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Abstract
We consider a class of optimal advertising problems under uncertainty for the introduction
of a new product into the market, on the line of the seminal papers of Vidale andWolfe (Oper
Res 5:370–381, 1957) and Nerlove and Arrow (Economica 29:129–142, 1962). The main
features of ourmodel are that, on one side,we assume a carryover effect (i.e. the advertisement
spending affects the goodwill with some delay); on the other side we introduce, in the state
equation and in the objective, some mean field terms that take into account the presence of
other agents. We take the point of view of a planner who optimizes the average profit of all
agents, hence we fall into the family of the so-called “Mean Field Control” problems. The
simultaneous presence of the carryover effect makes the problem infinite dimensional hence
belonging to a family of problems which are very difficult in general and whose study started
only very recently, see Cosso et al. [Ann Appl Probab 33(4):2863–2918, 2023]. Here we
consider, as a first step, a simple version of the problem providing the solutions in a simple
case through a suitable auxiliary problem.
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1 Introduction

Since the seminal papers of [16, 18] on dynamics model in marketing, a considerable amount
of work has been devoted to problems of optimal advertising, both in monopolistic and
competitive settings, and both in deterministic and stochastic environments (see [6] for a
review of the existing work until the 1990’s).

Various extensions of the basic setting of [16, 18] have been studied. For the stochastic
case, we recall, among the various papers on the subject, [12, 14, 15, 17].

Our purpose here is to start exploring a family of models that put together two important
features that may arise in such problems and that have not yet been satisfactorily treated in
the actual theory on optimal control.

On one side we account, as in [7, 8] for the presence of delay effects, in particular the fact
that the advertisement spending affects the goodwill with some delay, the so-called carryover
effect (see e.g. [6, 8, 13] and the references therein).

On the other side, and more crucially, we take into account the fact that the agents max-
imizing their profit/utility from advertising are embedded in an environment where other
agents act and where the action of such other agents influences their own outcome (see e.g.
[15] for a specific case of such a situation). To model such interaction among maximizing
agents, one typically resorts to game theory. However, cases like this, where the number of
agents can be quite large (in particular if we hink of web advertising), are very difficult to treat
in an N -agents game setting. A way to make such a problem tractable but still meaningful
is to resort to what is called the mean-field theory. The idea is the following: assume that
the agents are homogeneous (i.e. displaying the same state equations and the same objective
functionals) and send their numbers to infinity. The resulting limit problem is in general
more treatable, and, under certain conditions, its equilibria are a good approximation of the
N -agents game (see e.g. the books [2] for an extensive survey on the topic).

For the above reason, we think it is interesting, both from the mathematical and economic
side, to consider the optimal advertising investment problem with delay of [7, 8] in the case
when, in the state equation and in the objective, one adds a mean field term depending on
the law of the state variable (the goodwill), which takes into account the presence of other
agents.

There are twomainways of looking at the problemwhen suchmean field terms are present.
One (which falls into the class of Mean Field Games (MFG), see e.g. [2, Ch. 1], and which is
not our goal here) is to look at the Nash equilibria where each agent takes the distribution of
the state variables of the others as given. The other one, which we follow here, is to assume
a cooperative game point of view: there is a planner that optimizes the average profit of each
agent: this means that we fall into the family of the so-called “Mean Field Control” (MFC)
problems (or “control of McKean–Vlasov dynamics”). We believe that both viewpoints are
interesting from the economic side and challenging from the mathematical side. In particular,
the one we adopt here (the Mean Field Control) can be seen as a benchmark (a first best) to
compare, subsequently, with the non-cooperativeMean Field Game case, as is typically done
in game theory (see e.g. [1]). It can also be seen as the case of a big selling company (who
acts as the central planner), which has many shops in the territory whose local advertising
policies interact.

The simultaneous presence of the carryover effect and of the “Mean Field Control” terms
makes the problem belong to the family of infinite dimensional control of McKean–Vlasov
dynamics: a family of problems that are very difficult in general and whose study started
only very recently (see [3]).
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Here we consider, as a first step, a simple version of the problem that displays a linear state
equation, mean field terms depending only on the first moments, and an objective functional
whose integrand (the running objective) is separated in the state and the control. We develop
the infinite dimensional setting in this case. Moreover, we show that, in the special subcase
when the running objective is linear in the state and quadratic in the control, we can solve the
problem. This is done through the study of a suitable auxiliary problem whose HJB equation
can be explicitly solved (see Sect. 4 below) and whose optimal feedback control can be found
through an infinite dimensional Verification Theorem (see Sect. 4.3 below).

The paper is organized as follows.

• In Sect. 2, we formulate the optimal advertising problem as an optimal control problem
for stochastic delay differential equations with mean field terms and delay in the control.
Moreover, using that themean field terms depends only on the firstmomentswe introduce
an auxiliary problemwithoutmean field terms but with a “mean” constraint on the control
(see (2.13)).

