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Bayesian Posteriors Without Bayes’ Theorem

T. P. Hill and Marco Dall’ Aglio

Abstract

The classical Bayesian posterior arises naturally as the unique solution of several dif-

ferent optimization problems, without the necessity of interpreting data as conditional

probabilities and then using Bayes’ Theorem. For example, the classical Bayesian

posterior is the unique posterior that minimizes the loss of Shannon information in

combining the prior and the likelihood distributions. These results, direct corollar-

ies of recent results about conflations of probability distributions, reinforce the use of

Bayesian posteriors, and may help partially reconcile some of the differences between

classical and Bayesian statistics.

1 Introduction

In statistics, prior belief about the value of an unknown parameter, θ ∈ Θ ⊆ R
n obtained

from experiments or other methods, is often expressed as a Borel probability distribution P0

on Θ ⊆ R
n called the prior distribution. New evidence or information about the value of θ,

based on an independent experiment or survey, is recorded as a likelihood distribution L. Here
and throughout it will be assumed that the likelihood function has finite positive total mass,
and that L has been normalized, so that in fact L is also a Borel probability distribution on
Θ. Given the prior distribution P0 and the likelihood distribution L, a posterior distribution
P1 = P1(P0, L) for θ incorporates the new likelihood information about θ into the information
from the prior, thus updating the prior. The posterior distribution P1 is typically viewed as
the conditional distribution of θ given the new likelihood information, often expressed as a
random variable X .

The first main goal of this note is to use recent results for conflations of probability
distributions [3, 4] to show that the Bayesian posterior is the unique posterior that minimizes
the loss of Shannon information in combining the prior and likelihood distributions. The
Bayesian posterior is also the unique posterior that attains the minimax likelihood ratio
of the prior and likelihood distributions, and the unique posterior that is a proportional
consolidation of the prior and likelihood distributions. Thus, the classical Bayesian posterior
appears naturally as the solution of several different optimization problems, without the
necessity of interpreting likelihood as a conditional probability and then invoking Bayes
Theorem. These results reinforce the use of Bayesian posteriors, and may help partially
reconcile some of the differences between classical statistics and Bayesian statistics.

The second main goal of this note, another direct corollary of recent results for conflations
of probability distributions [4], is to identify the best posterior when the prior and likeli-
hood distributions are not weighted equally, such as in cases when the prior distribution is
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given more weight than the likelihood distribution. This new weighted posterior, the unique
distribution that minimizes the loss of weighted Shannon information, coincides with the
classical Bayesian posterior if the prior and likelihood are weighted equally, but in general is
different.

2 Combining Priors and Likelihoods into Posteriors

There are many different methods for combining several probability distributions (e.g., see [1,
3]), and in particular, for combining the prior distribution P0 and the likelihood distribution
L into a single posterior distribution P1 = P1(P0, L). For example, the prior and likelihoods
could simply be averaged, i.e. P1 =

P0+L
2

, or the data underlying the prior and the likelihood

could be averaged, in which case the posterior P1 would be the distribution of X0+XL

2
, where

X0 and XL are independent random variables with distributions P0 and L, respectively.
In Bayesian statistics, the likelihood function L is usually interpreted as L(θ) = αP (X |

θ), where X is the independent experiment or random variable yielding new information
about θ, and α is the normalizing constant for L to have mass one (cf. [2]). The Bayesian
posterior distribution PB is then calculated using Bayes Theorem: for example, if P0 and
L are discrete with probability mass functions (p.m.f.’s) p0 and pL respectively, then PB is
discrete with p.m.f.

pB(θ) =
p0(θ)pL(θ)∑
θ̂∈Θ p0(θ̂)pL(θ̂)

;

and if P0 and L are absolutely continuous with probability density functions (p.d.f.’s) f0 and
fL respectively, then PB is absolutely continuous with p.d.f.

fB(θ) =
f0(θ)fL(θ)∫

Θ
f0(θ̂)fL(θ̂)dθ̂

(provided the denominators are positive and finite).

3 Minimizing Loss of Shannon Information

When the goal is to consolidate information from a prior distribution and a likelihood dis-
tribution into a (posterior) distribution, replacing those two distributions by a single distri-
bution will clearly result in some loss of information, however that is defined. Recall that
the classical Shannon information (also called the self-information or surprisal) associated
with the event A from a probability distribution P , SP (A), is given by SP (A) = − log2 P (A)
(so the smaller the value of P (A), the greater the information or surprise). The numerical
value of the Shannon information of a given probability is simply the number of binary bits
of information reflected in that probability.

