
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ubes20

Journal of Business & Economic Statistics

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/ubes20

Proper Scoring Rules for Evaluating Density
Forecasts with Asymmetric Loss Functions

Matteo Iacopini, Francesco Ravazzolo & Luca Rossini

To cite this article: Matteo Iacopini, Francesco Ravazzolo & Luca Rossini (2023) Proper Scoring
Rules for Evaluating Density Forecasts with Asymmetric Loss Functions, Journal of Business &
Economic Statistics, 41:2, 482-496, DOI: 10.1080/07350015.2022.2035229

To link to this article:  https://doi.org/10.1080/07350015.2022.2035229

© 2022 The Author(s). Published with
license by Taylor & Francis Group, LLC.

View supplementary material 

Published online: 11 Mar 2022.

Submit your article to this journal 

Article views: 2683

View related articles 

View Crossmark data

Citing articles: 4 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=ubes20
https://www.tandfonline.com/journals/ubes20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/07350015.2022.2035229
https://doi.org/10.1080/07350015.2022.2035229
https://www.tandfonline.com/doi/suppl/10.1080/07350015.2022.2035229
https://www.tandfonline.com/doi/suppl/10.1080/07350015.2022.2035229
https://www.tandfonline.com/action/authorSubmission?journalCode=ubes20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ubes20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/07350015.2022.2035229?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/07350015.2022.2035229?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/07350015.2022.2035229&domain=pdf&date_stamp=11 Mar 2022
http://crossmark.crossref.org/dialog/?doi=10.1080/07350015.2022.2035229&domain=pdf&date_stamp=11 Mar 2022
https://www.tandfonline.com/doi/citedby/10.1080/07350015.2022.2035229?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/07350015.2022.2035229?src=pdf


JOURNAL OF BUSINESS & ECONOMIC STATISTICS
2023, VOL. 41, NO. 2, 482–496
https://doi.org/10.1080/07350015.2022.2035229

Proper Scoring Rules for Evaluating Density Forecasts with Asymmetric Loss Functions

Matteo Iacopinia,b, Francesco Ravazzoloc,d,e, and Luca Rossinif,g

aVrije Universiteit Amsterdam, Amsterdam, The Netherlands; bTinbergen Institute, Amsterdam, The Netherlands; cFree University of Bozen-Bolzano, Italy;
dBI Norwegian Business School, Oslo, Norway; eRCEA, Rimini, Italy; fUniversity of Milan, Milan, Italy; gCa’ Foscari University of Venice, Venice, Italy

ABSTRACT
This article proposes a novel asymmetric continuous probabilistic score (ACPS) for evaluating and comparing
density forecasts. It generalizes the proposed score and defines a weighted version, which emphasizes
regions of interest, such as the tails or the center of a variable’s range. The (weighted) ACPS extends the
symmetric (weighted) CRPS by allowing for asymmetries in the preferences underlying the scoring rule. A
test is used to statistically compare the predictive ability of different forecasts. The ACPS is of general use
in any situation where the decision-maker has asymmetric preferences in the evaluation of the forecasts. In
an artificial experiment, the implications of varying the level of asymmetry in the ACPS are illustrated. Then,
the proposed score and test are applied to assess and compare density forecasts of macroeconomic relevant
datasets (U.S. employment growth) and of commodity prices (oil and electricity prices) with particular focus
on the recent COVID-19 crisis period.
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1. Introduction

Macroeconomic forecasting has always been of pivotal impor-
tance for central bankers, policymakers, and researchers. Nowa-
days, the vast majority of the research in macroeconomics and
finance mainly focuses on the development and implementation
of forecasting techniques minimizing the expected squared fore-
cast error (Gneiting 2011).

A universal approach to forecasting is the provision of a
predictive density, known as probabilistic or density forecasting
(see Elliott and Timmermann 2016, chap. 8). Two key aspects
of density forecasts are the statistical compatibility between the
forecasts and the realized observations (calibration) and the
concentration of predictive distributions (sharpness). Proba-
bilistic forecasts aim to maximize their sharpness, subject to
calibration (Gneiting and Ranjan 2013). Density forecasting
is more complex than point forecasting since the estimation
problem requires to construct the whole predictive distribution,
rather than a specific functional thereof (e.g., mean or quantile).
Several reasons have been suggested for preferring density over
point forecasts (e.g., Elliott, Ghanem, and Krüger 2016). First,
point forecasting is often associated with the mean of a distribu-
tion and it is optimal for highly restricted loss functions, such as
quadratic loss function, but inadequate for any prospective user
having a different loss. Moreover, the value of a point forecast
can be increased by supplementing it with some measures of
uncertainty and complete probability distributions over the out-
comes provide useful information for making economic deci-
sions; see, for example, Anscombe (1968) for early works and
the discussions in Timmermann (2006) and Gneiting (2011).
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Carriero, Clark, and Marcellino (2020) extend the application
of point forecasts to tail risk nowcasts of economic activity.
Moreover, there is substantial interest in forecasting continuous
variables outside economics, such as climate (Jasiński 2020),
energy consumption (Adams and Shachmurove 2008), biomed-
ical science and biology (Ioannidis 2009; Tripto et al. 2020).
Finally, in recursive forecasting with nonlinear models, the full
predictive density matters since the nonlinear effects typically
depend not only on the conditional mean but also on where
future values occur in the set of possible outcomes.

Asymmetry plays an important role in forecasting time series
and in particular in examining the variation in the degree of
asymmetry when the forecast horizon increases (see, e.g., Gal-
braith and van Norden 2019). However, a theoretical framework
to test the asymmetry in density forecasting is missing and we
contribute to this stream of literature by introducing a new
asymmetric proper scoring rule, the ACPS.

Despite being common practice, the use of symmetric loss
functions in forecasting is unrealistic especially in policy insti-
tutions, where the policymakers could have a specific aversion
to positive or negative deviations of a forecast from the tar-
get. Consider a policymaker who is interested in forecasting
employment. Suppose that, if the predicted employment rate
drops below a given threshold, she will be forced to adopt
a new expansionary economic policy. It is highly likely that
the policymaker is more averse to forecasts that give too high
probability mass to the right part of the distribution of the
employment rate (positive growth of employment), while she
may be more relaxed concerning forecasts that give too high
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probability mass to the left part of the distribution (negative
or low growth of employment). This is the case of the FED,
which has recently fixed the target long-run unemployment
rate around 4.1%.1 With this objective, if an economic forecast
points to a long-run unemployment rate higher than the 4.1%
threshold, then the FED would probably intervene to lower it,
whereas if the forecasted rate is below the threshold, it is likely
that the FED may need to raise interest rates since the economy
is over-heating.

Other examples relate to energy markets that have recently
experienced negative prices. West Texas Index (WTI) oil prices
collapsed to −37.63 U.S. dollar for barrel in April 2020; German
electricity prices have measured several negative prices with the
introduction of renewable energy resources (RES). Producers
would be more sensitive to prices below a threshold, up to
zero if the marginal cost of production is zero, as is the case
of RES, than higher prices. These examples call for the design
of a more general class of loss functions and scoring rules that
account for asymmetry, to guide the process of making and
assessing forecasts. Hence, we develop a measure that properly
incorporates asymmetry in density forecasting evaluation, and
we apply it to study forecasting asymmetry in the three above-
mentioned datasets.