• In Sect. 3, the above “not mean field” auxiliary non-Markovian optimization problem
is “lifted” to an infinite dimensional Markovian control problem, still with a “mean”
constraint on the control (see (3.7)).

• In Sect. 4, we show how to solve the original problem in the special case when the optimal
controls of the original and auxiliary problems are deterministic. We explain the strategy
in Sect. 4.1, proving Proposition 4.1. Then we consider a suitable Linear Quadratic (LQ)
case. In Sect. 4.2, we solve the appropriated HJB equation, while, in Sect. 4.3, we find,
through a verification theorem, the solution of the auxiliary LQ problem. Finally, in
Sect. 4.4, we show that we can use Proposition 4.1) to also get the solution of the original
LQ problem.

2 Formulation of the problem

We call X(t) the stock of advertising goodwill (at time t ∈ [0, T ]) of a given product.
We assume that the dynamics of X(·) is given by the following controlled stochastic delay
differential equation (SDDE), where u models the intensity of advertising spending:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dX(t) =
[
a0X(t) + a1E[X(t)] + b0u(t) + ∫ 0

−d b1(ξ)u(t + ξ)dξ
]
dt

+σdW (t) ∀t ∈ [0, T ]
X(0) = x

u(ξ) = δ(ξ) ∀ξ ∈ [−d, 0]
(2.1)

where the Brownian motion W is defined on a filtered probability space (�,F,F =
(Ft )t≥0,P), with (�,F,P) being complete, F being the augmentation of the filtration gen-
erated byW , and where, for a given closed intervalU ⊂ R, the control strategy u belongs to
U := L2

P (�×[0, T ];U ), the space ofU -valued square integrable progressively measurable
processes. The last line in (2.1) must read as an extension of u to [−d, T ] by means of δ.

Here the control space and the state space are both equal to the set R of real num-
bers1 Regarding the coefficients and the initial data, we assume the following conditions are
verified:

1 This means that, due to the difficulty of the problem, we do not consider ex ante state or control constraints.
They could be checked ex post or could be the subject of a subsequent research work.
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Assumption 2.1

(i) a0, a1 ∈ R;
(ii) b0 ≥ 0;
(iii) b1(·) ∈ L2([−d, 0];R+);
(iv) δ(·) ∈ L2([−δ, 0];U ).

Here a0 and a1 are constant factors reflecting the goodwill changes in absence of advertising,
b0 is a constant advertising effectiveness factor, and b1(·) is the density function of the time
lag between the advertising expenditure u and the corresponding effect on the goodwill level.
Moreover, x is the level of goodwill at the beginning of the advertising campaign, δ(·) is
the history of the advertising expenditure before time zero (one can assume δ(·) = 0, for
instance).

Notice that under Assumption 2.1 there exists a unique strong solution to the following
SDDE starting at time t ∈ [0, T ):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dX(s) =
[
a0X(s) + a1E[X(s)] + b0u(s) + ∫ 0

−d b1(ξ)u(s + ξ)dξ
]
ds

+σdW (s) ∀s ∈ [t, T ]
X(t) = x

u(t + ξ) = δ(ξ) ∀ξ ∈ [−d, 0]
(2.2)

We denote such a solution by Xt,x,u . It belongs L2
P (�×[0, T ],R). In what follows, without

loss of generality, we always assume to deal with a continuous version Xt,x,u .
The objective functional to be maximized is defined as

J (t, x; u(·)) = E

[∫ T

t
e−r(s−t) (

f
(
s, Xt,x,u(s),E

[
Xt,x,u(s)

]
, u(s),E [u(s)]

))
ds

+ e−r(T−t)
E

[
g

(
Xt,x,u(T ),E

[
Xt,x,u(T )

])]
(2.3)

where for the functions f : [0, T ]×R×R → R and g : R×R → Rwe assume the following
Assumption 2.2 is verified.

Assumption 2.2 (i) The functions f , g are measurable.
(ii) There exist N > 0, � > 0, θ > 1 such that

f (t, x,m, u, z) + g(x,m) ≤ N (1 + |x | + |m| + |u| + |z|) − �(|u| + |z|)θ ,
for all t ∈ [0, T ], y ∈ R,m ∈ R, z ∈ R.

(iii) f , g are locally uniformly continuous in x,m, uniformlywith respect to (t, u, z), mean-
ing that for every R > 0 there exists a modulus of continuity wR : R+ → R

+ such
that

sup
t∈[0,T ]
u∈R,z∈R

| f (t, x,m, u, z) − f (t, x ′,m′, u, z)| + |g(x,m) − g(x ′,m′)|

≤ wR(|x − x ′| + |m − m′|)
for all real numbers x,m, x ′,m′ such that |x | ∨ |m| ∨ |x ′| ∨ |m′| ≤ R.

