coefficients; hence this density can be identified with a Borel measure on D x T'.

Let S} denote the empirical measure

N
1
St N Z (&,vPN  (mod 2)) — -N Z (€,vPN  (mod 2)) o)

=1

and set forevery z,y € D andv € R
o5(w,v) :=05(v), O(z,y,v):=0(z,y) and Ax(z,v):=Aa(v)

for later use (see for instance (8)). To any function ¢ on D x T which is continuous
corresponds a unique continuous function on D x R that is 2-periodic with respect to its
second variable, given by (z,v) — ¢(z,v (mod 2)); in the sequel we will identify these
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FIGURE 2. Solution of system (2) for 10 neurons with strong interaction uniform in space. A spike from one
neuron propagates to all other neurons in the network

two functions and denote by ¢ also its 2-periodic representation on D x R. With this
convention, for any smooth and compactly supported function ¢ on D x T we have

1Y ‘
(S, ¢) = d S o (X&W,N)
i=1
RS ;i ; 1 & o o
— 0 () [0 () # 3 S (6 3 | a
i=1 j=1

L1
N

(3

. 2
N N € V7,,N
i i i i, 1 72\t i /i
oy (Vi) oo (X0, Vi) aBi+ Y <2)a§¢> (x5 v7) at
=1 i=1
€\2
= (SN, X20,0) dt + (SN, (SN ga(z,0,-,-))0y¢) At + (SN, (05) 92¢) dt + dMN?
(6)

where we use the notation
<StNa <StNu 92(x7 v, -, )>8v¢>
— [ ssidn ) [ ooy w)s) (dy dw) @)
DXT DXT
and

t N

1 , oo .

MY = / =Y o5 (Vi) a0 (X7, Vi) dBL

t 0 N Z:ZI 2( s ) ¢( s ) s

2

is a martingale such that IE [ sup, ‘MtN ’¢) ] — 0as N — oo (due to the stochastic integrals
being uncorrelated).

If we suppose that the sequence of random measures S (dx, dv) converges in probability
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FIGURE 3. A network made of two subnetworks with localized strong interaction. Each blue line corresponds to
the presence of interaction; only one neuron of the first subnetwork interacts with a single neuron of the second one.
The vertical axis represents time; the network is drawn on the ¢ = 0 plane and to each spike of a neuron corresponds
a sphere above it, with the same color as the neuron. Near time ¢ = 1 many neurons in the first network spike and
the signal is propagated to the second network, while at time ¢ = 2 the signal does not propagate to the second
network.

(in a suitable space) to a probability measure p;(x,v) dz dv on D x T, then, heuristically,
a passage to the limit in [V suggests that p; solves weakly the partial differential equation
of Fokker-Planck type

2
D ) = 57 (09 1) (w0) — o (hape) (a,0)

0
~ 30 (pt/gz(-,-,y,w)pt(va) dydw) (z,v). (®)

In the sequel we will prove rigorously a similar assertion involving measures j; instead of
densities p;.

1.2. Main results. The main aim of the paper is to show that the empirical measure actu-
ally converges in a weak sense to a limiting probability measure p;( dz, dv) such that the
marginal with respect to v has a L2-density and which is the unique solution to the above
PDE (8). This is the content of Theorem 5.6.

The paper is organized as follows. In Section 2 we will prove strong well-posedness for the
system of SDEs (2); a modification of the standard theory for finite-dimensional SDEs with
bounded and measurable drift is needed here to deal with the dependence of the equations
on the random variables X{. In Section 3 we define a weak measure-valued solution and
show that the PDE (8) has at most one such solution.

To show existence of a solution to the PDE we first prove that the laws Q V' of the empirical
measures of (X%, V5N (mod 2)) (see (5)) are tight as probability measures on the space
of continuous measure-valued functions of time (Section 4). Then we prove that any limit
point Q of Q™ gives full measure to the set of functions with values that are continuous
measures with marginal with respect to v having a L?-density, that Q is supported by the
set of weak measure-valued solutions to the Fokker-Planck PDE and that actually all the



8 FRANCO FLANDOLI AND ENRICO PRIOLA AND GIOVANNI ZANCO

sequence Qv converges to the same limit. This provides existence of a solution and is
discussed in Section 5.

Section 6 briefly shows that well-posedness of the Fokker-Planck PDE implies existence
of a unique strong solution to the McKean-Vlasov SDE associated with the particle sys-
tem. We conclude with an appendix giving some immediate generalizations of our results
together with some indications on how the proofs have to be adapted to this more general
setting.

2. The system of particles. Consider independent Brownian motions B?, i € IN and as-
sume that the random variables 7’ introduced in the previous section are i.i.d. and indepen-
dent from all B’; denote by (F); the filtration F{ = o (B.,0 < s < t,i € N)Vo(n',i€
IN') augmented with the P-null sets.

We also denote by G the o-algebra o (Si, 1€ ]N) and assume that for any ¢ > 0, G and F}
are independent.

Finally we introduce the filtration (JF;) where F; is the completion of Fp V G.

Let us write our system of equations in vector form: we fix N € IN and introduce, for
the variables v = (v!,...,vM)T € R¥,x = (2!,...,2V) " € DV, the functions
Ao RN —» RY

M) = (MY, (™)

g2 (Dx RV 5 RY
.
QQ(X’V’ y7 w) = (92(321’ vl’y’ w)7 A 792('1:N7UN7 y7 w)) )
75 : RN — RVXN
o5(v) = diag (o5(v"),...,a5(v™)) .

Setting = = (51, e ,fN), U = (171, e ,nN), we want to show existence and uniqueness
of strong solutions to

AV, =25 (Vi) dt+ 4 SN 5o (2, Vi 39,17 ) dt+35 (Vi) dBy
Vo=U.

)

The classical reference for existence of a strong solution for SDEs with bounded measur-
able drift is [20]. However, the results proved therein do not apply directly to equation
(9), because they do not guarantee the measurable dependence of the solution V' on the
stochastic parameter =. Therefore we introduce the following definition.

Let us denote by S the Banach space of all continuous paths from [0, 7] into RY en-
dowed with the supremum norm |-|s. We also denote by v the law of the random variable
= on the Borel o-algebra of DY,

Definition 2.1 (Strong solution). A strong solution to (9) is a family of continuous R -
valued F?-adapted processes (V¥), x € DV, such that
(i) the mapping (x,w) — V*(w) € S is measurable from (DY x Q, B(DY) x F) to
(S,B(S));
(ii) for vy-almost every x € DY, (V¥) satisfies equation (9) in the strong sense when
= = X.
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The above definition is motivated by the fact that if (V¥) is a strong solution, then the
Fi-adapted process (V) satisfies equation (9) P-almost surely for any ¢ € [0, 7). In fact,
for = random variable as above, the process (V) is well-defined with values in R”, has
continuous paths and is F;-adapted.