The main goal of this article is the proposal of novel and prac-
tical forecasting evaluation tools that can answer the increasing
demand from policymakers and central bankers. We plan to
achieve this result by introducing an innovative asymmetric
scoring rule that can measure and evaluate heterogeneous aver-
sion to different deviations of a density forecast from the target.
We derive some properties of the new scoring rule and, in
particular, demonstrate that it is a proper scoring rule. More-
over, we provide threshold- and quantile-weighted versions that
allow emphasizing the performance of the forecast in regions of
interest to the policymaker.

Within the literature on point forecasting, Christoffersen and
Diebold (1996, 1997) proposed some asymmetric loss functions.
In the former article, they studied the optimal prediction prob-
lem under general loss structures and characterized the optimal
predictor under an asymmetric loss function, focusing on the
LinEx and the LinLin loss functions. In the latter, they illustrated
an asymmetric loss in the context of GARCH processes.

More recently, scholars have begun to empirically investigate
the degree of loss function asymmetry of central banks and
other international institutions. Among others, Elliott, Timmer-
mann, and Komunjer (2005), Elliott, Komunjer, and Timmer-
mann (2008) and Patton and Timmermann (2007) proposed
formal methods to infer the degree of asymmetry of the loss
function and to test the rationality of forecasts. Within this
stream of literature, Artis and Marcellino (2001) found that
IMF and OECD forecasts of the deficit of G7 countries are
biased toward over-prediction for Japan, UK, and Italy, thus,
the fiscal situation turns out to be better than expected. On
the other hand, Canada’s under-prediction takes place when
the fiscal situation is worse than expected for Canada (negative
forecast error) relative to mean square error (MSE) forecasts.
Regarding European institutions’ forecasts, Christodoulakis and
Mamatzakis (2008, 2009) found evidence of asymmetric loss.

1See https://www.chicagofed.org/research/dual-mandate/dual-mandate

In another study, Dovern and Jannsen (2017) documented that
the GDP growth forecasts made by professional forecasters tend
to exhibit systematic errors, and tend to overestimate GDP
growth. Moreover, Boero, Smith, and Wallis (2008) interpreted
the tendency to over-predict GDP growth as a signal that pol-
icymakers exhibit greater fear of under-prediction than over-
prediction, thus, suggesting that their judgments are based on
an asymmetric loss. Recently, Tsuchiya (2016) examined the
asymmetry of the loss functions of the Japanese government, the
IMF, and private forecasters for Japanese growth and inflation
forecasts.

Concerning forecast combination, Elliott and Timmermann
(2004) showed that the optimal combination weights signifi-
cantly differ under asymmetric loss functions and skewed error
distributions as compared to those obtained with mean squared
error loss.

A natural way to evaluate and compare competing forecasts
is the use of proper scoring rules, which assess calibration
and sharpness simultaneously and encourage honest and care-
ful forecasting. Specifically, a proper scoring rule is a func-
tion that compares a probabilistic forecast with a realization
of the variable, such that it is maximized when the forecast
corresponds to the true distribution generating the data. It is
strictly proper if the maximum is unique. Despite the wide
literature on the class of proper scoring rules for probabilistic
forecasts of categorical and binary variables (see, e.g., Savage
1971; Schervish 1989) the advances for continuous variables are
more limited. Motivated by these facts, we aim at designing a
novel asymmetric proper scoring rule to be used for evaluating
density forecasts of continuous variables, which is the typical
case in macroeconomics and finance exercises (e.g., predicting
variables such as unemployment, inflation, log-returns, GDP
growth, and realized volatility).

Gneiting and Raftery (2007) proposed the continuous rank
probability score (CRPS) as a proper scoring rule for probabilis-
tic forecasts of continuous variables, and more recently, Gneit-
ing and Ranjan (2011) extended the CRPS by introducing a
threshold- and a quantile-weighted version (tCRPS and qCRPS,
respectively). These scoring rules give more emphasis to the
performance of the density forecast in a selected region of the
domain, B, by assigning more weight to the deviations from the
observations made in B. The major drawback of both the CRPS
and its weighted versions is the symmetry of the underlying
reward scheme, meaning that they assign an equal reward to
positive and negative deviations of a probabilistic forecast from
the target. This comes from the fact that the CRPS is built on the
Brier score and inherits some of its properties, such as proper-
ness and symmetry. Similarly, since both the weighted versions
of the CRPS essentially consist of reweighting the CRPS over
the domain of the variable of interest, they inherit the symmetry
of the latter. Diks, Panchenko, and Van Dijk (2011); Diks et al.
(2014) propose an alternative method to compare the predictive
accuracy of competing density forecasts on a specific region of
interest, B (e.g., the tails of the density). The approach relies
on a likelihood-based scoring rule that exploits the conditional
likelihood (given that the actual observation lies in B) or the
censored likelihood (with censoring of the observations outside
B) and favors density forecasts that closely approximate the true
density in the region of interest, B.

https://www.chicagofed.org/research/dual-mandate/dual-mandate
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Winkler (1994) did the first effort toward asymmetric scoring
rules and proposed a general method for constructing asymmet-
ric proper scoring rules starting from symmetric ones. However,
this approach is limited to forecasting binary variables, and
continuous variables were not investigated.

We address this issue and contribute to the literature on
proper scoring rules for evaluating density forecasts by propos-
ing a novel asymmetric proper scoring rule which assigns differ-
ent penalties to positive and negative deviations from the true
density. The main contribution of this article is 2-fold. First, we
define a new proper scoring rule which assigns an asymmetric
penalty to deviations from the target density. Moreover, we
provide a threshold- and quantile-weighted version of it and
apply a Diebold–Mariano-type test to our ACPS to statistically
compare the predictive ability of different forecasts. Then, we
compare the performance of the scores with the CRPS and its
weighted versions. Second, we use the proposed score to evalu-
ate density forecasts in three relevant applications in macroe-
conomics (U.S. employment growth) and commodity prices
(oil and electricity prices) with data updated to the COVID-
19 crisis period. Variables have experienced large volatilities,
with sizeable spikes and negative energy prices. As we discussed
above, players might be more sensitive to some specific parts
of the distribution of these series and we shed light on how to
evaluate this asymmetry.

The key result of this article is the provision of a tool able to
account for the decision-maker’s preferences in the evaluation of
density forecasts, both in terms of domain- and error-weighting
schemes. Domain-weighting gives heterogeneous emphasis to
the performance of different regions, while the error-weighting
asymmetrically rewards negative and positive deviations from
the target value. The proposed weighted asymmetric scor-
ing rule combines the two schemes and allows the evalua-
tion of the performance of the forecasting density from both
perspectives.