Under Assumptions 2.1 and 2.2, the reward functional J in (2.3) is well-defined for any
(t, x; u(·)) ∈ [0, T ] × R

+ × U .
We also define the value function V for this problem as follows:

V (t, x) = sup
u∈U

J (t, x; u), (2.4)
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for (t, x) ∈ [0, T ] × R. We shall say that u∗ ∈ U is an optimal control strategy if it is such
that

V (t, x) = J (t, x; u∗).

Our main aim here is to finding such optimal control strategies
We now take into account the controlled ordinary delay differential equation (ODDE)
⎧
⎪⎪⎨

⎪⎪⎩

dM(s) =
(
(a0 + a1)M(s) + b0z(s) + ∫ 0

−d b1(ξ)z(s + ξ)dξ
)
ds ∀s ∈ [t, T ]

M(t) = m

z(t + ξ) = δ(ξ) ∀ξ ∈ [−d, 0]
(2.5)

where m ∈ R and z ∈ L2([0, T ],R) is extended to [−d, 0] by δ as expressed by the last
line in (2.5). We denote by Mt,m,z the unique strong solution to (2.5). It is straightforward
to notice the relationship

Mt,m,z = E
[
Xt,m,u] whenever z(s) = E[u(s)] for s ∈ [t, T ]. (2.6)

Property (2.6) suggests that we can couple the two systems (2.2) and (2.5) as follows. We set

A0 :=
[
a0 a1
0 a0 + a1

]

(2.7)

and introduce, for x̃ ∈ R
2 and with

ũ = (u, z) ∈ Ũ := L2
P (� × [0, T ];R) × L2 ([0, T ];R) , σ̃ = (σ, 0), (2.8)

the process X̃ t,x̃,ũ as the unique strong solution of the controlled SDDE
⎧
⎪⎪⎨

⎪⎪⎩

d X̃(s) =
(
A0 X̃(s) + b0ũ(s) + ∫ 0

−d b1(ξ)ũ(s + ξ)dξ
)
ds + σ̃dW (s) ∀s ∈ (t, T ]

X̃(t) = x̃

ũ(t + ξ) = (δ(ξ), δ(ξ)) ∀ξ ∈ [−d, 0]
(2.9)

then by (2.2), (2.5), (2.6), and (2.9), we immediately have
(
Xt,x,u, Mt,x,z) = X̃ t,(x,x),ũ) if z(s) = E[u(s)] for s ∈ [t, T ]. (2.10)

Property (2.10) states that the process Xt,x,u can be seen as the first projection of a bidimen-
sional process driven by a SDDE whose coefficients do not involve any dependence on the
law.

Thanks to (2.10), we can rephrase the original control problem as follows. We define, for
t ∈ [0, T ], x̃ ∈ R

2, and for

ũ = (u, z) ∈ Ũ := L2
P (� × [0, T ];R) × L2 ([0, T ];R) ,

the functional

J̃ (t, x̃; ũ) := E

[∫ T

t
e−r(s−t) f

(
s, X̃ t,x̃,ũ(s), ũ(s)

)
ds + g

(
X̃ t,x̃,ũ(T )

)]

, (2.11)

where, with a slight abuse of notation, we identify

f (t, (x,m), (u, z)) = f (t, x,m, u, z) g((x,m)) = g(x,m). (2.12)
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Then, by (2.3), (2.4), (2.10), and (2.11), it follows that

V (t, x) = sup
{
J̃ (t, (x, x); ũ) : ũ ∈ Ũ, and z(s) = E[u(s)] s ∈ [t, T ]

}
. (2.13)

3 Carryover effect of advertising: reformulation of the problem in
infinite dimension

To recast the SDDE (2.9) as an abstract stochastic differential equation on a suitable Hilbert
space we use the approach introduced first by [19] in the deterministic case and then extended
in [8] to the stochastic case (see also [5], [6], [paragraph 2.6.8.2], [10] and [11], and [12]
where the case of unbounded control operator is considered). We reformulate Eq. (2.9) as an
abstract stochastic differential equation in the following Hilbert space H

H := R
2 × L2([−d, 0],R2).

If y ∈ H , we denote by y0 the projection of y onto R
2 and by y1 the projection of y onto

L2([−d, 0],R2). Hence y = (y0, y1). The inner product in H is induced by its factors,
meaning

〈y, y′〉 := 〈y0, y′
0〉R2 +

∫ 0

−d
〈y1(ξ), y′

1(ξ)〉R2dξ ∀y, y′ ∈ H .