To prove that (VtE) satisfies (9) it is enough to compute, using conditional expectation with
respect to G and independence,

t

- = 1 Y _ (= ~x7E —j /5,
E \p+/0 A2 (V) dr—&-sz:;/O g2 (5, VS, B, V7)) dr

t
+/ 55 (VY) dB, —VEH
0

t— = 1 N t_ —_ I =
— EE ‘”/o R (V3) dr+szl/0 42 (2, VE, =, VE9) dr
t —_ —_
+/ a5 (V7)) dBr—Vng]
0
b 1Lt N
=EE \I/+/O Ao (V) dr—i—Nj;/O g2 (x, VX, 27, V¥7) dr
t
+/ a5 (V¥) dB, — V¥ ‘|
0 -
=0.

Theorem 2.2. For every N € IN there exists a strong solution to (4). Two strong solutions
on the same probability space associated to the same initial condition V are indistinguish-
able for vx-almost every x € DV,

Proof. Existence. First fix x € DY the SDE

{ AVE =2 (VE) di+ 4 002 (6 Vel V) de o (VE) By (o

X=

admits a unique strong solution V* by the results proved in [20]. We now clarify the
measurability of V* with respect to x. One difficulty is that the proof of the main well-
posedness results in [20] is based on the Yamada-Watanabe theorem and is indeed abstract
and non-contructive. This is why to prove such a measurability property we follow the
approach in [8]. Fix a sequence of partitions {7"}, . of [0,T], where each 7" is given
by points 0 = tff <t} < --- <t =T, set k" (t) = Z;:Ol 7Ly ¢n, ) (t) and consider
Euler’s approximations to equation (10) given by

dvzc,n W (Vx,n(ﬁn (t))) dt + % Zjvzl g2 (X, Vx’"(,{”(t)), xj’ Vx,n,j(nn (t))) dt
+05 (V¥"(s"(1))) dBy,
vyt =0
1D
In the next steps, we will use that, for any n > 1, the processes V* enjoy all the measur-
ability properties we need.
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By Theorem 2.8 in [8] we know that, for any x € DY and § > 0
P([V*" = V¥4 >4§) =0, asn — oo. (12)

Note that, for any p > 2 (using the boundedness of the coefficients of the SDEs) there
exists Cj, > 0 (independent of n and x € D) such that, for any n > 1, E[|[V*" — V*|{]
< Cyp. Writing

E [V — VX3
= B |[V®" = VX§ Lgvsnvajess | + B [V = VXS Lgvsn-vajocs)
and using also the Holder inequality, we easily deduce that, for any x € DY,
E [|V"*" - VX@} 50, asn — oo, (13)

Hence, for any x € DV, VX" converges to V* in the Banach space L2(€2; S) and so the
mapping x — V* € L?(Q;S) is Borel measurable on (DN, B(DN)). By the dominated
convergence theorem we infer

/ E [\V"’"—V"\?s] un(dz) =0, asn — oo, (14)
DN

ie., (V™) converges to V' in Z = L? ((DV,vy); L2(€%; S)). It follows that (V") is a
Cauchy sequence in Z. Using that, for any n, m > 1,

/ E [\Vm - VW@} vn(dz) = / VAR (W) — V™ ()2 vy (da)P( dw)
DN DN xQ

. (1)
we get that (V™) converges to some V" in L? ((DV x Q, vy x P); S). In particular, V'
is measurable on (DY x Q, B(D"V) x F) with values in S.
It follows that, for a.e. x € DY, we have V¥ = V* in S, P-a.s. (we have obtained a
version of the strong solution which has the required measurability properties with respect
to x).

Uniqueness. It follows directly from the celebrated Veretennikov result. O

Remark 1. To show existence and uniqueness of a solution one could weaken the assump-
tions on the regularity of ¢¢, similarly to what is done in the references [20] and [8]. What
is needed above is that pathwise uniqueness holds for equation (10), and there are many
well-known conditions assuring that this happens. However at a later stage in the paper
(Section 5) we will need to assume that o€ is differentiable with bounded derivative. This
does not seem to be a limitation on the model, since there is no reason to assume that the
diffusion coefficient be particularly rough.

3. The limit PDE: uniqueness of measure-valued solutions. Let Pr(D x T) be the
space of Borel probability measures over D x T. Let Pry(D x T') C Pr(D x T') be
the space of probability measures over D x T with finite first moment, endowed with the
1-Wasserstein metric WV;.

Suppose as above that the empirical measures S;¥ converge in a weak sense to a probability
measure j; on D x T'. Without assuming that p; has a density, we expect that it solve the
PDE

o 1/ ., ) )
25 = 592 ((02) Mt) ~ 5 (Aapie) — B (Mt/gz(ww%w)ﬂt(d% dw)) , (16)
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with initial condition v X po.%r , meaning that po(dz, dv) = v(dz)pe(v)Lr (dv). Fix
T > 0; we will denote by % the space

% = C ([0, T);Pry(D x T))

and for a measure ¢ € Pr(D x T) we will adopt the notation

b(¢) (@, v) :=/\2(v)+/D ng(ﬂc,v,y,w)C(dy, dw), € D,veT, (17)

throughout the rest of the paper.
In the sequel we will often use that if g : R — R is 2-periodic and differentiable on R then
its derivative is also 2-periodic (thus g can be identified with a differentiable function on
T). Recall the Banach space B,(D x T') consisting of all Borel and bounded functions
f i DxT — R endowed with the supremum norm || - ||o. We will also consider
Cy(D x T') C By(D x T') consisting of all bounded continuous functions. We introduce
the space of test functions

T CCy(DxT)
defined as the space of all ¢ € Cp(D x T') such that there exist the partial derivatives 0, ¢
and 92 ¢ which both belong to C,(D x T).

Definition 3.1. We say that y € € is a weak measure-valued solution of the nonlinear
Fokker-Planck equation (16), with initial condition ° € Pry (D x T), if

_ t t (0_5)2
(.0) = (1.6) + [ (oobl)e) as+ | <us, Dpo)as, s

for every test function ¢ € 7.

Consider now the total variation distance on Borel probability measures on D x T
drv (v, v?) s =sup {|(v),¢) — (*,9)| : 6 € By(D x T), [|¢]loc < 1}
= sup{’(ul,(b) — <V2,q5>| € CHDXT),||d]loo < 1} .
Remark 2. Let put, 42 € €. One can show that the mapping
t > drv(puy, u?) is Borel and bounded on [0, 7.

To this purpose we first remark that, for given probability measures ' and 2 on Borel sets
of D x T, one has

dry(v', %) = sup {|(}, ¢) — (v, 9)| : 6 € CZ(D X T), [dlloc <1} . (19)
(recall that ¢ € C°(D x T) if ¢ € C°°(D x T') and has compact support). As before
if f: DxT — R we identify the function (z,v) — f(z,v (mod 2)) € R defined on
D x R with f.

