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Abstract
Time series are complex data objects whose partitioning into homogeneous groups is still a
challenging task, especially in the presence of outliers or noisy data. To address the problem
of robustness against outliers in clustering techniques, this paper proposes a robust fuzzy C-
medoidsmethod based on entropy regularization. In-depth,we use an appropriate exponential
transformation of the dissimilarity based onDynamic TimeWarping, which can be computed
also for time series of different length. In addition, the fuzzy frameworkprovides the necessary
flexibility to cope with the complexity of the features space. It allows a time series to be
assigned to more than one group, considering potential switching behaviours. Moreover,
the use of a medoids-based approach enables the identification of observed representative
objects within the dataset, thus enhancing interpretability for practical applications. Through
an extensive simulation study, we successfully demonstrate the effectiveness of our proposal,
comparing and emphasizing its strengths. Finally, our proposed methodology is applied to
the daily mean concentrations of three air pollutants in 2022 in the Province of Rome. This
application highlights its potential, namely the capability to intercept outliers and switching
time series while preserving group structures.

Keywords Robust fuzzy C-medoids method · Entropy · Exponential transformation ·
Three-way data · Outliers

1 Introduction

Grouping complex objects into a partition that satisfies the principle of maximum internal
cohesion is still an ongoing research topic and a challenging task in the specific literature on
clustering techniques. Multivariate time series, which are characterized by multiple features,
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belong to this class of objects. They can be thought of as three-way data arrays where the
third dimension is time so that they are a collection of observations on the same units and
the same variables indexed by time. Thanks to the growing amount of this type of data, time
series are becoming widespread and are used in a wide range of fields, including climate,
economic, and social research, as well as healthcare and finance, among others. Due to the
complexity of the features space, more attention must be paid to the choice of an appropriate
proximitymeasure to be used in the clustering process and to the consideration of relaxing the
rigid crisp assignment of each object to only one cluster. This study addresses both issues by
proposing a fuzzy clustering method that allows units to belong to more than one cluster and
embeds a suitable dissimilarity measure robust against “anomalous” time series, as discussed
in detail later.
In the specific literature on this subject, including both robust and non-robust techniques, three
main approaches can be distinguished (D’Urso, 2015): observation-based, features-based
andmodel-based. The first group uses dissimilarity measures based on the observed values of
the time series (D’Urso et al., 2018, 2021) while second group those based on several features
like quantile cross-spectral densities (López-Oriona et al. 2022a, 2022b, 2022c), quantile
autocovariance (Lafuente-Rego et al., 2020; Vilar et al., 2018), autocorrelation function
(Alonso and Maharaj, 2006) and generalized cross-correlation (Alonso et al., 2021), cepstral
coefficients (Maharaj and D’Urso, 2011), periodogram (Caiado et al., 2006, 2009), wavelets
decomposition (D’Urso and Maharaj, 2012; D’Urso et al., 2023; Maharaj et al., 2010).
The third group uses suitable dissimilarity measures among the parameter estimates arising
from suitable fitted time series models like ARIMA models (D’Urso et al., 2015; Piccolo,
1990; Xiong and Yeung, 2004), GARCH and INGARCH models (Caiado and Crato, 2010;
Cerqueti et al., 2022; D’Urso et al., 2013a; Otranto, 2008, 2010), extreme value analysis
(D’Urso et al., 2017a), splines coefficients (D’Urso et al., 2021) and copulas (De Luca and
Zuccolotto, 2011, 2017; Disegna et al., 2017; Durante et al., 2015).
As far as robust techniques are concerned, they can be further classified into the following
four approaches:
– noise approach: givenC clusters, it assigns the outlier time series to the (C +1)-th cluster,

the so-called noise cluster (D’Urso et al., 2013b);
– metric approach: the objective function is characterized by a distance satisfying robust

properties (D’Urso et al., 2015, 2016);
– trimmed approach: the clustering technique is applied to a subset of objects, those who

remain after a fixed number of outliers is deleted (D’Urso et al., 2017b);
– influence weighting approach: a weighting system is proposed that assigns low weights