Example 3.1. If P is uniformly distributed on (0, 1) and A = (0, 0.25) ∪ (0.5, 0.75), then
SP (A) = − log2(P (A)) = − log2(0.5) = 1, so if X is a random variable with distribution P ,
then exactly one binary bit of information is obtained by observing that X ∈ A, in this case
that the value of the second binary digit of X is 0.
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Definition 3.2. The combined Shannon Information associated with the event A from the
prior distribution P0 and the likelihood distribution L is

S{P0,L}(A) = SP0(A) + SL(A) = − log2 P0(A)L(A),

and the maximum loss between the Shannon Information of a posterior distribution P1

and the combined Shannon information of the prior and likelihood distributions P0 and
L, M(P1;P0, L), is

M(P1;P0, L) = max
A

{
S{P0,L}(A)− SP1(A)

}
= max

A

{
log2

P1(A)

P0(A)L(A)

}
.

Note that the definition of combined Shannon information implicitly assumes indepen-
dence of the prior and likelihood distributions. Note also that no information is obtained by
observing an event that is certain to occur, so for instance S[P0,L](Θ) = SP1(Θ) = 0. This
implies that M(P1;P0, L) is never negative.

Definition 3.3. A prior distribution P0 and a likelihood distribution L are compatible if P0

and L are both discrete with p.m.f’s p0 and pL satisfying
∑

θ∈Θ p0(θ)pL(θ) > 0, or are both
absolutely continuous with p.d.f.’s f0 and fL satisfying 0 <

∫
Θ
f0(θ)fL(θ)dθ < ∞.

Example 3.4. Every two geometric distributions are compatible, every two normal distri-
butions are compatible, and every exponential distribution is compatible with every normal
distribution. Distributions with disjoint support, discrete or continuous, are not compatible.

Remark. In practice, compatibility is not problematic. Any two distributions may be easily
transformed into two new distributions, arbitrarily close to the original distributions, so that
the two new distributions are compatible, for instance by convolving each with a U(−ǫ, ǫ)
distribution.

Theorem 3.5. Let P0 and L be discrete compatible prior and likelihood distributions. Then
the Bayesian posterior PB is the unique posterior distribution that minimizes the maximum
loss of Shannon information from the prior and likelihood distributions, i.e., that minimizes
M(P1;P0, L) among all posterior distributions P1. Moreover,

M(P1;P0, L) ≥ log2



(
∑

θ∈Θ

p0(θ)pL(θ)

)−1

 for all posterior distributions P1,

and equality is uniquely attained by the Bayesian posterior P1 = PB.

The conclusion of Theorem 3.5 follows immediately as a special case of [3, Corollary 4.4];
analogous conclusions for the case of compatible absolutely continuous distributions follow
from [3, Theorem 4.5]. For the benefit of the reader, a sketch of the proof of Theorem 3.5
similar to that in [4] is included.
Sketch of proof. First observe that for an event A, the difference between the combined
Shannon information obtained from a prior distribution P0 and a likelihood distribution L,
and the Shannon information obtained from the posterior P1, is

S{P0,L}(A)− SP1(A) = SP0(A) + SL(A)− SP1(A) = log2
P1(A)

P0(A)L(A)
.
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Since log2(x) is strictly increasing, the maximum (loss) thus occurs for an event A where
P1(A)

P0(A)L(A)
is maximized.

Next note that the largest loss of Shannon information occurs for small sets A, since for
disjoint sets A and B,

P1(A ∪ B)

P0(A ∪ B)L(A ∪B)
≤

P1(A) + P1(B)

P0(A)L(A) + P0(B)L(B)
≤ max

{
P1(A)

P0(A)L(A)
,

P1(B)

P0(B)L(B)

}
,

where the inequalities follow from the inequalities (a + b)(c + d) ≥ ac + bd and a+b
c+d

≤

max
{

a
c
, b
d

}
for positive numbers a, b, c, d. Thus the problem reduces to finding the proba-

bility mass function p that makes the maximum, over all real values θ, of the ratio p(θ)
p0(θ)pL(θ)

as small as possible. But the minimum over all nonnegative q1, . . . , qn with q1 + · · ·+ qn = 1
of the maximum of q1

r1
, . . . , qn

rn
occurs when q1

r1
= · · · = qn

rn
(if they are not equal, reducing the

numerator of the largest ratio, and increasing that of the smallest, will make the maximum
smaller). Thus the p that makes the maximum of p(θ)

p0(θ)pL(θ)
as small as possible is when

p(θ) = cp0(θ)pL(θ), where c is chosen to make p a probability mass function, i.e., to make
p(θ) sum to 1. But this is exactly the definition of the Bayesian posterior PB in the discrete
case. �

4 Minimax Likelihood Ratios

In classical hypotheses testing, a standard technique to decide from which of several known
distributions given data actually came is to maximize the likelihood ratios, that is, the ratios
of the p.m.f.’s or p.d.f.’s. Analogously, when the objective is to decide how best to consolidate
a prior distribution P0 and a likelihood distribution L into a single (posterior) distribution
P1 = P1(P0, L), one natural criterion is to choose P1 so as to make the ratios of the likelihood
of observing θ under P1 as close as possible to the likelihood of observing θ under both the
prior distribution P0 and the likelihood distribution L. This motivates the following notion
of minimax likelihood ratio posterior.