To prove (19) let f € Cyp(D x T') with || f|loc < 1, by truncating f and by considering
standard mollifiers (defined on R*) we can find a sequence (f,,) C C2°(D x T') such that
I frlloo < land f,,(2) — f(2),as n — oo, for any z = (z,v) € D x T. By using

(W o) = (% fu)| S sup {[ (01, 0) = (%, 0)] : 6 € O |0l < 1}, m 21,
and the Lebesgue convergence theorem we obtain that the previous formula holds even
when f,, is replaced by f; this leads to (19).

Then we show that there exists a countable set K, C C° such that for any f € C°,
we can find a sequence (fy) C K satisfying

Jim £ = fellso = 0. (20)
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As a simple consequence we get that

dov(v',v?) =sup {|(v',8) — (17, 9)| : ¢ € Ko, ||l o0 < 1} . Q1)

To prove assertion (20) set F,, = {f € C¢° with support(f) C By, } where B,, = {(z,v) €
D xT : dist(z,0D) > 1/n and |z| < n}. Each F,, is separable: indeed F,, C C(B,,)
and so there exists a countable set K,, C F,, which is dense in F},. To finish we define
K= Unlen‘ O]

Theorem 3.2. Let i° € Pri(D x T). There exists at most a unique weak measure-valued
solution to equation (16), with initial condition 1i°, in €.

Proof. Given a function f : T — R we still denote by f its 2-periodic version defined on
R. Let ¢ € T and define the operator
€ 62
Ap(a,) = Ap(e, )w) = ZI T8 )
It is well known that A is the infinitesimal generator of a diffusion semigroup 7} : By (D X
R) — By(D x R):

Ti¢(x,v) = / C(z, " )pe(v,0")dv', x €D, veR, (€ By(DxR), t>0, (22)
R

where the density p;(-,v") € C?(R), for any v’ € R, t > 0 (see, for instance, Chapter 6 in
[6]). Moreover, for t > 0, p;(v,v"), dypi(v,v’) and 8%p,(v,v") are continuous functions
on R?. In addition, for any g € C,(D x R), t € (0,T'), we have

& &
10 Teglleo < —zllalloe: 105Tiglloe < Zlglloe (23)

Finally, if f € CZ(D x R), we have T;f € CZ(D x R), t > 0, and ;T f(z,v) =
T, Af(x,v) = ATy f(z,v),t > 0,2 € D,v € R.

Since in our case o9 is also 2-periodic, it is not difficult to prove that, for ¢ > 0, p;
is 2-periodic in both variables, i.e., p;(v + 2,v" + 2) = pi(v,v’), v,v" € R. It follows
that if v € By(D x R) is 2-periodic in the v-variable then also Tyt is 2-periodic in
the v-variable. Differentiating, we obtain that 9,p;(v,v’) and 92p;(v,v’) are 2-periodic
continuous functions in both variables. Hence, in particular, Ty¢p € T if¢ € T,¢ > 0.
One can prove that i € 4 is a weak solution to (16) if and only if it is a mild solution, i.e.,

if and only if

t
<Mt7 ¢> = <:LL07Tt¢> + / <,LLS, b(,us)ath78¢> d37 ¢ S T>t € [OaT] (24)
0 v

We only show that any weak solution is a mild solution (this is the part we need to prove
our uniqueness claim). We fix ¢ and ¢ > 0. Differentiating with respect to s € (0, ¢) the

mapping

s (Timsdu) = [

DxR

Hs (dxa d’U) / (b(xv U/)pt—s(v7 ’U/)d’U/
R
we get
d
£(<Tt—s¢7 /’LS>) = _<Tt—sA¢7:uS>) + <:U’Sa b(us)alth—5¢> + </J’57Tt_SA¢> :

Integrating with respect to s on [0, ] we find the assertion.
Now we prove the claim of the theorem. Let 1!, 2 € % be two solutions to (16) with the
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same initial condition u°; then for every t (in the sequel we can consider the supremum
over ¢ € Ko, C C2 such that ||¢||cc < 1 as in the previous remark)

/0 [ D)D) — (2. 6(2)0, T, )] ds

drv(pi, ;) = sup
[[#]lco <1

t

< sup / (s, [b(ps) = b(p2)] DTy s0) ds (25)
lollec<11J0
t

+ sup / (s — 12, b(p2)0uTy—s¢) ds| . (26)
ol <1140

The function b(ug)&)Tt_sqb is bounded and measurable and we have the estimate (cf. (23))

C
10050l o, < \/T—SH(IﬁHoo;

we can thus bound the term (26) by

¢
sup / drv(pl, p2) Hb(:u’i)aUTt*5¢Hoo ds
lolloc<1J0

e
< (|18]ls0 + | \]loo d Lu?)ds .
< (0l + Vo) | —drv (ko) ds

Similarly, (25) is bounded by

t t
C
5 1 - 2 1)T—s < oo/ 1a 2 .

lello <1

An application of a generalized version of Gronwall’s lemma (see, for instance, [10, Section
1.2.1]) yields that u} = u? for every t. O

4. The laws of the empirical measures. We denote by Q VV the law of S™V on ¢ (we are
considering each SV as a r.v. with values in €’). As explained in the introduction, we need
to show tightness of the family Q V.

Theorem 4.1. The sequence {Q is tight in €.

N}NGIN

Proof. Fix any (zg,v9) € D x T and consider the set
Ky r= {u €%: sup / dpxT ((wo,vo), (x,v))pt (dz, dv) < M,
DxT

t€[0,T]
T T p
Mdtdng
o Jo [t—s[tter

where we choose « € (0,1) and p > 1 such that ap > 1.
We show that Cp, r is relatively compact in €. Let B, ,)(r) denote the open ball with

radius r and center (g, vo) in D x T'. Then for i € Ky g and t € [0, T

1 M
Mt (B(:Eo,vo)(/r)c) S 7/ dDX']I' ((:EO;’UO)7 (.’I},U))/Lt(dlﬂ7 d’l}) >~ — .
DxT

T T

Therefore for every e > 0 and for every ¢ € [0, T] we can find r = r(e, t) such that
tit (B(zg,e)(r)) >1—€ (27)
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for every 1 € Ky r-
By the Sobolev embedding theorem, if 5 < (ap — 1)/p, we have that, for any Lipschitz
continuous function ¢ on D x T and any ¢, s € [0, T,

b\
[ 6) = (15, )] < Clt = 5| (/ / el dtds)

so that, thanks to Kantorovich-Rubinstein characterization of the 1-Wasserstein distance,
we can take the supremum over Lipschitz functions on D x T with Lipschitz seminorm
bounded by 1 on both sides of the previous inequality, obtaining

T T » »
sup Walpe, pts) <C (/ Walp, prs)” dt ds)
o Jo

t#s |t — sl |t — s|iter

Therefore the collection of measures K g is equicontinuous; this together with (27) im-
plies relative compactness by the Ascoli-Arzela theorem.
To show tightness we now compute

Q" (Khr) =P (¥ € KS1z)

t€[0,T]

SN )p
+P L5 dtds > R
|t — g|[itor '
For the first term we have

IP( sup /D><"II‘ dpxT ((mo,vo),(xw))StN (dz, dv) > M)

te[0,T]