In particular, the induced norm is

|y| =
(

|y0|2R2 +
∫ 0

−d
|y1(ξ)|2

R2dξ

)1/2

∀y ∈ H .

Recalling (2.7), we define A : D(A) ⊂ H → H by

Ay := (A0y0,−ẏ1)

where the domain D(A) is

D(A) = {
y ∈ H : y1 ∈ W 1,2([−d, 0],R2), y1(−d) = 0

}
.

The adjoint A∗ : D(A∗) ⊂ H → H of A is given by

A∗y := (
A∗
0y0, ẏ1

)

with
D(A∗) = {

y ∈ H : y1 ∈ W 1,2([−d, 0],R2), y1(0) = y0
}
.

The operator A generates a C0-semigroup {et A}t∈R+ on H , where

et A y =
(

et A0 y0 +
∫ 0

−d
1[−t,0]e(t+s)A0 y1(s)ds, y1(· − t)1[−d+t,0](·)

)

∀y ∈ H ,

whereas the C0-semigroup {et A∗ }t∈R+ generated by A∗ is given by

et A
∗
y =

(
et A

∗
0 y0, e

(·+t)A∗
0 y01[−t,0](·) + y1(· + t)1[−d,−t](·)

)
∀y ∈ H ,

where A∗
0 is the adjoint of A0.

We then introduce the noise operator G : R → H defined by

Gx := ((σ x, 0), 0) ∀x ∈ R,
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and the control operator B : R2 → H defined by

By0 = (b0y0, b1(·)y0) ∀y0 ∈ R
2.

The adjoint B∗ : H → R
2 of B is given by

B∗y = b0y0 +
∫ 0

−d
b1(ξ)y1(ξ)dξ ∀y ∈ H .

We now introduce the abstract stochastic differential equation on H
⎧
⎪⎨

⎪⎩

dY (s) = (AY (s) + Bũ(s)) ds + GdW (s) s ∈ (t, T ]
Y (t) = y

ũ(t + ξ) = (δ(ξ), δ(ξ)) ∀ξ ∈ [−d, 0]
(3.1)

with t ∈ [0, T ), y ∈ H , ũ ∈ U × U . Denote by Y t,y,ũ the mild solution to (3.1), i.e.,
the pathwise continuous process in L2

P (� × [0, T ]; H) given by the variation of constants
formula:

Y t,y,ũ(s) = e(s−t)Ay +
∫ s

t
e(s−r)ABũ(r)dr +

∫ s

t
e(s−t)AGdW (r), ∀s ∈ [t, T ]. (3.2)

Similarly as done in [7], if the space of admissible controls is restricted to Ũ , one can show
that (3.1) is equivalent to (2.9), in the sense that

Y t,y,ũ
0 (s) = X̃ t,y0,ũ (3.3)

for every t ∈ [0, T ), ũ ∈ Ũ , and for every y = (y0, y1) ∈ H with

y1(ξ) =
(∫ ξ

−d
b1(ζ )δ(ζ − ξ)dζ,

∫ ξ

−d
b1(ζ )δ(ζ − ξ)dζ

)

∀ξ ∈ [−d, 0]. (3.4)

A further equivalence is given by considering together (2.10) and (3.4), that provide

Y t,y,ũ
0 (s) = (

Xt,x,u, Mt,x,z) if y0=(x, x), y1 is as in (3.4), z(s) = E[u(s)] for s ∈ [t, T ].
(3.5)

Thanks to equivalence (3.5), we can rephrase the original control problem as follows. For
t ∈ [0, T ], y ∈ H , ũ ∈ U × U , define the functional (recall (2.12))

J (t, y; ũ) := E

[∫ T

t
e−r(s−t) f

(
s, Y t,y,ũ

0 (s), ũ(s)
)
ds + g

(
Y t,y,ũ
0 (T )

)]

(3.6)

Then, by (2.11), (2.13), (3.3), and (3.4), it follows that

V (t, x) = sup
{J (t, y; ũ) : y0 = (x, x), y1 is as in (3.4), ũ ∈ Ũ, and

z(s) = E[u(s)] s ∈ [t, T ]}. (3.7)

4 Solution of the original problem in a special Linear Quadratic (LQ)
case

4.1 The strategy of solution through a suitable HJB equation

Following (3.7) above we introduce the function

V : [0, T ] × H → R
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defined by

V(t, y) := sup
{J (t, y, ũ) : ũ ∈ Ũ, z(s) = E[u(s)] ∀s ∈ [t, T ]}.