Definition 4.1. A discrete probability distribution P ∗ (with p.m.f. p∗) is the minimax
likelihood ratio (MLR) posterior of a discrete prior distribution P0 with p.m.f. p0 and a
discrete likelihood distribution L with p.m.f. pL if

min
p.m.f.’s p

{
max
θ∈Θ

p(θ)

p0(θ)pL(θ)
−min

θ∈Θ

p(θ)

p0(θ)pL(θ)

}

is attained by p = p∗ (where 0/0 := 1).

Similarly, an a.c. distribution P ∗ with p.d.f. f ∗ is the MLR posterior of an a.c. prior
distribution P0 with p.d.f. f0 and an a.c. likelihood distribution L with p.d.f. fL if

min
p.m.f.’s f

{
ess sup

θ∈Θ

f(θ)

f0(θ)fL(θ)
− ess inf

θ∈Θ

f(θ)

f0(θ)fL(θ)

}

is attained by f ∗.
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The min-max terms in Definition 4.1 are similar to the min-max criterion for loss of
Shannon Information (Theorem 3.5), whereas the others are dual max-min criteria. Just as
the Bayesian posterior minimizes the loss of Shannon information, the Bayesian posterior is
also the MLR posterior of the prior and likelihood distributions.

Theorem 4.2. Let P0 and L be compatible discrete or compatible absolutely continuous prior
and likelihood distributions, respectively. Then the unique MLR posterior for P0 and L is
the Bayesian posterior distribution PB.

Proof. Immediate from [3, Theorem 5.2]. �

5 Proportional Posteriors

A criterion similar to likelihood ratios is to require that the posterior distribution P1 reflect
the relative likelihoods of identical individual outcomes under both P0 and L. For example,
if the probability that the prior and the (independent) likelihood are both θa is twice that
of the probability both are θb, then P1(θa) should also be twice as large as P1(θb).

Definition 5.1. A discrete (posterior) probability distribution P ∗ with p.m.f. p∗ is a pro-
portional posterior of a discrete prior distribution P0 with p.m.f. p0 and a compatible discrete
likelihood distribution L with p.m.f. pL if

p∗(θa)

p∗(θb)
=

p0(θa)pL(θa)

p0(θb)pL(θb)
for all θa, θb ∈ Θ.

Similarly, a posterior a.c. distribution P ∗ with p.d.f. f ∗ is a proportional posterior of an
a.c. prior distribution P0 with p.d.f. f0 and a compatible likelihood distribution L with p.d.f.
fL if

f ∗(θa)

f ∗(θb)
=

f0(θa)fL(θa)

f0(θb)fL(θb)
for (Lebesgue) almost all θa, θb ∈ Θ.

Theorem 5.2. Let P0 and L be compatible discrete or compatible absolutely continuous prior
and likelihood distributions, respectively. Then the Bayesian posterior distribution PB is a
proportional consolidation for P0 and L.

Proof. Immediate from [3, Theorem 5.5]. �

6 Optimal Posteriors for Weighted Prior and Likeli-

hood Distributions

Definition 6.1. Given a prior distribution P0 with weight w0 > 0 and a likelihood distri-
bution L with weight wL > 0, the combined weighted Shannon information associated with
the event A, S(P0,w0;L,wL)(A), is

S(P0,w0;L,wL)(A) =
w0

max{w0, wL}
SP0(A) +

wL

max{w0, wL}
SL(A).
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This definition ensures that only the relative weights are important, so for instance if
w0 = wL, the combined weighted Shannon information of the prior and likelihood always
coincides with the (unweighted) combined Shannon information of the prior and likelihood.
Note again that no information is attained by observing any event that is certain to occur, no
matter what the distributions and weights, since SP0(Θ) = SL(Θ) = 0. The next theorem, a
special case of [4, (8)], identifies the posterior distribution that minimizes the loss of weighted
Shannon information in the case the prior and likelihood distributions are compatible discrete
distributions; the case for compatible absolutely continuous distributions is analogous.

Theorem 6.2. Let P0 and L be compatible discrete prior and likelihood distributions with
p.m.f.’s p0 and pL and weights w0 > 0 and wL > 0, respectively. Then the unique posterior
distribution that minimizes the maximum loss of Shannon information from the weighted
prior and likelihood distributions, i.e., that minimizes, among all posterior distributions P1,

max
A

{
S(P0,w0;L,wL)(A)− SP1(A)

}
,

is the posterior distribution Pw
1 with p.m.f.

pw1 (θ) =
(p0(θ))

w0
max[w0,wL] (pL(θ))

wL
max[w0,wL]

∑
θ̂∈Θ(p0(θ̂))

w0
max[w0,wL] (pL(θ̂))

wL
max[w0,wL]

.

Remark. If both the prior and likelihood distributions are normally distributed, the Bayesian
posterior is also a best linear unbiased estimator (BLUE) and a maximum likelihood esti-
mator (MLE); e.g. see [3].
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