<P ( sup /D . dpxr (o, v0), (z,0)) S} (dz, dv) > M)

1
< ME sup / dpxT ((xo,vg), (z,v))StN (dz, dv)
DxT

t€[0,T]

|

1 .
< ——E | sup d Z0,V9), | X35, V0 mod 2 ))
TN tE[OT; DXT (( 05 V0); ( o Vi ( )
<—4+—S'F ‘Xi— ,V“V)
_M+MNZ tS‘épT(O 0, Ve )
N
1 C i i, N
SM+MN;E ’(XO_IO’VO )‘
t , 1 & o o
+/ sup |Ae (VS“N)+NZgQ (Xé,V;’N,X{),VSJ’N> ds
0 tel0,T) =
t
C
+ sup /02 (V& )dBZ —
te[0,T]

for a certain constant C' = C' (5\, 0,0¢,T), thanks to the Burkholder-Davis-Gundy inequal-
ity, the boundedness of A2, g2 and ¢§ and the fact that v x ppZ7 has finite first moment.
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For the second term

StN,SN) W1 St,SN)]

( [ [ ) < [ [T B g,
Let ¢ be a Lipschitz function on D x T with Lipschitz constant K4 < 1. Then
1 N
N N N 17i,N
’<St ,0) — (S; 7¢>’ < N;dﬂ‘ (Vt % )

so that, by the Kantorovich characterization of the 1-Wasserstein distance and by Holder’s
inequality,

E Wi (57, 8Y)"] < ZE[dT( ’NV’N)].
Recalling (3), (4) and notation (17), we can write

t t
e (Vi Vi) < |V v < [ v | [ os(viN) B

so that ,
E [dT (V?,N’Vvsi,N) ’ < Cl|t _ SlP/Z

for a suitable constant C’ = C’(), 6, o¢), again by boundedness of the coefficients and the
Burkholder-Davis-Gundy inequality. Choosing p > 2 and « such that ap < r/2 — 1 we

find
StN> SN) C/
dtds > R
e =c T
For any e > 0 we can now choose M and R so that Qv (IC?W R) < e, concluding the

proof.

An alternative approach to prove theorem 4.1 could be based on tightness results from
[18, Chapters I and IT], using the boundedness of the coefficients and the interchangeability
of the V. However, the above direct proof can be applied to more general situations as
well.

5. The limit PDE: existence and convergence.

5.1. Density Estimates. Recall that the empirical measure

1
N _ )
Sp = Nzé(gi,vgﬂ (mod 2))
i=1
satisfies

t
(SN, 8) = (SN, 6) + /0 (Y, 20,6) dr

t t €)\2
+/ <S7]~v7 <S7{V792 ({I}7’U7'7')>8v¢> dr +/ <S7{v, (0;) 812)(]5> dr + MtN’¢
0

0

where

N t
MY = — Z/ (Vi) 0ue (X5, Vi) dBL.
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We consider a smooth probability density v : T — R defined as follows:
1 ).(i_ 2\2 s
o= exp (— =gy ) - (3 = dr (0,012, if di (0,0) < 172,
0 otherwise.

and introduce a correspondent family of mollifiers vy (v) = 0@17 (a&lv) on T. Note
that there exists C' > 0 such that

Y (w)w| < Cy(w), weT.
Concerning the positive scaling factor, we assume that ay — 0 as N — oo and
-3
ay” < N.

Consider the empirical density

1

= N Z/DXT IN (U - UI) (5(X87Vtz:,N (mod 2)) (dSL’I, dvl)
1 i

= NZ’YN (U ~ V"N (mod 2))

[ w8 (0 a)
DxT

(where sums and differences are understood on T, i.e. for vy, vy € T, v1 £vy = (v1ERV2)
(mod 2) € T). It satisfies

dul (v) = (SN, Adpyn (v —-)) dt
- <StN7 <S75N792($/7 ’Ula Bl )>8U’YN(/U - U/)> de

€\2
5 P g a4 4T )

where
1L , _ _
N Z/ doyn (v =V N) o (VEN) dBL
i=1"0
and according to (7) we write
<S¥V7 (<S£N7 g2 (xla ’Ul7 ) )>) av’YN (’U - ’U/)>

= / O yn (v — v’)/ g2 (2’ vy, w) SN (dy, dw)SN (da’, dv').
DxT DxT

In the next lemma we will use that o§ (v) is differentiable with bounded derivative and

(50 _

0<e<
e < > <

Lemma 5.1. There exists a constant C, > 0 such that

sup E |ut dv+E/ / ‘8 uly dvdt< C.
te[0,T7]

forevery N € IN.
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Proof. Step 1 (energy identity). One has by It6’s formula, integrating by parts,
1 s (v)?
fd/ |u,{v (v)|2 dv :/ Mui\[ (v) O%ul (v) dvdt
2 Jr T 2

+/ <StNa (A2 + <StN’92 (', v, ))) v (v =) dpul (v) dvdt
T

N N N —N 1 N
,/TRt (v) Opuy (V) dvdt+/T uy' (v) dM, (v) dv+§/T d[M (U)L dv
where
BY@=0,[ w1 [ (03(0)” (% WT SN (aa, dv')
DxXT 2 2

and we write [, uf¥ (v) dMﬁV (v) dv for

N
/11“ ul (v) dﬂiv (v) dv = ;]; (/T OuYN (v — Vti’N> ul (v) dv) os (V;N) dB;

and [, d [MN (U)L dv for

Ad{MN(v)Ldva}Qi/T

Step 2 (deterministic terms). Using the assumptions on o§ (v), one has integrating by parts

OvYN (v — V;N) ’2 dv |05 (VZN) ’2 dt.

¢ 2
/ %ui\r (v) O2ul (v) dv < —%/ |8Uuiv (v)|2 du—l—Cﬁ/ |u,{v (U)‘Q dv
T T T
Since (due to the boundedness of A5 and g2)
|)\2 + <SI£V792 (I7U7'7')>| S c

one has
|<S£N7 (>\2 + <S£N792 (93/,’[)/, ) )>) YN (U - )>| S Cuiv (’U) .