The rest of the article is organized as follows. Section 2
presents a novel asymmetric scoring rule for density forecasts,
its extension to threshold- and quantile-weighted versions, and
a test to compare the predictive accuracy of different forecasts.
Then Section 3 discusses its main properties and illustrates
a comparison with the (weighted) CRPS in simulated exper-
iments. Finally, Section 4 provides different applications for
forecasting U.S. macroeconomic variables (employment rate)
and commodity prices (oil and electricity prices). The article
closes with a discussion in Section 5.

The MATLAB code for implementing the proposed scoring
rules is available at: https://github.com/matteoiacopini/acps

2. Asymmetric Proper Scoring rules for Density
Forecasting

The evaluation and comparison of probabilistic forecasts typi-
cally relies on proper scoring rules. Informally, a scoring rule
is a measure that summarizes the goodness of a probabilistic
forecast by combining the predictive distribution and the value
that actually materializes. One can think of it as a measure
of distance between the probabilistic forecast and the actual

value. We consider positively oriented scoring rules, there-
fore, if probabilistic forecast P1 obtains a higher score than
P2, this means that P1 yields a more accurate forecast than
P2. Therefore, the score can be interpreted as a reward to be
maximized.

In more formal terms, following the notation of Gneiting and
Raftery (2007), consider the problem of making probabilistic
forecasts on a general sample space �. Let A be a σ -algebra of
subsets of �, and let P be a convex class of probability measures
on (�,A). A probabilistic forecast is any probability measure
P ∈ P , such that P : � → R̄, where R̄ = [−∞, +∞]
denotes the extended real line, is said to be P-quasi-integrable
if it is measurable with respect to A and is quasi-integrable with
respect to all P ∈ P (see Bauer 2011). A scoring rule is any
extended real-valued function S : P × � → R̄ such that S(P, ·)
isP-quasi-integrable for all P ∈ P . In practice, if P is the forecast
density and the event ω materializes, then the forecaster’s reward
is S(P, ω).

To be effectively used in scientific forecasts evaluation, scor-
ing rules have to be proper, meaning that they have to reward
accurate forecasts. Suppose the true density of the observations
is Q and denote the expected value of S(P, ω) under Q(ω) with

S(P, Q) = EQ[S(P, ω)] =
∫

�

S(P, ω)Q(dω),

then the scoring rule S is strictly proper if S(Q, Q) ≥ S(P, Q),
with equality holding if and only if P = Q.

The vast majority of the proper scoring rules proposed in the
literature are symmetric (e.g., CRPS2), that is, they reward in
the same way positive and negative deviations from the target.
For example, suppose a forecast P1 assigns too high probability
mass to the right part of the domain (as compared to the true
density) and a forecast P2 assigns too high probability mass to
the left part, by the same amount. If these forecasts are evaluated
under a symmetric scoring rule, then they receive the same
score.

A symmetric loss is unsatisfactory for many real-world sit-
uations where the decision-maker has a preference or aversion
toward a particular kind of error. We aim at filling in this gap by
defining a new asymmetric proper scoring rule for continuous
variables, which is suited for evaluation and comparison of
density forecasts and penalizes more either side of the deviation
from the target.

Definition 1 (Asymmetric Continuous Probability Score). Let c ∈
(0, 1) represent the level of asymmetry, such that c = 0.5 implies
a symmetric loss, while c < 0.5 penalizes more the left tail, and
c > 0.5 the right tail. Let P be the probabilistic forecast and y the
realized (ex-post) value. We define the asymmetric continuous

2The continuous ranked probability score (Gneiting and Raftery 2007) is
defined as

CRPS∗(P, y) = −
∫ +∞
−∞

(F(u) − I(y ≤ u))2du. (1)

It is a proper scoring rule based on a symmetric (quadratic) loss function. In
the following, we will use the negative orientation, that is CRPS = −CRPS∗.

https://github.com/matteoiacopini/acps
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probability score (ACPS) as

ACPS(P, y; c) =
∫ y

−∞
(
c2 − P(u)2)[ 1

(1 − c)2 I(P(u) > c)

+ 1
c2 I(P(u) ≤ c)

]
du +

∫ +∞

y

(
(1 − c)2 − (1 − P(u))2)

[ 1
(1 − c)2 I(P(u) > c) + 1

c2 I(P(u) ≤ c)
]

du.

(2)

The following result shows the properness of our new score
for every level of asymmetry. Our main contribution is a con-
structive proof that relies on the combination of some of the
results in Matheson and Winkler (1976) and Winkler (1994)
to obtain a scoring rule accounting for (i) continuous proba-
bility distributions, (ii) asymmetric loss, and (iii) being proper.
Specifically, Matheson and Winkler (1976) are concerned with
the definition of proper scoring rules for continuous probability
distributions, whereas Winkler (1994) considers the problem
of creating proper asymmetric scoring rules from symmetric
ones, but it is limited to binary distributions. The constructive
proof of Theorem 1 illustrates how to suitably combine the two
approaches to get a scoring rule with the desired properties.

Theorem 1 (Properness). The asymmetric scoring rule ACPS
defined in Equation (2) is strictly proper for any c ∈ (0, 1).

Proof. The strict properness derives from the fact that ACPS
can be obtained from the quadratic score for binary outcomes,
which is strictly proper, via two transformations that preserve
properness, see Winkler (1994) and Matheson and Winkler
(1976). Specifically, let p ∈ (0, 1) be a probabilistic forecast of
success in a binary experiment and let S be the quadratic rule,
that is

S(p) =
{

S1(p) = 1 − (1 − p)2, if success,
S2(p) = 1 − p2, if failure.

Notice that S(p) is a strictly proper and symmetric scoring
rule. Following Winkler (1994), one can obtain a strictly proper
asymmetric scoring rule for binary outcomes via the transfor-
mation

SA
c (p) =

⎧⎪⎨
⎪⎩

S1(p) − S1(c)
T(c)

, if success,
S2(p) − S2(c)

T(c)
, if failure,

T(c) =
{

S1(1) − S1(c), if p > c,
S2(0) − S2(c), if p ≤ c,

where c ∈ (0, 1) is the level of asymmetry. Following Mathe-
son and Winkler (1976), to obtain an asymmetric scoring rule
for continuous variables, we assume that the subject assigns a
probability distribution function P(x) to a continuous variable
of interest. Fix an arbitrary real number u to divide the real line
into two intervals, I1 = I(−∞, u] and I2 = I(u, ∞), and define
a success the event that y falls in I1. Since P(u) ∈ (0, 1) for any
u ∈ R, we can evaluate the binary scoring rule SA

c at p = P(u),
thus, obtaining a different value SA

c (P(u)) for each u. Finally,
the dependence of the scoring rule on the arbitrary value of u
is removed by integrating over all u, which yields (2).