Notice that, by (3.7), we have

V (t, x) = V(t, y) if y0 = (x, x), and if y1 is as in (3.4). (4.1)

The problem with the above constraint z(s) = E[u(s)], for s ∈ [t, T ], is that it does not
allow to apply directly the Dynamic Programming Approach to get the HJB equation. For
this reason, instead of optimizing on the set U with the constraints z(s) = E[u(s)] s ∈ [t, T ],
we take into consideration a different problem, for which the optimization is performed on
the set U × U with the constraint z(s) = u(s) s ∈ [t, T ], hence considering the following
value function

V (t, y) := sup
{J (t, y, ũ) : ũ = (u, z) ∈ U × U, and u = z

}
. (4.2)

In general we do not know if and how this function is related to V (and consequently to our
goal V ). However it is clear from the constraints involved that, if for both problems V and V
the supremum is reached on the set of deterministic controls, meaning

V(t, y) = (to prove) = sup
{J (t, y, ũ) : ũ = (u, z) ∈ U × U, and u = z deterministic

}

(4.3a)

V (t, y) = (to prove) = sup
{J (t, y, ũ) : ũ = (u, z) ∈ U × U, and u = z deterministic

}
,

(4.3b)

then finding the deterministic optimal controls for V is equivalent to doing that for V . For
future reference, we restate this observation in the following proposition.

Proposition 4.1 Let t ∈ [0, T ] and y ∈ H. If (4.3a) and (4.3b) hold true, then a deterministic
control ũ∗ = (u∗, u∗) ∈ U × U is optimal for V if and only if it is optimal for V .

The HJB equation associated to the optimal control problem related to V is the following.
⎧
⎪⎨

⎪⎩

vt (t, y) + 1
2 Tr Q∇2v(t, y) + 〈Ay,∇v(t, y)〉

+H0(t, y,∇v(t, y)) − rv(t, y) = 0 ∀(t, y) ∈ (0, T ) × H

v(T , y) = g(y0) ∀y ∈ H

(4.4)

where Q = G∗G, and the Hamiltonian function defined as

H0(t, y, p) := sup
ũ∈D

HCV (t, y, ũ, p) = sup
ũ∈D

{
f (t, y0, ũ) + 〈Bũ, p〉},

with HCV denoting the current value Hamiltonian function, and D being the diagonal in
U ×U , meaning D = {(u, u) : u ∈ U }. Notice that H0(t, y, p) depends on p only by means
of B∗ p. Indeed, if we define

H(t, y, q) := sup
ũ∈D

{
f (t, y0, ũ) + 〈ũ, q〉}, (4.5)

we get H0(t, y, p) = H(t, y, B∗ p). Then (4.4) can be rewritten as
⎧
⎪⎨

⎪⎩

vt (t, y) + 1
2 Tr Q∇2v(t, y) + 〈Ay,∇v(t, y)〉

+H(t, y, B∗∇v(t, y)) − rv(t, y) = 0 ∀(t, y) ∈ (0, T ) × H

v(T , y) = g(y0) ∀y ∈ H

(4.6)
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Notice that, in the above Eqs. (4.4) and (4.6), the gradient inside the Hamiltonian H is indeed
a couple of directional derivatives since it acts only through the operator B∗ whose image
lies in R

2.
In the next subsections we specify f , g and we show that with such a choice (4.3a) and

(4.3b) are verified.

4.2 Explicit solution of the HJB equation in the auxiliary LQ case

In this section we specify the general model with

f (t, x,m, u, z) = α0x − α1m − β0u − γ0u
2 − β1z − γ1z

2

g(x,m) = λ0x − λ1m (4.7)

for (x,m, u, z) ∈ R
4, where

(i) α0, α1, β0, β1, λ0, λ1 ∈ R;
(ii) γ0 > 0, γ1 > 0.

We also set U = R. Notice that Assumption 2.2 is satisfied. Moreover, denoting α̃ =
(α0,−α1), β̃ = (β0, β1), and recalling (2.12), we have, for q ∈ R

2,

u∗(q) := argmax
u∈U

{〈α̃, y0〉 + 〈q − β̃, (1, 1)〉u − (γ0 + γ1)u
2}

= 〈q − β̃, (1, 1)〉
2(γ0 + γ1)

, (4.8)

which entails, by considering the definition of H given in (4.5),

H(t, y, q) =
(
〈q − β̃, (1, 1)〉

)2

4(γ0 + γ1)
+ 〈α̃, y0〉

and then the HJB equation (4.4) reads as
⎧
⎪⎪⎨

⎪⎪⎩

vt (t, y) + 1
2 Tr Q∇2v(t, y) + 〈Ay,∇v(t, y)〉

+
(
〈B∗∇v(t,y)−β̃,(1,1)〉

)2

4(γ0+γ1)
+ 〈α̃, y0〉 − rv(t, y) = 0 ∀(t, y) ∈ (0, T ) × H

v(T , y) = 〈λ̃, y0〉 ∀y ∈ H

(4.9)

where λ̃ = (λ0,−λ1).
We look for solutions of (4.9) of the following form

v(t, y) = 〈a(t), y〉 + b(t) (4.10)

with a : [0, T ] → H and b : [0, T ] → R to be determined. The final condition in (4.9) holds
true for (4.10) only if

a(T ) = (λ̃, 0), b(T ) = 0. (4.11)