Therefore, IP-a.s.,
/ (SN, (A + (SN g0 (&', ))) vy (0 — ) Byl () dlw
T

< f/ |0y ug” (v)’2 dv+CE/ |ugY (v)|2 dv.
4 Jr T

We have got that P-a.s.

ld/ |uiv (v)|2 dv + E/ |8vuiv (v)|2 dvdt < Ce/ |uiv (v)|2 dv
2 Jr 4 Jr T
N N N ——N 1 N
— | R, (v)Oyuy (v) dodt+ [ w (v)dM, (v)dv+ - [ d [M (v)} dv.
T T 2 Jr t
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Finally, using also the assumption |y (w) w| < Cy (w),

RY @) <C [ {10 (0= o) o =]+ lo = 0] SN (da', dv)
DxT

= C’/ [04;,1 }fy’ (a;,l (v—"1")) | ay v =0 +yn(v - v')] SN (da', dv')
DxT

<’ ay'y (ay' (v =20")) SN (da’, dv')
DxT
= C'uy’ (v)
which yields
/TRI{V (v) Byul ( < / |0, ulN dU+C / ’ut

This implies

7d/ | (v)|* do + < /|8ut (0)[* dvdt
<0/ ul (v du+/T N (v) AV, ()dv%/qrd[ﬁfv(v)}tdv,

P almost surely.
Step 3 (martingale terms and conclusion). It remain to handle the sum

/T ¥ (v) dBTY (v) dv + % a[3r" )]

t

The term [, uf’ (v) dMiV (v) dv is a martingale, hence it has mean zero. Indeed, for
every Nandi=1,..., N,

E/ </ DoV %WN)ut (v )dv) (Vti’N>rdt
SC’E/O :

dit
T
T
< C’N]E/ / ul (v) dv
o IJr

(because [, ulY (v) dv = 1). As to the corrector, we have
[ o @=vi ) v = [ oy @ do
—ozNozN/h aN dv—C’aN
where C' = [1. |7 (v)|* dv. Hence, P-ass.,

—N 1 SN (2 ¢ (tri N2
[ [ <v>]tdvmg/o/qr|am<vw>| do[og (V) dr
c L ([ VN do) dr = 02Nt <
o [ ([ o o= v av) ar = 0%Fhe s

under the assumption 04]7\,3 < N.
Using the assumption that the law of the initial data 1’ has an L? density, it is not difficult

VYN (U - W’N) ul (v) dv

2
dt = CnT
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to show that the L? norm of u{ is bounded uniformly with respect to N. To this purpose
let us recall that we denote by p the density of each n’. Using also standard property of
convolutions we get:

B[ pfwpa- [ E\le;wv (v 1)
[ ek e () e

2
’dv

<liloe o [ () [ do=llne g [ o)
1 -— 5 E— v = 1
,PL(T)NQ?VTWaN pL(’]T) 7 (v
where C' > 0 is independent of V. We can therefore take expectation and apply Gronwall’s
lemma, thus deducing the claim from the results of the two previous steps. O

Lemma 5.2. There exists o > 0 small enough such that

T _ N
// Hut ullgzdsdtgce.

where H=2 = H=2(T).

Proof. Arguing as in Lemma 5.1, we have, P-a.s., forany 0 < s <t < T, ¢ € H*(T),

N —’LLN’U v)av = t?" MUNUQUU
[ @ = @notyao = [ ar [ CLGY @) 5200

+/ dr/ <S7]’V’ (/\2 + <S7]’V392 (l’/,v/,',')>) YN (U*U/)>av¢(’l)) dv
N —N —N
[ [ RY@avwans [ B 0) -1 @lowar

where RY (v) and Mﬁv (v) are given in Step 1 of the previous lemma. Then (using the
same inequalities proved above in Step 2 of the previous lemma)

t
= ¥y a <3 Ot =) [ | ar |71 -7

H-2

It is sufficient (because of the claim of the previous lemma) to prove that

H-
/ / NS dsdt < C..

Recall that

N t
> [l (o vy 27 ).



20 FRANCO FLANDOLI AND ENRICO PRIOLA AND GIOVANNI ZANCO

Then
N N |2 1o~ [ i“wNY e (1/i,N i2
E{HMt ~ Hz]gOE ﬁZ/ v (v = ViN) og (ViN) dB:
i=1v"% 2
c N . . I
:W/TE Z/ v (v =VIN) oS (VEN) dBL| | do
i=1"9%
C Moot , ATy (2
ZW/ZE / |7N(v7VTZ’N)0§(VZ’N)’ dfr] dv
Ti:l L/ s
C Nt , 2
<= E — VN ﬂd
<o [ B[ b o= ve Par o
LT PN (2
zmz/m_/qr by (0 = V)| dv} ar

i=1"%
SO [ [ avar < 0% - < -
_N2i21 i T'va vdr < N s) < s

where we have used the estimate [ |yx (W)* dv < Ca’y' and the assumption ay® < N.
The proof is complete. O

Now let Q ,~ denote the law of the process u¥. From the previous two lemmas, we
deduce that the family (Q ,~ ) is tight in

L?(0,T;L*(T))
due to a generalized version of Aubin-Lions lemma, which claims that the space
L2 (0,T;Wh2 (T)) N W2 (0,T; H~2(T))
is relatively compact in L? (0, T; L* (T)), for a > 0 (cf. [17]).

Remark 3. Introducing the mollifiers v, (v) = oy, 'y (o, 'v), n > 1, with |y (w) w| <
Cy(w), weT,a, — 0asn — oo, and o> < N, and following the proof of Lemma
5.1, we can obtain that there exists a constant C. > 0 such that

9 T
sup E/ uN (v)’ dv + E/ /
tefo,7] JT o Jr

for every n, N € N, where u"™ (v) = [ ¢ 7 (v —0") SY (da’, dv').
Now note that given a Borel probability measure v on T, if there exists ¢ > 0, such that,
foranyn > 1,

2
By N (v)’ dvdt<C.,  (28)

lv*YnllL2(ry <ce, (29)
then v € L*(T ) and ||v||2¢r) < c. Indeed, by (29), for any ¢ € L*(T ), we have

| [ sty [ =i =] [ wta) [ ot —)as] < clollace).

Passing to the limit as n — oo and using the Riesz theorem we get the assertion.
Estimate (28) and the previous argument could be used to prove existence of solutions
to (16) in X (see the next section) avoiding the previous Aubin-Lions lemma.
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5.2. Convergence and existence of solutions. Set for notational convenience

X = {M EC: myuy K Lr with % € L*(T), forae.tc [O,T]} (30)
T

where m, 1, is the marginal on the v-component of y;:
[ 1@ @) = [ feusd), fecm).
T DXT

Lemma 5.3. The space X is a Borel subset of €.

Proof. 1t is enough to show that
d (my
A=<SpePri(DxT): mp < Ly with d(mop) € L*(T)
dZy

is a Borel subset of Pry (D x T').
We consider the continuous mapping J : Pry; (D x T) — Pry (T') given by Jpu =
o b, Tor any o € Pry (D x T). If we prove that

F=<qpePr(T): p< Ly with du € L*(T)
dZr

is Borel in Pry (T') then we get that A = J~1(I") is Borel and this finishes the proof. Let
us check the assertion on I'.