The integrals in Equation (2) can be numerically approxi-
mated by truncating the domain to [umin, y] and [y, umax] such
that

ACPS(P, y; c) ≈
N∑

i=1
wy

2,i
(
c2 − P(uy

2,i)
2)[ 1

(1 − c)2 I(P(uy
2,i) > c)

+ 1
c2 I(P(uy

2,i) ≤ c)
]

+
N∑

i=1
wy

1,i
(
(1 − c)2 − (1 − P(uy

1,i))
2)

[ 1
(1 − c)2 I(P(uy

1,i) > c) + 1
c2 I(P(uy

1,i) ≤ c)
]

,

(3)
where (wy

1,i, uy
1,i)i and (wy

2,i, uy
2,i)i, for i = 1, . . . , N, are the

weights and locations of two Gaussian quadratures of N points
on [y, umax] and [umin, y], respectively.

Remark 1. In Bayesian statistics it is current practice the use
of predictive distributions, mostly in the form of Monte Carlo
samples from posterior predictive distributions of quantities
of interest.3 The asymmetric scoring rule ACPS can be easily
computed using the output of a Markov chain Monte Carlo
algorithm by approximating the predictive distribution via the
empirical cumulative distribution function (empirical CDF)
and using it as a probabilistic forecast P.

To get an insight of the shape of the ACPS for varying
levels of asymmetry,4 Example 1 reports the value of the score
as a function of c, for several probabilistic forecasts. See the
supplementary materials for further examples.

Example 1. Let us consider several Gaussian probabilistic fore-
casts P. In Figure 1 we show the value of the score on a range
of asymmetry values c ∈ {0.05, 0.275, 0.50, 0.725, 0.95}, for a
given observation y whose true density is a centered Gaussian
with a standard deviation equal to 2. When the density forecast
is Gaussian with the same mean as the target, the score is an
inverse U-shaped function of the asymmetry level c. This is
essentially due to the symmetry of the Gaussian distribution
around its mean, since the probability mass in excess on the right
tail is exactly equal to the mass lacking on the left one. However,

3Let θ be the vector of all the model’s parameters. The posterior predictive
density is defined as

P(yt+1|y1, . . . , yt) =
∫
�

P(yt+1|y1, . . . , yt , θ)P(θ |y1, . . . , yt)dθ .

Unfortunately, the integral above cannot be analytically solved for many
commonly used econometric models. However, the conditional and poste-
rior distributions, P(yt+1|y1, . . . , yt , θ) and P(θ |y1, . . . , yt), respectively, can
usually be sampled from quite easily. Therefore, when adopting a Bayesian
approach based on MCMC it is possible to circumvent the integration prob-
lem and obtain an approximation of the predictive distribution as follows.
For each iteration i = 1, . . . , M of the Gibbs sampler, one first gets a draw
from the posterior distribution of the parameters, θ (i) ∼ P(θ |y1, . . . , yt),
then samples from the conditional distribution of the observation to get
y(i)

t+1 ∼ P(yt+1|y1, . . . , yt , θ (i)). This results in a collection of M draws yt+1 =
(y(1)

t+1, . . . , y(M)
t+1)′ from the posterior predictive distribution, allowing to

evaluate any predictive feature of interest. See Koop (2003) for further
details.

4The parameter c is used to introduce asymmetry in the ACPS and can be
thought of a proxy of the degree of asymmetry of the decision-maker’s
preferences. In those cases when the latter should be represented by
functions whose asymmetry cannot be captured by a single parameter, the
ACPS still provides a first-level approximation to them.
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Figure 1. Asymmetric scoring rule ACPS(P, y; c) for different forecasting densities P and asymmetry level c. The observed value is fixed at y = 0 and the true density is
N (0, 4). Left panel: cumulative distribution functions of true density (solid, black) and forecasting densities: N (−3, 1) (dashed, blue), N (0, 1) (dashed, orange), N (3, 1)

(dashed, yellow),N (0, 16) (dashed, purple). Right panel: value of the asymmetric scoring rule ACPS(P, y; c) against the asymmetry level c ∈ {0.05, 0.275, 0.50, 0.725, 0.95},
for each forecasting density (same colors as left panel).

Table 1. Examples of weight functions for threshold-weighted and quantile-
weighted CRPS, and variables supported on the real line.

Emphasis Threshold weight function Quantile weight function

Uniform w(x) = 1 v(α) = 1
Center w(x) = φ(x) v(α) = α(1 − α)

Tails w(x) = 1 − φ(x)/φ(0) v(α) = (2α − 1)2

Right tail w(x) = �(x) v(α) = α2

Left tail w(x) = 1 − �(x) v(α) = (1 − α)2

NOTE: φ, � denote the probability density and cumulative distribution functions of
the standard Normal distribution, respectively, with x ∈ R and α ∈ (0, 1).

notice that a higher score is assigned to N (0, 1), as compared to
N (0, 16). Instead, the density forecasts N (−3, 1) and N (3, 1)

receive a high penalty for high and small levels of c, respectively.
This shows that values of c close to 1 heavily penalize forecasting
densities that put more mass on the left part of the support as
compared to the target, and conversely for values of c close to 0.

2.1. Threshold and Quantile-Weighted Versions

In addition to asymmetric preferences toward under- or overes-
timation, a decision-maker is usually concerned with a precise
forecast in a specific range of all possible values. Therefore, it
is important to have a tool that allows assigning heterogeneous
weights to various regions of the set of possible values of the
variable. This calls for a scoring rule able to account for both
error-weighting, that is, asymmetric preferences, and domain-
weighting of density forecasts.

Gneiting and Ranjan (2011) modified the CRPS by reweight-
ing the loss according to a user-specified weight function, which
allows selecting the regions where the decision-maker has a
greater concern. By exploiting the representation of the CRPS
in terms of quantile functions, they define a threshold-weighted
(tCRPS) and quantile-weighted (qCRPS) score functions as fol-
lows

tCRPS(P, y) =
∫ +∞

−∞
∣∣P(z) − I(y ≤ z)

∣∣2 w(z)dz, (4)

qCRPS(P, y) =
∫ 1

0
2
(
I(y ≤ P−1(α)) − α

)
(P−1(α) − y)v(α)dα,

(5)

where w(z) ≥ 0 and v(α) ≥ 0 are the weight functions and level
α ∈ (0, 1). Table 1 reports some examples of weighting functions
for the case of real-valued variables of interest; notice that the
uniform weight, w(z) = 1 and v(α) = 1, leads to the standard

CRPS. See Lerch et al. (2017) for discussion and applications of
these scoring rules.

The definition of ACPS in (2) can be modified to address this
issue and obtain a threshold-weighted and a quantile-weighted
asymmetric scoring rule, as follows.

Definition 2 (Threshold-weighted ACPS). Let G(du) be a pos-
itive measure.5 We define the threshold-weighted asymmetric
continuous probability score (tACPS), as

tACPS(P, y; c) =
∫ y

−∞
(
c2 − P(u)2)[ 1

(1 − c)2 I(P(u) > c)

+ 1
c2 I(P(u) ≤ c)

]
G(du) +

∫ +∞

y

(
(1 − c)2 − (1 − P(u))2)

[ 1
(1 − c)2 I(P(u) > c) + 1

c2 I(P(u) ≤ c)
]

G(du),

(6)
where c ∈ (0, 1) is the level of asymmetry and P is the proba-
bilistic forecast and y the value that materializes.