Moreover, if v is of the form (4.10), (4.9) reads as

〈ȧ(t), y〉+ ḃ(t)+〈y, A∗a(t)〉+
(
〈B∗a(t) − β̃, (1, 1)〉

)2

4(γ0 + γ1)
+〈α̃, y0〉−r〈a(t), y〉−rb(t) = 0

(4.12)
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The previous Eq. (4.12) is to be intended in a mild way that we are going to specify in
the following, since we cannot guarantee that, for all t , a(t) ∈ D(A∗). Indeed, by (4.11),
a(T ) /∈ D(A∗).

Equation (4.12) can be aligned into two equations by isolating the terms containing y and
all the other terms, namely

〈ȧ(t), y〉 + 〈y, A∗a(t)〉 + 〈α̃, y0〉 − r〈a(t), y〉 = 0 (4.13)

and

ḃ(t) +
(
〈B∗a(t) − β̃, (1, 1)〉

)2

4(γ0 + γ1)
− rb(t) = 0. (4.14)

Taking into account that (4.13) must hold for all y ∈ H , and combining (4.13) and (4.14)
with the final conditions (4.11), we obtain two separated equations, one for a and one for b,
namely {

ȧ(t) + A∗a(t) + (α̃, 0) − ra(t) = 0 t ∈ [0, T )

a(T ) = (λ̃, 0)
(4.15)

and ⎧
⎨

⎩
ḃ(t) +

(
〈B∗a(t)−β̃,(1,1)〉

)2

4(γ0+γ1)
− rb(t) = 0 t ∈ [0, T )

b(T ) = 0
(4.16)

We solve (4.15), which turns out to be an abstract evolution equation in H , in mild sense,
getting

a(t) = e(T−t)(A∗−r)(λ̃, 0) +
∫ T

t
e(s−t)(A∗−r)(α̃, 0)ds. (4.17)

Consequently we can write the solution to (4.16)

b(t) =
∫ T

t

1

2
e−r(s−t)

(
〈B∗a(s) − β̃, (1, 1)〉

)2

4(γ0 + γ1)
ds, (4.18)

where a is given by (4.17).
So far we have found a solution v to the HJB equation (4.9) whose candidate optimal

feedback is deterministic. In the next section we will prove that it is indeed the optimal
control and that v = V . We will also prove that the optimal feedback control associated
to the optimal control problem associated to V is deterministic. This will allow us to apply
Proposition 4.1, so finding the optimal strategies for the initial problem in the linear quadratic
case.

4.3 Fundamental identity and verification theorem in the auxiliary LQ case

The aim of this subsection is to provide a verification theorem and the existence of optimal
feedback controls for the linear quadratic problem for V introduced in the previous section.
This, in particular, will imply that the solution in (4.10), with a and b given respectively by
(4.17) and (4.18), coincides with the value function of our optimal control problem V defined
in (4.2).

The main tool needed to get the wanted results is an identity [often called “fundamental
identity”, see Eq. (4.19)] satisfied by the solutions of the HJB equation. Since the solution
(4.10) is not smooth enough (it is not differentiable with respect to t due to the presence of

123



Mathematics and Financial Economics (2024) 18:413–427 423

A∗ in a, given by (4.17)), we need to perform an approximation procedure thanks to which
Ito’s formula can be applied. Finally we pass to the limit and obtain the needed “fundamental
identity”.

Proposition 4.2 Let Assumption 2.1 hold. Let v be as in (4.10), with a and b given respectively
by (4.17) and (4.18), solution of the HJB equation(4.9). Then for every t ∈ [0, T ], y ∈ H,
and ũ = (u, z) ∈ U × U , with u = z, we have the fundamental identity

v(t, y) = J (t, y; ũ) + E

⎡

⎢
⎣

∫ T

t
e−r(s−t)

⎛

⎜
⎝

(
〈B∗∇v(t, Y t,y,ũ(s)) − β̃, (1, 1)〉

)2

4(γ0 + γ1)

+ 〈α̃, (Y t,y,ũ)0(s)〉 − HCV (s, B∗∇v(s, Y t,y,ũ, ũ(s))

)

ds

]

. (4.19)

Proof Let t ∈ [0, T ), y ∈ H , ũ = (u, z) ∈ U × U , u = z. We should apply Ito’s formula to
the process

{
e−rsv(s, Y t,y,ũ(s))

}

s∈[t,T ], but we cannot, because Y
t,y,ũ is a mild solution (the

integrals in (3.2) are convolutions with a C0-semigroup) and not a strong solution of (3.1),
moreover v is not differentiable in t , since (λ̃, 0) /∈ D(A∗). Then we approximate Y t,y,ũ

by means of the Yosida approximation (see also [10, Proposition 5.1]). For k0 ∈ N large
enough, the operator k − A, k ≥ k0, is full-range and invertible, with continuous inverse,
and k(k − A)−1A can be extended to a continuous operator on H . Define, for k ≥ k0, the
operator on H

Ak := k(k − A)−1A.