Let y1 € Prq (T). Using the Riesz theorem and the fact that C(T ) is dense in L?(T),
we know that 1 € I' if and only if there exists ¢ > 0 such that

| /T F@)u(dy)| < cllfll = forall f € O(T) 31

(indeed if (31) holds for i« € Pry (T') then p can be uniquely extended to a linear functional
on L?(T)). Let us define, for integers N > 1,

I'v ={pePr;(T) : (31) holds with c replaced by N}

It is easy to check that each I'y is closed in Pry (T'). We have I" = |J~; I'xv and this
shows that T is Borel. - O

For any test function ¢ € 7 and any p° € Pr(D x T') define on % the functional

Al

D2¢ ) ds

= sup
te[0,T]

t NGk
<,u't7 ¢> - <MO7 ¢> - /O <M83 b(lu‘s) 8v¢> ds — A <:U'sa 9

(32)
where
b(ps) (z,v) = Ao (v) + (s, g2 (x,v,-,-)) -
Lemma 5.4. For every ¢ € T and every i° € Pr(D x T), the bounded Borel measurable

Sfunctional @go : € — R is continuous at every point of X.
Therefore, if {QN } Nen and Q are probability measures on € such that QN — Q

weakly and ) ()? ) =1, then

/¢>g°dQN—>/q>g°dQ as N — oo
€ €
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0
Proof. Since in the definition of q)g we can consider the supremum over rational numbers

in [0, T, to prove the measurability of <I>$0 we can fix ¢ € [0, 7] and study separately the
measurability of three functionals:

Dy () = (e, @) — (1o, @) »
(I)Q(U) = /0 <,usa b (,us) au¢> ds,

D3(p) :/O <Msa (Og) 63¢> ds,

for p € €. Note that ; and ®3 are even continuous mappings on %. Concerning the
measurability of ®, we first approximate pointwise the functions A, and g, by regular
functions A% and ¢ (indeed A2(-) and g2(z, -, y, -) have only simple discontinuities) and
then consider the corresponding functions b™ given by

b (:LLS) (LL',U) :Ag (v)+<ll'ts’gg (lE,U,,)> (33)
It is not difficult to prove that for each n the functional @3 : € — R,

B () = / (b0, 0" (1) D) s

is continuous on ¥. By the dominated convergence theorem we deduce that ®%(u) —
Dy (1) as m — oo, for any p € €. This shows that also @5 is measurable.

Let now p € X and u" € € be given with u® — p in €. This implies p} —
in weak sense, hence (1", ) — (p4, @), uniformly in ¢ € [0,7]. The convergence of

<u?, (gé)z 85¢> to <us, (05)2 6‘3¢> for every s € [0, T is similar and, by Lebesgue domi-

0
nated convergence theorem, the last integral in the definition of @g converges, uniformly
int € [0,7]. It remains to prove that the first integral converges. Again by Lebesgue
dominated convergence theorem, the problem is reduced to prove that, for a.e. s € [0, T,

(g, b (1y) Ou) = (s, b (11s) Ou @) -

This is more difficult since A2 and g> contain discontinuities. Since p € X, we know that
Tolts < L forae. s € [0,T], thus in the sequel we restrict to such values of s.
Let us first explain why

<M?7 )\28v¢> - <M87 )\28v¢> . (34)
The function (z,v) — Az (v) 0,¢ (x, v) is bounded; and it is continuous except on the set
S=Dx{0,1}cDxT.

These sets are exceptional for the measure i4:

/ s (da, dv) = / s (da, dv) + / e (de, do)
S Dx{v=0} Dx{v=1}

= / (mops) (dv) =0.
{v=0}U{v=1}

Now, the following fact is known: if a sequence of probability measures p,, on a Polish
space Y converges weakly to a probability measures p and f : ¥ — R is a bounded

Borel measurable function, continuous on a set Y C Y with p (}7) =1, then fY fdpn, —
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fY fdp. The proof is easy using §k0roh0d representation theorem. We apply this fact with
Y=DXT,p,=pl,p=ps Y =9° f = A20,¢ and deduce (34).
Finally, let us explain why

<}L?,<,LL?,92 (QZ’,U,',')> 87)¢> <,le;,<,ng,92( 9 7 7)>8U¢> 4)0 (35)
The previous difference can be rewritten as the sum of two terms:
<M?7 <(;U'? - NS) ) g2 (;C, U,y )> av¢>
and

<(/u‘? - NS) ) <:U’sa g2 (l’, U,y )> 8v¢> .
The convergence to zero of the second term is similar to (34), because the function

DxT > (377’0) = <M8792 (377’(), K )> :/ g2 (CC7’U>:L‘/7’U/) Hs (dx/u dvl)
DxT

=1 1 (v)/ 0 (z,z") L1144 (v") ps (da’, dv')
DxT

is continuous on S€¢. To treat the first term in the sum, we first fix 7 > 0. By the weak
convergence, we know that (u7') is tight and so there exists a compact set K. C D such
that

(K xT)%) <7, ps (K xT)) <7, n>1.
‘We have

(15 (g = ps) 5 92 (2,055 -)) )| < (|00l [10]loc
+H5v¢\|oo/K . (e = ps) s g2 (2, 0,5)| i (de, dw).

Now, for any (z,v) € K, x T, n > 1,

| (s = 1s), 92 (2, 0,)) | < lgn (2) — g (2)]

where

gn () = / 6 (2, 2') Ly (o))l (da’, o),
DxT

g(z) = / 6(z,a') Ly1rg) () s (', o).
DxT

To check (35) we have to prove that g, — ¢ uniformly on K.. We know it converges
pointwise, by the same argument used above for (34), because the function T > v’
11,145 (v') is continuous apart in " = 1 and v" = 1 + 4. Uniform convergence then
follows from the fact that the family {g,, } is equi-bounded and equi-uniformly continuous;
the last fact is a consequence of the assumption that 6 is uniformly continuous on D x D.

This completes the proof of the first claim of the lemma. The second claim is a simple
consequence usmg the convergence cr1ter10n recalled above in this proof, applied with

Y =X,V =X, po=Qup=0Q, f =" O

Lemma 5.5. Recall that Q are the laws on € of the empirical process SN. If Q is a
weak limit point of any subsequence of {Q N } then

Q ()?) —1.
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Proof. Step 1. We have already proved not only tightness of the family {Q N } in € (see
Section 4) but also tightness of the family of laws of u" in H := L? ([0,T] x T ), where
uf (v) = [pyp v (v —0") SN (da’, dv’) (see the end of Section 5.1). Consider the
pair (SN, uN) with values in € x H; their laws p™ = L (SN, uN) form a tight family in
€ x H. Given a weak limit point Q of {Q N }, there is thus a subsequence Ny, such that
pN* converges weakly to a probability measure p on ¢’ x H, with marginal Q on %

By the Skorohod embedding theorem there exists a new probability space (SAL F , ]AP),
€ xH-valued random variables (§ N k) and (§ , a) , with laws p™V and p respectively,
such that (§ N N k) - (§ , ﬂ) in the strong topology of %" x H, with P-probability one.

Notice that the law of S is Q.
Step 2. Let D be a countable dense family in C'(T'). Let Zjy 1) be the Lebesgue

measure on [0, 7']. We claim that, given ¢ € C (T), (]AP ® oiﬂ[O’T])—almost everywhere,

[ o (m3) (@) = [ @) o (36)
T T
To prove this claim, let us start from the definition
ulM* (v) ::/ Y, (v =) SNF (da’, dv'), t€[0,T], veT. (37)
DxT

Note that this implies that

T 2
0= ]E/ dt/ ’uiv’“ (v) — / v, (v —0") SN (da!, dov')
0 T DXT

a / v (v — ') 8 (o', d)
DxT

dv

2
=F dt dv.