Definition 3 (Quantile-weighted ACPS). Let p(u) denote the
probability density function of P(u) and let P−1(α) be the
corresponding quantile function at α ∈ [0, 1]. Let V(dα) be a
positive measure on the unit interval. We define the quantile-
weighted asymmetric continuous probability score (qACPS), as

qACPS(P, y; c) =
∫ P(y)

0

(
c2 − α2)[ 1

(1 − c)2 I(α > c)

+ 1
c2 I(α ≤ c)

] 1
p(P−1(α))

V(dα)

+
∫ 1

P(y)

(
(1 − c)2 − (1 − α)2)[ 1

(1 − c)2 I(α > c)

+ 1
c2 I(α ≤ c)

] 1
p(P−1(α))

V(dα).

(7)

As stated for ACPS, we can provide evidence of the proper-
ness of the two novel scores defined in Equations (6) and (7).

Theorem 2 (Properness of tACPS, qACPS). For any c ∈ (0, 1), it
holds:

1. The threshold-weighted asymmetric continuous probability
score tACPS in Equation (6) is strictly proper;

5Notice that G(du) is not required to be a probability measure.
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Table 2. Examples of scoring rules for evaluating density forecasts.

Domain

Uniform Weighted

Lo
ss Symmetric CRPS tCRPS, qCRPS

Asymmetric ACPS tACPS, qACPS

2. The quantile-weighted asymmetric continuous probability
score qACPS in Equation (7) is strictly proper.

Proof. From Theorem 1, it is known that the ACPS is a proper
scoring rule for any c ∈ (0, 1), therefore, we are left to prove
that a weighting scheme (threshold or quantile) preserves this
feature. The result follows from the application of the procedure
described in Matheson and Winkler (1976, Sec. 3), where the
unweighed proper scoring rule is given by the ACPS.

Both tACPS and qACPS can be computed by approximating
Equations (6) and (7) in a way analogous to Equation (3). The
main advantage of the tACPS and qACPS consists in the ability
to consider two levels of asymmetry: in terms of the loss at
each point, and over different regions of the domain. This is
fundamental to answer the need of the decision-maker who
is concerned with the performance of the forecast in a given
interval of possible values (e.g., the right tail) and who has an
aversion to particular deviations from the target (e.g., averse to
underestimation).

Table 2 provides a summary of some key differences between
the CRPS and ACPS, and the corresponding weighted versions.
We remark that the formula for the ACPS does not admit
the CRPS as a special case. Instead, for c = 0.5, the (sym-
metric) ACPS has a similar interpretation to the CRPS when
raking competing probabilistic forecasts. By the same token, the
threshold- and quantile-weighted versions, tACPS and qACPS,
for c = 0.5 can be interpreted similarly to the tCRPS and qCRPS
measures.

2.2. Testing Pedictive Ability

When forecasts from multiple models are available, there is the
need for statistical tools, such as tests, for assessing whether
different forecasts are equally good. In the context of point
forecasts, the Diebold–Mariano (DM) test is the most frequently
used test for equal forecast performance. Essentially, it is based
on the loss differential, defined as dt = L(e1,t) − L(e2,t), where
ej,t = ŷj,t − yt is the forecast error of model j = 1, 2 at time
t = 1, . . . , T, ŷj,t is the point forecast of model j, yt is the true
value, and L(·) is a given loss function. The null hypothesis of
equal accuracy in forecasting is H0 : E[dt] = 0 for all t, versus
the alternative H1 : E[dt] �= 0. It can be shown that, if the
loss differential series is (i) covariance stationary, and (ii) has
short memory (e.g., see McCracken 2020), then under the null
hypothesis

√
Td̄√

2π fd(0)
→ N (0, 1),

where d̄ and fd(0) are the sample mean and the spectral density
(at frequency 0) of the loss differential. The density forecasting

approach requires a Diebold–Mariano-type test, since the fore-
cast is an infinite dimensional object P.

Remark 2 (DM-type test). To test the null hypothesis of equal
accuracy of two competing models in a density forecasting
approach, we modify the definition of the loss differential as
follows. First, consider a proper scoring rule S, such as the ACPS
or the CRPS, then, the gain differential is defined as

d∗
t = S(yt , P2,t) − S(yt , P1,t). (8)

Notice that the series d∗
t has the same interpretation as dt in the

original DM test, and following the same theoretical arguments
one can prove that, under the null hypothesis H0 : E[d∗

t ] = 0
for each t, one has

√
Td̄∗√

2π fd∗(0)
→ N (0, 1), (9)

where d̄∗ and fd∗(0) are the equivalent of d̄ and fd(0) for d∗
t .

As claimed in Diebold (2015), when one is making model-
based forecasts in settings where the true model is unknown,
the DM test is approximately valid as long as its assumptions are
approximately true. The DM test requires that the loss differen-
tial is covariance stationary, which means: for every t, E[d∗

t ] =
μ, cov(d∗

t , d∗
t−τ ) = γ (τ), and Var[d∗

t ] = σ 2 ∈ (0, ∞). The
DM test has been extensively studied in the literature and some
extensions have been proposed to improve its performance, for
example in small samples, where parameter uncertainty does
not vanish (see Harvey, Leybourne, and Newbold 1997).

Remark 3. Being a proper scoring rule, the ACPS can be used
to compare and rank forecasts, in the spirit of the original
Diebold–Mariano test (Diebold 2015). However, starting from
West (1996); Clark and McCracken (2001), DM-type tests have
been proposed for comparing models via forecasts, in pseudo-
“out-of-sample” situations. This shift from forecast to model
comparison requires to make assumptions not about the loss
differential, but rather about the models, and ultimately results
in the validity of the DM asymptotic standard normal null distri-
bution depending on the nesting structure of the models (West
2006; Clark and McCracken 2013). However, recent studies
(Clark and McCracken 2013) have shown that standard normal
critical values often approximate the exact null distribution very
well, thus, supporting the use of these critical values in spite of
alternative bootstrap procedures. Moreover, in the presence of
model misspecification and parameter estimation error, the use
of different scoring rules to rank competing models on the basis
of the forecasting performance may result in different rankings
(Elliott, Ghanem, and Krüger 2016; Patton 2020).

In real-world applications, parameter estimation error may
affect the forecasting results. To deal with this issue, in our fore-
casting exercise, we consider a rolling window approach where
the length of the window used for estimation is substantially
larger than that for out of sample comparison. We also remark
that the empirical studies in this article are concerned with the
investigation of the role of asymmetry in the decision maker’s
preferences on the ranking of (possibly misspecified) models.
Based on the PITs and calibration tests, we find evidence of
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Figure 2. Ranking of probabilistic forecasts. Results from S = 1 simulation of N = 100 observations. Density estimated with M = 500 draws from forecasting distribution.
Target is N (0, 1) (black), forecasting densities are: N (0, 1) (black), N (−3, 1) (orange), N (3, 1) (yellow), N (0, 16) (purple).