It is well known that, as k → ∞, et Ak y′ → et A y′ in H , uniformly for t ∈ [0, T ] and for y′
on compact sets of H . Since Ak is continuous, there exists a unique strong solution Y

t,y,ũ
k to

the SDE on H
⎧
⎪⎨

⎪⎩

dYk(s) = (AkYk(s) + Bũ(s)) ds + GdW (s) s ∈ (t, T ]
Yk(t) = y

ũ(s + ξ) = (δ(ξ), δ(ξ)) ∀ξ ∈ [−d, 0]
(4.20)

By taking into account (3.2) together with the same formula with Ak in place of A, and by
recalling the convergence e·Ak → e·A mentioned above, one can easily show that

Y t,y,ũ
k → Y t,y,ũ in L2

P (� × [0, T ]; H) as k → ∞. (4.21)

We now take into consideration the HJB
⎧
⎪⎪⎨

⎪⎪⎩

vt (t, y) + 1
2 Tr Q∇2v(t, y) + 〈Ak y,∇v(t, y)〉

+
(
〈B∗∇v(t,y)−β̃,(1,1)〉

)2

4(γ0+γ1)
+ 〈α̃, y0〉 − rv(t, y) = 0 ∀(t, y) ∈ (0, T ) × H

v(T , y) = 〈λ̃, y0〉 ∀y ∈ H .

(4.22)

As argued for (4.9), a solution for (4.22) is given by

v(k)(t, y) = 〈ak(t), y〉 + bk(t) (4.23)

where

ak(t) = e(T−t)(A∗
k−r)(λ̃, 0) +

∫ T

t
e(s−t)(A∗

k−r)(α̃, 0)ds (4.24)

123



424 Mathematics and Financial Economics (2024) 18:413–427

and

bk(t) =
∫ T

t

1

2
e−r(s−t)

(
〈B∗ak(s) − β̃, (1, 1)〉

)2

4(γ0 + γ1)
ds. (4.25)

Since A∗
k ∈ L(H), both ak and bk belong to C1([0, T ];R). So we can apply Ito’s formula to

{
e−r(s−t)v(k)(s, Y t,y,ũ

k (s))
}

s∈[t,T ] getting:

e−r(T−t)
E

[
v(k)(T , Y t,y,ũ

k )
]

− E

[
v(k)(t, y)

]

= E

[∫ T

t
e−r(s−t)

(
v

(k)
t (s, Y t,y,ũ

k (s)) − rv(k)(s, Y t,y,ũ
k (s))

+ 1

2
Tr

[
Q∇2v(k)(t, Y t,y,ũ

k (s))
]

+〈AkY
t,y,ũ
k (s),∇v(k)(s, Y t,y,ũ

k (s))〉 + 〈Bũ(s),∇v(k)(s, Y t,y,ũ
k (s))〉

]
ds.

Since v(k) is a solution to Eq. (4.22), we get

e−r(T−t)
E

[
〈λ̃,

(
Y t,y,ũ
k

)

0
(T )〉

]
− v(k)(t, y)

= E

∫ T

t

⎡

⎢
⎣e−r(s−t)

⎛

⎜
⎝−

(
〈B∗∇v(k)(t, Y t,y,ũ

k (s)) − β̃, (1, 1)〉
)2

4(γ0 + γ1)
− 〈α̃, (Y t,y,ũ

k )0(s)〉

+
〈
Bũ(s),∇v(k)(s, Y t,y,ũ

k (s))
〉 )

ds

]

. (4.26)

We then let k → ∞ in (4.26). Recalling the convergence e·Ak → e·A mentioned above,
we first notice that

ak → a in H and bk → b in R, uniformly on [0, T ], as k → ∞. (4.27)

Then (4.26), (4.27), and (4.21) entail

e−r(T−t)
E

[
〈λ̃,

(
Y t,y,ũ

)

0
(T )〉

]
− v(t, y)

= E

∫ T

t

⎡

⎢
⎣e−r(s−t)

⎛

⎜
⎝−

(
〈B∗∇v(t, Y t,y,ũ(s)) − β̃, (1, 1)〉

)2

4(γ0 + γ1)
− 〈α̃, (Y t,y,ũ)0(s)〉

+
〈
Bũ(s),∇v(s, Y t,y,ũ(s))