It follows that given Nk, with ]P—probability one,
e (v) = / e (0 — ') 5V (do, do)
DxT

as an identity in . We can also say that (IAP ® iﬁoyT])—almost everywhere, for any k£ € IN
the previous identity holds in L?(T ). Therefore given ¢ € D, we have

/¢ e ( dv—/D><1F </T N, (v —=2") ¢ (v) dv) SNE(da!, dv').

Up to passing to a subsequence N;, we can assume that u" * converges to u in the strong
topology of L? (T), for (]lAD ® Diﬂ[O’T])—a.e. (@,t) € Qx|0,T). Therefore Jr @ (v) 4k (v) dv

converges to [, ¢ (v) ¢ (v) dv for (IAP ® ﬁO,T])—a.e. (W,t) € Q x [0,T]. And, for P-ae.

we (AZ, for every ¢ € [0,T7, gtN i converges in the weak topology of probability measures
to S, so

jm [ (/TW (w—1v) 6 )dv)S (d!, dv') = /DXT¢(U’)§t(dx’, dv')
~ [ 6) (=5) ()
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where we have used the property

lim [ vy (v =)@ (v) dv=¢(v'), uniformlyino’ €T ,

k—oo Jpp

because ¢ is continuous and vy are mollifiers on the torus. This proves (36).
Step 3. Since D is countable, property (36) holds true uniformly in ¢ € D. Hence we

can say that, for (IP ® Lo,r )-a e. (@,t) € @ x[0,T], 7,8 (B) < Zr with density in

L?(T). This implies that for P-ae. © € €, we have the property that 7,5, (W) < Zr
with density in L? (T ) for £y rj-a.e. t € [0,T]. Hence P (w €eQ:5@) e X) =1,

which implies Q ()? ) = 1 (recall that the law of Sis Q). The proof is complete. O

Let us eventually study the nonlinear Fokker-Planck equation (16), that is

Oae + Oy (peb (pr)) = 65 <(a§) Ht> )

with initial condition 1%, where b (j1) is given by (17).

Theorem 5.6. Let u° = v x poLr withv € Pri(D) and p € L*(0,2) (cf. Section 1.1).
Then:

i) the nonlinear Fokker-Planck equation (16), with initial condition 1i°, has one and
only one weak measure-valued solution . € €; this measure belongs to the space X
(see (30));

ii) let QN be the laws on € of the empirical process S™ : then QN converges weakly
t0 8,.. Moreover, SN converges in probability to y, in the topology of €.

Proof. Let us consider the sequence (yy) of Section 5.1. Note that the L? norm of

u (v) = /D (o= (o', ) = /T (0 — ) (a0 (o)

is bounded uniformly in V.

From Section 4 we know that the family {Q ™} is tight. Let {Q™¥*} be a weakly
convergence subsequence, with limit @ . We are going to prove below that Q is supported
by the set of weak measure-valued solutions of equation (16), with initial condition z°.
This implies existence of at least one such solution. Uniqueness has been proved in Section
3; recalling Lemma 5.5, we then immediately have claim (i). Moreover, we also have
Q = J,, by the uniqueness of weak measure-valued solutions; therefore, since any weak
limit point of {Q N } is the same measure J,,, it follows that the full sequence {Q N }
converges weakly to J,,. Since SN converges in law to a constant, it also converges in
probability (in the topology of %).

It remains to prove the claim made above that @ is supported by the set of weak
measure-valued solutions of equation (16) with initial condition 1, i.e., the following set
(cf. (32))

s={pew:®) (n=0forallpeT}

is a Borel subset of C and Q (¥) = 1. Arguing as in Remark 2 it is not difficult to show
that given ¢ € T there exists a sequence (¢,,) C C?(D x T) (i.e. ¢, is a C? function
with compact support) such that || ¢y, [|so 4|0y dn l|co +/0%,Pnllcc < M (for some M > 0

independent of n) and ¢,,(2) — @(2), Dvdn(2) — 0pd(2), 02, dn(2) — 02,0(2) as
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n — oo, for any z = (z,v) € D x T . Hence by the dominated convergence theorem we
have

¥ = {ue%:fbgo (M):Oforall(beCf(DxT)}.

Moreover, since there exists a countable set Hy C C’f.(D x T') such that for any ¢ €
C2(D x T') we can find a sequence (¢) C Hy satisfying

Jim (16 = Glloo + 100k — Qudlloo + 105,05 — 05 lloc) = 0,
—00

we obtain that ¥ = {u € € : @, (1) = 0 for all ¢ € Hy} which is a Borel subset of C. To
finish the proof we need to prove that

Q(,ue%:q)go(u):0>zl

for every ¢ € Hy. Since @go > 0, it is equivalent to prove [, cI)’;O dQ = 0, for every
¢ € Hy. Due to Lemma 5.4, it is enough to show
0
li o dQN = 38
for every ¢ € Hy. Using identity (6) we have

/cbg" dQYN =E| sup [(SN,¢) - / (SN b (SN) 0y ds
&€ t€[0,T]
t € 2
7/ <S§V, (03) aﬁ¢>> ds m]
0 2
112
=E| sup ‘MtN’d"/\l <E| sup ‘MtN"b‘]
t€[0,T] t€[0,T]
where

t 1 N . . . .
M = [ RS og (72 6 (4, i)
i=1

Therefore, from Doob’s inequality and the boundedness of ¢§ and J,, ¢, for some constants
generically denoted by C' > 0, we have
N

T
(/ @/;”dQN> <c/ 1QZE s (VAN U¢>(X5,V;@N)f] ds <
€

which implies (38) and completes the proof. O

2l Q

6. The McKean-Vlasov SDE. Similarly to what is done in Section 2, let B be a stan-
dard real Brownian motion defined on (2, F,IP), let n be a T -valued random variable
independent of B with density pg € L?(0,2) and denote by G the augmentation of
0(Bs,0 < s < t) V o(n) with the P-null sets. Let then £ be a random variable with
values in D and law v, having finite first moment, independent of G for every ¢. Finally
denote by G, the completion of G V o ().

Let us consider the so-called McKean-Vlasov SDE associated with the system (10)

AVe = Ao (Ve) dt + [, q 92(&, Ve y, w) e (dy, dw) dt + o5(V;) dBy
dXt = 0

(X0, Vo) = (&:m)
= L(X:, Vh) .

(39)
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In analogy with Definition 2.1, we say that a strong solution to equation (39) is a family
of continuous GY-adapted processes (V% u¥), x € D, with values in R x Pry(D x T)
such that the mapping: (z,w) — (V*(w), u*(w)) is measurable (D x Q,B(D) x F) —
(8 X €,B(S) x B(%)) and for v-almost every = € D the process (V*, u”) satisfies (39)
for € = z. If (V*, i®) is a strong solution then (£, V&, uf = L£(€,V)) is a well-defined
continuous G;-adapted process with values in D x RxPry (D x T ) which satisfies equations
(39) P-almost surely for any ¢ € [0, T'.