Figure 3. Ranking of probabilistic forecasts. Results from S = 1 simulation of N = 100 observations. Density estimated with M = 500 draws from forecasting distribution.
Target is N (2, 4) (black), forecasting densities are: N (0, 1) (blue), N (−3, 1) (orange), N (3, 1) (yellow), N (0, 16) (purple).

model misspecification, especially in the application to electric-
ity prices (EEX dataset). Consistent with the previous literature,
our findings on both synthetic and real-world data show that
varying levels of the asymmetry parameter may yield different
rankings of the competing models, in terms of their forecasting
performance. Overall, as the ACPS is a proper scoring rule,
this suggests that in presence of estimation errors and model
misspecification the asymmetry of individual preferences guides
the choice of the “best” model.

3. Illustrations and Comparison with Weighted CRPS

This section investigates the performance of the proposed asym-
metric scoring rule and compares it with the CRPS. In order
to assess the good performance of our measure, we consider
different Gaussian target densities.6 For the asymmetric scoring
rule ACPS we use varying levels of asymmetry, corresponding
to c ∈ {0.05, 0.275, 0.50, 0.725, 0.95}. Recall that c = 0.50
implies a symmetric loss.

Figure 2 provides graphical evidence of the properness of the
ACPS in a Gaussian target. This figure show that the ACPS
rewards the forecast density which corresponds to the ground
truth, for all levels of asymmetry. In addition, we find that
the ranking of the competing probabilistic forecasts changes
according to the value of c, due to the different penalty assigned
to asymmetric deviations from the target.

To investigate further this aspect, Figure 3 presents the rank-
ing of forecasts when none of the candidates corresponds to the
true density, which is N (2, 4). The CRPS indicates N (3, 1) as
the “best” forecast (i.e., the one that maximizes the score), as
does the ACPS for values of c around 0.5. However, the ranking
significantly changes when the ACPS assigns more weight to

6See the supplementary materials for different target densities example, such
as Student-t, Gamma and Beta. This range includes families of distributions
with different support (R, R+ and [0, 1]), skewed and with fat tails.

the asymmetric loss, for c close to the boundary of (0, 1). For
c = 0.05 great importance is given to underestimation of the
target and the N (0, 1) is preferred, while N (0, 16) is the best
for the opposite case, when c = 0.95.

3.1. Threshold-Weighted Version

We deepen further the properties of the proposed asymmetric
scoring rule by considering a threshold-weighted version and
comparing it with the threshold-weighted CRPS. The goal is to
disentangle the different role of the domain-weighting scheme,
which reflects the interest of the decision-maker in having good
forecasts within a specific interval of values, and of the error-
weighting scheme, which corresponds to the decision-maker’s
loss in case of under or overestimation.

Consider a simulated experiment where N = 100 observa-
tions are drawn from a Normal distribution N (1, 4) and several
forecasting densities are approximated using M = 500 draws.
We consider the domain-weighting schemes in Table 1, using 5
alternative asymmetry levels c ∈ {0.05, 0.275, 0.50, 0.725, 0.95}.

In Table 3 we find that the asymmetric penalty imposed
by ACPS plays a significant role for all domain-weighting
schemes considered. For an uniform weight, the ACPS agrees
with the CRPS for c = 0.5, that is, the symmetric case, but
rewards differently the density forecasts for alternative values
of the asymmetry level c. When the interest is focused on the
right tail of the distribution, both threshold-weighted CRPS and
ACPS agree, but when the attention is on the left tail, the two
scoring rules perform remarkably different. The CRPS favors the
standard Normal over the N (3, 1), while the ACPS rewards the
latter for all c ≥ 0.275.

The key insight obtained from this simulated exercise con-
cerns the importance of domain- and error-weighting schemes.
The first assigns a heterogeneous weight to the performance
on different intervals, while the latter asymmetrically rewards
negative and positive deviations from the true value. The
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Table 3. This table reports the ranking of probabilistic forecasts using tCRPS and
tACPS, for different weights (uniform, center, tails, right and left tail) and asymmetry
levels (c ∈ {0.05, 0.2750.50, 0.725, 0.95}).

N (0, 1) N (−3, 1) N (3, 1) N (0, 16)

tCRPS uniform 4 2 3 1
tACPS(·, ·; 0.05) uniform 1 3 4 2
tACPS(·, ·; 0.275) uniform 2 1 4 3
tACPS(·, ·; 0.5) uniform 4 2 3 1
tACPS(·, ·; 0.725) uniform 4 3 2 1
tACPS(·, ·; 0.95) uniform 4 3 1 2
tCRPS center 1 3 4 2
tACPS(·, ·; 0.05) center 3 1 4 2
tACPS(·, ·; 0.275) center 3 1 4 2
tACPS(·, ·; 0.5) center 4 1 3 2
tACPS(·, ·; 0.725) center 4 1 3 2
tACPS(·, ·; 0.95) center 4 1 3 2
tCRPS tails 1 3 4 2
tACPS(·, ·; 0.05) tails 1 4 2 3
tACPS(·, ·; 0.275) tails 1 3 2 4
tACPS(·, ·; 0.5) tails 2 3 4 1
tACPS(·, ·; 0.725) tails 3 4 2 1
tACPS(·, ·; 0.95) tails 4 3 1 2
tCRPS right tail 2 3 4 1
tACPS(·, ·; 0.05) right tail 3 2 4 1
tACPS(·, ·; 0.275) right tail 3 2 4 1
tACPS(·, ·; 0.5) right tail 4 2 3 1
tACPS(·, ·; 0.725) right tail 4 3 2 1
tACPS(·, ·; 0.95) right tail 4 3 1 2
tCRPS left tail 1 3 2 4
tACPS(·, ·; 0.05) left tail 1 3 4 2
tACPS(·, ·; 0.275) left tail 2 3 1 4
tACPS(·, ·; 0.5) left tail 4 3 1 2
tACPS(·, ·; 0.725) left tail 4 3 1 2
tACPS(·, ·; 0.95) left tail 4 2 1 3

NOTE: Results from S = 1 simulation of N = 100 observations (average score across
all observations). Density estimated with M = 500 draws from forecasting distri-
bution. Target is N (1, 4), forecasting densities are N (0, 1), N (−3, 1), N (3, 1),
N (0, 16).

threshold-weighted asymmetric scoring rule, tACPS, combines
the two schemes and allows the evaluation of the performance
of the forecasting density from both perspectives. This is impor-
tant to the decision-makers, who are usually interested in a spe-
cific range of all possible values, thus, calling for heterogeneous
domain-weighting, and have asymmetric preferences toward
under or overestimation, which motivates an asymmetric score.

4. Empirical Applications

In the empirical applications, we adopt a similar framework to
Gneiting and Ranjan (2011), which noted that the weighted like-
lihood approach proposed in Amisano and Giacomini (2007) is
not proper and consider the task of comparing density forecasts
in a time series context. We use a fixed-length rolling window to
provide a density forecast for h step ahead future observations
in three applications related to macroeconomics (employment
growth rate) and commodity prices (oil and electricity prices).
We compare several univariate models, such as the autoregres-
sive (AR) model, the Markov-switching (MS) AR model, and the
time-varying parameter (TVP) AR model.