〉 )

ds

]

, (4.28)

or

v(t, y) = e−r(T−t)
E

[
〈λ̃,

(
Y t,y,ũ

)

0
(T )〉

]

+ E

⎡

⎢
⎣

∫ T

t
e−r(s−t)

⎛

⎜
⎝

(
〈B∗∇v(t, Y t,y,ũ(s)) − β̃, (1, 1)〉

)2

4(γ0 + γ1)
+ 〈α̃, (Y t,y,ũ)0(s)〉

−
〈
Bũ(s),∇v(s, Y t,y,ũ(s))

〉 )

ds

]

.
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Finally, adding and subtracting

E

[∫ T

t
e−r(s−t)

(

〈β̃, ũ(s)〉 +
〈[

γ0 0
0 γ1

]

ũ(s), ũ(s)

〉)

ds

]

we get

v(t, y) = J (t, y; ũ) + E

⎡

⎢
⎣

∫ T

t
e−r(s−t)

⎛

⎜
⎝

(
〈B∗∇v(t, Y t,y,ũ(s)) − β̃, (1, 1)〉

)2

4(γ0 + γ1)

+ 〈α̃, (Y t,y,ũ)0(s)〉 − HCV (s, B∗∇v(s, Y t,y,ũ, ũ(s))

)

ds

]

.

��
We can now pass to prove a verification theorem i.e. a sufficient condition of optimality

given in term of the solution v of the HJB equation.

Theorem 4.3 Let Assumption 2.1 hold true. Let v be in (4.10), with a and b given respectively
by (4.17) and (4.18), solution to the HJB equation (4.9). Then the following holds.

(i) For all (t, y) ∈ [0, T ] × H we have v(t, y) ≥ V (t, y), where V is the value function
defined in (4.2).

(ii) Let t ∈ [0, T ], y ∈ H. If u∗ is as in (4.8), and if ũ∗(s) := (u∗(B∗a(s)), u∗(B∗a(s))),
s ∈ [t, T ], then the pair (ũ∗, Y t,y,ũ∗

) is optimal for the control problem (4.2), and
V (t, y) = v(t, y) = J (t, y; ũ∗).

Proof The first statement follows directly by (4.19) due to the positivity of the integrand.
Concerning the second statement, we immediately see that, when ũ = ũ∗, (4.19) becomes
v(t, y) = J (t, y; ũ∗). Since we know that, for any admissible control ũ = (u, z) ∈ U × U
with u = z,

J (t, y; ũ) ≤ V (t, y) ≤ v(t, x),

the claim immediately follows. ��

4.4 Equivalence with the original problem in the LQ case

To find the solution of the original problem in the LQ case we need to apply Proposition
4.1, i.e. to prove that the optimal control in the original LQ case is deterministic. This is the
subject of next proposition.

Proposition 4.4 Condition (4.3a) is verified.

Proof Let t ∈ [0, T ], y ∈ H . Let ũ = (u, z) ∈ U , with z(s) = E[u(s)] for s ∈ [t, T ]. Let
ũE = (E[u], z). Then

ũE ∈ {
ũ = (u, z) ∈ U × U, and u = z deterministic

}
.

Notice, by (3.2), that

E

[
Y t,y,ũ

]
= E

[
Y t,y,ũE

]
. (4.29)

Then

J (t, y; ũ) = E

[ ∫ T

t
e−r(s−t)

(

〈α̃, Y t,y,ũ
0 (s)〉 − 〈β̃, ũ(s)〉 −

〈[
γ0 0
0 γ1

]

ũ(s), ũ(s)

〉)

ds
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+ 〈λ̃, (Y t,y,ũ)0(T )〉
]

= E

[ ∫ T

t
e−r(s−t)

(

〈α̃, Y t,y,ũE
0 (s)〉 − 〈β̃, ũE(s)〉 −

〈[
γ0 0
0 γ1

]

ũ(s), ũ(s)

〉)

ds

+ 〈λ̃, (Y t,y,ũE)0(T )〉
]

≤ (by Jensen’s inequality)

≤ E

[ ∫ T

t
e−r(s−t)

(

〈α̃, Y t,y,ũE
0 (s)〉 − 〈β̃, ũE(s)〉 −

〈[
γ0 0
0 γ1

]

ũE(s), ũE(s)

〉)

ds

+ 〈λ̃, (Y t,y,ũE)0(T )〉
]

,

which implies (4.3a). ��
Corollary 4.5 Let f , g be as in (4.7). Let t ∈ [0, T ], x ∈ R. If u∗ is as in (4.8), with (x, x) in
place of y0, then u∗(B∗a(s)) is optimal for V (t, x).

Proof The statement is a straightforward consequence of (4.1), Proposition 4.1, Theorem 4.3.
��
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