Theorem 6.1. There exist a unique strong solution (V, 1) to equation (39).

Proof. Fix a measure fi. € € and set

b)) 1= Xof0) + [ [ (v, ).

By the same arguments as in Section 2 it can be proved that there exist a unique strong
solution (V#7), to the SDE

AV = b (, VI") dt + o5 (V") dB “0)
Voﬂ’w =n.
Hence for X as in (39) we have that V# := V%o satisfies
AV = b(jir) (Xo, Vi) dt + o5(V) dB, al
i (1)
0 n.

Now choose as ji the unique weak solution in % to the nonlinear Fokker-Planck PDE (16)
with initial condition i’ = v x po<r ; given the associated process V# as above, denote
by pu; the law of the vector (£, V). Then p is a solution in % to the linear PDE

2 )2 -

{gut — 12 (09" 1) = 2 (mab(7i)
po = i° .

Since there is uniqueness of measure-valued solution to the latter (the proof being a simpli-

fied version of that of uniqueness in the nonlinear case; see Theorem 3.2), and clearly also
[i is a solution, we necessarily have i = p and (V, p) is a strong solution to (39).

Let now (V/, ji) be another solution. Then /i solves the Fokker-Planck equation (16)
with initial condition 6, X po-Zr, for v-almost every € D, and therefore g% = u”.
Finally V* = Vf a.s. for every ¢ and v-almost every x € D, since they both satisfy a
SDE like (41) with st = u® for which strong uniqueness holds. Hence (V, p) is the unique
solution to (39). O

Appendix A. Appendix: Extension of some results. We state here some further results
that are easy generalizations of what we presented so far; we will comment on the proofs
when needed.

Notice that in Section 2 neither the particular form of the coefficients nor the fact that
they are 2-periodic plays any role. Since the cited results we built our proof on apply
to multidimensional SDE with bounded and measurable drift, we immediately obtain the
following theorem, with proof identical to that of Theorem 2.2. Here, similarly to what
done previously, for k,1,m,n € IN we consider a m-dimensional Brownian motions W
and independent random variables Z = (=7 )jﬂ cand ¥ = (W) . (independent

from W as well) with values in E” C (R*)" and (R')", respectively (I is an open subset
of R¥), all defined on the common probability space (Q, F,P) and with finite first moment.

LT 7j=1,...,
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We assume that the Z7°s are identically distributed with law v and the W/’s are identically
distributed with absolutely continuous law pgZ:, with pg € L?(R!). We define the o-
algebra & = o(Z), the filtration (A?), as the augmentation of o(W,,0 < s < t) V o(®)
with the P-null sets and the filtration (A;); as the completion of AY \V €. Finally we fix
T>0.

Theorem A.1. Letb: [0,7] x E" x RV x E x Rl — R>*" and o : [0, T] x R™>*"™ —
RY>X"*™ pe bounded and Borel measurable functions. Assume that oo ' (t,-) is uniformly
elliptic and that o (t,-) is Lipschitz; both properties have to be satisfied uniformly in t.
Then there exists a unique strong solution Y = (Yj ) ,,» in the sense of Definition 2.1
and Theorem 2.2, to the SDE

aY, = <b(t,E,Yt, L) ,§?> dt+o(t,Y)dW,,  te[0,1],
Y, =T

j=1,..,

(42)

where
o I
StL — E 25(57‘73/_7‘) .
j=1

Finer refinements are possible: for example one can treat the cases when 7" = oo and the
SDE is to be solved on a domain U C R'*", and the assumptions on o can be weakened
(cf. Remark 1). We refer to [8] for details.

Also when studying our Fokker-Planck PDE the periodicity of the coefficients plays no
particular role, nor does the compactness of the torus T .
We need anyway some more assumptions on the coefficients b(¢, z,y,2’,y’), t € [0,T],
r € E"y e R, 2’ € B,y € R!, and o(t, y) above, namely:
(E1) b does not depend on ¢, is bounded and uniformly continuous in « and =’ (uniformly
in y and y") and the set of discontinuities of the map

(y,y) = b(z,y,2",y")
has Lebesgue measure 0 in R**™ x R/, for any z, z';
(E2) o does not depend on ¢ and belongs to C (RVX™; RIXmxm),

One can repeat the arguments of Sections 3, 4, 5 with minor modifications, working in the
space Pri(E x R!) with the 1-Wasserstein metric, using the Euclidean norm in place of
the metric dp 1 and choosing all the test functions accordingly. If we solve equation (42)
above for Y and consider the empirical measure 5", we can define the empirical density
u™ as

@ = [ =S, dy)
X

where (7¥,,) is a family of compactly supported mollifiers in R,
We say that f € L2 (RY)if f € L?(K) for every compact set K C R'. Consider a strictly

loc
increasing sequence (P;);en of compact sets in R! such that R! = U, P;; then

1 f = gllzzp))
d<f7g) = Y :
; 291+ |If = gllzzcp)

2 (R'Y). Lemmata 5.1 and 5.2 apply to 4™’s as well thanks to assumption
(E2), and imply tightness of their laws in the space L2 (0,7 L . (R')) due to a general-

loc
ized version of Aubin-Lions lemma, which claims that the space

L?(0,T;Wh? (RY)) nW*? (0,7 H* (RY))

is a metric on L?
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is relatively compact in L? (0, T; L7, . (R')).
Let C := C ([0,T]; Pry (E x R')). The space X of Subsection 5.2 has to be consequently
substituted with

<

d (my
X:{MGC oty < Lt with L)

2!
T%}é € L*(R’), forae.te [O,T]}.

<&
To show that X is Borel it is enough to repeat the argument in the proof of Lemma 5.3
<&

using the density of C.(R!) in L?(R!). The functionals @’;0 are now continuous on X,
because the proof of Lemma 5.4 can be repeated thanks to assumption (E1). To show that

— <&
any limit point of the family of laws of the S " gives full measure to X one can repeat the
proof of Lemma 5.5, noting that it is enough to check identity (36) for ¢ € Cy,(R?).
Now we can repeat verbatim the arguments in the proof of Theorem 5.6 obtaining:
Theorem A.2. Let (° = v x poLpi. Then:

i) the nonlinear Fokker-Planck equation

T
0u6; + div, (Gi(b,G)) = Tr | D] (“; Q) | 43)

with initial condition (°, has one and only one weak measure-valued solution (; this

<&
measure belongs to the space X.
ii) Let Q™ be the laws on C of the empirical process S™; then Q™ converges weakly to
O¢. Further S™ converges in probability to C, in the topology of C.

The extension fo the well-posedness result for the McKean-Vlasov equation given in Sec-
tion 6 is then straightforward. For related results on strong well-posedness for McKean-
Vlasov equations (without dependence on stochastic parameters) see [13] and references
therein.
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