In this article, we have adopted the Bayesian paradigm for
inference and relied on Markov chain Monte Carlo (MCMC)
algorithms for the estimation of the parameters (see the supple-
mentary materials for the details). Since the predictive densities
of the competing models are not all available in closed form, we
have followed the common practice in Bayesian statistics and

have obtained a sample from each predictive distribution along
with the iterations of the Markov chain Monte Carlo algorithm
(see also Remark 1).

We use the AR(1) as benchmark model, then we specify 12
lags for the employment growth rate (i.e., 1 year of monthly
observations) and 20 lags for the oil (i.e., 1 month of daily
observations). Regarding the electricity prices, we include 7
lags (i.e., 1 week of daily observations) and, following common
practice in the literature, we restrict lags to t − 1, t − 2, and
t − 7, which correspond to the previous day, two days before,
and one week before the delivery time, recalling first similar
conditions that may have characterized the market over the
same hours and similar days (such as congestions and blackouts)
and secondly the demand level during the days of the week. For
the MS-AR model we consider only 1 lag, while for the TVP-
AR model we use 1 and 2 lags. For both AR and TVP-AR, we
consider three specifications of the variance: constant volatility
and time-varying volatility in the form of stochastic volatility
with Gaussian and Student-t error. For the MS-AR, we impose
an identification constraint on the error variance.

As we discussed in the introduction, policymakers or energy
producers may be more concerned with forecasting values
below a given threshold than the full distribution, since they
require different measures, including in the case of energy vari-
ables to stop the production.7 This supports the application of
the ACPS. For the oil series we perform a case study around the
collapse of WTI prices and discuss how the ACPS results can
be applied to identify the true unknown density.

Before evaluating the relative performance of all models,
we check the calibration of the density forecasts. Calibration
of density forecasts is based on properties of a density and
refers to absolute accuracy (see Bassetti, Casarin, and Ravazzolo
2019, for further details). The absolute accuracy can be studied
by testing forecast accuracy relative to the “true,’, unobserved
density. Dawid (1982) introduced the criterion of calibration for
comparing prequential probabilities with binary random out-
comes and exploited the concept of probability integral trans-
form (PIT), that is the value that a predictive CDF attains at the
observations, for continuous random variables. The PITs sum-
marize the properties of the densities and may help us to judge
whether the densities are biased in a particular direction and
whether their width is roughly correct on average, see Diebold,
Gunther, and Tay (1998). The PITs indicate whether a density
is wrong in predicting higher moments or specific parts of the
distribution, such as the tails; however, they cannot distinguish
among models that are also correctly calibrated. We apply the
test of Knuppel (2015) and refer to Rossi and Sekhposyan (2013)
for evaluation of PITs in presence of instabilities.

Table 4 shows the ranking of the probability forecasts over
out-of-sample (OOS) windows and across models for all the
three datasets for c = 0.05, 0.5, 0.95.8 The DM-type test of the

7Unfortunately, we have not precise data to compute (i) the value of this
threshold, excluding the case of RES producers of electricity prices, that
could be still profitable even when prices are marginally above zero, and
(ii) the level of asymmetry of the loss function. Therefore, we investigate
several values of c, the parameter that drives the asymmetry of our mea-
sure.

8See Table IV in the supplementary materials for results for a higher range
of c.
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Figure 4. Best model in each OOS window (computed over the previous 20 years of forecast) for EMPL dataset: CRPS (black), ACPS with c = 0.05 (red), ACPS with c = 0.95
(yellow).

ACPS presented in Section 2.2 is also reported.9 Moreover, we
have employed the Model Confidence Set procedure of Hansen,
Lunde, and Nason (2011) to jointly compare the predictive
power of all models. We use the R package MCS detailed in
Bernardi and Catania (2016) and differences are tested sepa-
rately for each class of models (meaning for each panel in the
tables and for each horizon) with a confidence level of α = 0.1.

4.1. U.S. Employment Growth

In the first application, we aim at forecasting monthly U.S. total
nonfarm seasonally adjusted employment growth rate down-
loaded from the FRED database. We consider the growth rate of
the monthly employment rate in the United States from January
1980 to April 2020. We see evidence of some spikes, in particular
with a strong fall in April 2020 due to the present COVID-19
situation (see Figure S.5 in the Supplementary Material). We use
a rolling window approach of 20 years (thus, 240 observations)
and we forecast h = 1 and h = 12 (thus, 1 year ahead) month
ahead by using a recursive forecasting exercise.

The PIT tests in Table 4 indicate that all densities are correctly
calibrated for the employment growth rate at 5% significance

9In order to perform the test, we checked the stationarity and short memory
of the loss differential series using the ADF test and the autocorrelation
function, respectively.

level, excluding the one given by the TVP-AR(2) model at the
12-month horizon, for which the p-value is marginally lower
at 4.9%. Density forecasts from models TVP-AR(2)-SV10 and
TVP-AR(2)-tSV are calibrated at 1-day ahead horizon; no den-
sity is correctly calibrated at 5-days ahead horizons.

Moreover, we can see at horizon 1-month ahead that the best
model for c = 0.05 is the AR(12)-tSV, for c = 0.5 it is the
TVP-AR with 2 lags (the same for the CRPS measure), and for
c = 0.95 it is the AR(12)-SV, showing differences across different
levels of asymmetry. The test indicates that most of the models
provide superior forecasts than the AR(1) benchmark and only
the AR(12) model does not provide gains. The difference in
model performance for various levels of c is confirmed for h =
12 and interesting for c = 0.05 only the AR(1)-MS is statistically
superior. Therefore, our evidence supports the large literature
on the use of time-varying and nonlinear models in modeling
and forecasting (un)employment data. Moreover, the best model
for h = 12 and c = 0.5 is the same when applying the CRPS.
In Figure 4, we report the best model in each window for the
two horizons ahead, where the black line refers to the CRPS,
the red, and the yellow for the ACPS for c = 0.05 and c =
0.95, respectively. The graph shows large instability in the best
model, in particular when using the CRPS. The ACPS rules

10Notice that the TVP-AR(2)-SV is always preferred in terms of relative accu-
racy.
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Figure 5. Best model in each OOS window (computed over the previous 4 years of forecast) for OIL dataset: CRPS (black), ACPS with c = 0.05 (red), ACPS with c = 0.95
(yellow).

seem to prefer one of the alternative models for more consec-
utive OOS windows. For example, by looking at the relative
frequency of occurrence of each model as the best model, we
find that for c = 0.05, 31% times the AR(12)-tSV is considered
the best model for h = 1. Similar ages are found for other
levels of c and h, despite model order varies substantially across
measures.

4.2. West Texas Index

For oil prices, we analyze daily WTI data (no weekends) from
January 02, 2012 to May 07, 2020 to include in the analysis the
recent turmoil. Large drops in demand that suddenly occurred
and storage scarcity have resulted in negative WTI oil prices at
the end of April 2020. As for the employment rate, we use a
rolling window of 4 years and we forecast h = 1 and h = 5
days ahead using a recursive technique.

In the middle panel of Table 4, we find that across windows,
for 1 day ahead the TVP-AR(2) is the best model whereas the
TVP-AR(2)-SV is the second-best for the asymmetric levels
c = 0.5, 0.95 and the CRPS. For c = 0.05 the best model is
the TVP-AR(2)-SV model, supporting PITS evidence that this
model is among the few ones correctly calibrated. The TVP-
AR(2)-SV model is again the best model for 1 week ahead of
forecasting and for c = 0.05 and it is one of the two models
to be statistically superior to the AR benchmark. For the same

weekly horizon and other levels of c, again only a few models are
superior to the benchmark. Figure 5 confirms that the ACPS is
less variable in this selection than the CRPS.

Figure 6 illustrates the ACPS for one step ahead density
forecasts of the OIL prices, according to a TVP-AR(2) model
and an AR(20) model, for each OOS window of the rolling
estimation and various levels of asymmetry. This figure presents
some interesting insights. By looking at the scores between April
17 and April 21, we find that for both models the forecast is worst
performing for c = 0.05 and best for c = 0.95, indicating that
the density forecast assigns more mass on the right part of the
support as compared to the density of the observations. This
situation is similar to the yellow line in Figure 1. Surprisingly,
the ranking is reversed between April 21 and April 24, where
the forecast receives a higher score under c = 0.05. This suggests
that the density forecast is likely to be a right-shifted version of
the observation density, similar to the blue line in Figure 1.

These results highlight how accounting for asymmetry in
forecast evaluation may lead to dramatically different implica-
tions. By looking at the period until April 21, a decision-maker
averse to overestimation of oil price is likely to discard the both
AR(20) and the TVP-AR(2) models in favor of alternatives for
making forecasts. Conversely, an agent averse to underestima-
tion facing the same decision problem, equipped with the same
data and models, is likely to agree with one of the two models
above.
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Figure 6. Top two rows: values of ACPS for one step ahead density forecasts of the OIL prices according to a TVP-AR(2) and an AR(20) model, respectively, for selected
rolling windows (x-axis) and different asymmetry levels c: 0.05 (dashed red line), 0.275 (dashed yellow line), 0.50 (dashed black line), 0.725 (dashed purple line), 0.95 (dashed
green line). Bottom row: observed values of the time series (solid black line). The right column is a zoomed-in version of the left column.

Moreover, these insights provide an important value-added
of the ACPS as compared to symmetric scores. By looking at
the variation of the ranking according to the ACPS over time,
it is possible to infer the relative dynamics of the forecasting
and observation densities. In the case previously mentioned,
between April 17 and April 21 the forecast tends to overestimate
(i.e., its CDF is to the right of the observations CDF), while it
tends to underestimate between April 21 and April 24 (i.e., its
CDF is to the left of the observations CDF). Under a symmetric
score, it is not possible to grasp these insights since negative and
positive deviations from the target are equally penalized.

4.3. Electricity Prices in Germany

In the third application, we consider the problem of forecasting
the day-ahead electricity prices in Germany, one of the largest
and leading energy market. In the electricity markets, the phe-
nomenon of negative prices—when allowed to occur, such as
in Germany where there is no floor price—has become more
frequent due to the increasing share of electricity generated from
renewable energy sources (RES) and the current impossibility to
store it (see Figure 2 in the supplementary materials). We ana-
lyze daily data (with weekends) from January 1, 2014 to May 8,
2020. For the forecasting analysis, we have considered a rolling
window of 3 years and recursive techniques for predicting h = 1
and h = 7 days ahead.

From Table 4 we find that all densities are not correctly
calibrated when predicting EEX electricity prices at both hori-
zons. So, the PITs analysis suggests there is not a stochastically
dominating model, but more specifications can provide (abso-
lute) accurate forecasts suggesting the use of relative metrics
such as the ACPS to discriminate among them. In the case
of EEX prices, all models are wrong and a possible explanation
is that the models considered in this text are based only on
econometric properties of the series, hence, they may be labeled
as “purely econometric” models. Gianfreda, Ravazzolo, and
Rossini (2020a) and Gianfreda, Ravazzolo, and Rossini (2020b)
document how important is to extend these models with eco-
nomically relevant variables, such as variables related to the
demand and the production of electricity, including renewable
energy sources, to increase accuracy. We leave this extension
for further research and apply our metrics to an example where
models in terms of calibration are all wrong.

The bottom panel of Table 4 reports the results for the elec-
tricity prices. As in the previous cases, there is large uncertainty
on the model ranking. In line with PIT evidence, the high
volatility, spikes, and negative prices of the electricity prices
drive different results depending on the level of asymmetry of
the user. At h = 1 and c = 0.05, the AR(7)-tSV is the best model,
for higher values of c, the TVP-AR(2)-SV and TVP-AR(2)-tSV
are the preferred ones. Many models with time-varying volatility
outperform the constant volatility models, confirming evidence
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Figure 7. Best model in each OOS window (computed over the previous 3 years of forecast) for EEX dataset: CRPS (black), ACPS with c = 0.05 (red), ACPS with c = 0.95
(yellow).

in Gianfreda, Ravazzolo, and Rossini (2020b). At h = 12 the
AR(7) for c = 0.05, the TVP-AR(2)-tSV for c = 0.5, and
the TVP-AR(1) for c = 0.95 give the highest ACPS. Figure 7
again indicates a more stable performance of some models when
accounting for asymmetry relative to use the symmetric CRPS.

5. Conclusions

This article has introduced a novel asymmetric proper score
for probabilistic forecasts of continuous variables, the ACPS. Its
main application is the evaluation and comparison of density
forecasts. Besides, we have proposed a threshold- and quantile-
weighted version of the asymmetric score, which, by reweighing
the domain, allows for a further level of asymmetry in the
evaluation of forecasts. We also apply a DM-type test to compare
the statistical accuracy of different forecasts. The definition of
ACPS is sufficiently flexible to be used in a variety of univariate
contexts and carries over to the multivariate case. The latter
deserves further investigation and is an open field for future
research.

We provide a tool able to account for the decision-maker’s
preferences in the evaluation of density forecasts both in terms
of domain- and error-weighting schemes.

In an artificial data exercise, we have shown the good perfor-
mance of our proposed asymmetric score for different continu-
ous target distributions. In relevant macroeconomic and energy
applications, we evaluate our score across different models and

for different horizons, and we improve on the quality of the
forecasts by providing an effective tool for density forecast com-
parison.

The proposed score, ACPS, is of general use in any situation
where the decision-maker has asymmetric preferences in the
evaluation of forecasts and thus, it can be applied to a much wide
range of applications. Further extensions could cover the area of
forecast instability (see Giacomini and Rossi 2010) and the case
of a state-dependent function of economic variables, such as in
Odendahl, Rossi, and Sekhposyan (2020).

Supplementary Materials

The supplementary material consists of four sections. Section S.1 illustrates
different target densities for the simulation experiments. Section S.2 pro-
vides the details of the models used in the empirical applications. Finally,
Section S.3 describes the data used in the analysis and Section S.4 provides
additional details and results for the empirical analysis.
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