to the outliers objects (D’Urso, 2005b).
With the aim of defining a clustering technique able to identify natural groups of multivariate
time series evenwhen someof themare noisy time-varyingunits, following ametric approach,
we propose a robust fuzzy medoids-based clustering method characterized by an entropy
regularization term. In general, the fuzzy clustering with entropy regularization (Li and
Mukaidono, 1995, 1999; Miyamoto and Mukaidono, 1997) answers the need to address
the criticism made by some researchers on the role of the exponent “m”, i.e. the fuzziness
coefficient that controls the extent of membership shared among the fuzzy clusters in the
well-known Fuzzy C-Means (FCM) clustering method (Bezdek, 1974, 1981; Dunn, 1974).
The main advantage of the maximum entropy principle is that it offers a new perspective
on the problem of fuzzifying the partition while ensuring the maximum compactness of the
obtained clusters (Coppi and D’Urso, 2006; D’Urso et al., 2023; Gao et al., 2019; Kahali
et al., 2019). The objective function includes an entropy term i.e. the Shannon entropy, called
fuzzy entropy when applied to the membership degrees. Fuzziness is controlled by this term;
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specifically, the minimization of the functional is regularized bymaximizing the total amount
of information (Coppi and D’Urso, 2006).
In our proposal, the objective function is further characterized by a suitable robust dissimi-
larity measure that can detect natural groups even in the presence of outliers. As pointed out
by García-Escudero et al. (2008), “the precise detection of the outliers is an important task
due to the serious troubles they introduce in standard clustering procedures as well as the
appealing interest that outliers could have by themselves after explaining why they depart
from general behaviour”.
García-Escudero et al. (2003) also distinguish between clustered and radial outliers: the
former could be a smaller group of objects than the main clusters while the latter could be
isolated objects, each forming its own group. In both definitions, however, they significantly
differ from all other objects belonging to the natural groups.
In the context of time series clustering, an outlier can have different specifications. In this
paper, we name “outlier” a time series with an anomalous behaviour, more specifically, with
dynamics that deviate markedly from that of all other objects.
Following the metric approach, we propose an exponential transformation of the chosen dis-
similarity (Wu and Yang, 2002; Zhang and Chen, 2004), i.e. we define a suitable exponential
transformation of the Dynamic Time warping based on the Euclidean distance.
The proposed clustering method can identify natural group structures counteracting the neg-
ative effect of some anomalous and time-switching units.
We must point out that a considerable amount of the literature has already been devoted to
the same purposes, although it essentially focuses on robust versions of the fuzzy prototype-
based clustering methods based on the “m” exponent. To the best of our knowledge, no other
robust version of the fuzzy clustering medoids-based techniques with entropy regularization
for time series has been already introduced.
The implementation of amedoids-based clusteringmethod (FCMd,Krishnapuramet al. 1999,
2001) provides an additional advantage since the prototype, i.e. the medoid, is an observed
unit in the dataset rather than a “fictitious” prototype time series as in the fuzzy C-means.
Specifically, the medoids are objects whose overall distance with respect to all other objects
within the same cluster is minimal. It is noteworthy that the identification of representative
non-fictitious prototypes is of great importance in practical applications, in particular for the
interpretation of clusters.
Moreover, the main advantage of the FCMd is related to a series of computational aspects: it
is more efficient since the distance matrix needs to be computed once at the beginning of the
iterative process and it is less affected by getting stuck in a local optima or by convergence
problems (Everitt et al., 2001; Hwang et al., 2007). Furthermore, FCMd is considered more
robust than FCM if noise or outliers occur in the data, being the medoid less influenced by
such extreme values than the mean.
Summing up, we argue that the main contribution of this research study lies in the defi-
nition of a comprehensive and unified methodological framework that exploits the single
advantages of each approach. Specifically, the new proposal benefits from (a) the use of the
observation-based methodology, which is easy to apply and, thanks to the DTW, can handle
time series of different lengths; (b) the relatively lower complexity of the non-hierarchical
approach; (c) the PAM approach, which allows the identification of real observed prototypes;
(d) the fuzzy framework which provides the degree of uncertainty in the process of assigning
objects to clusters, particularly useful in the case of complex data; (e) the use of entropy
as a regularization term in the objective function and (f) the metric approach which allows
outliers to be dealt with. All this represents an improvement in terms of overall information
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gain, and thus a strength compared to other robust time series clustering methods proposed
in the literature.
The outline of the article is as follows. In Sect. 2, after the introduction to DTW, we describe
in detail the proposed robust fuzzy clustering method with entropy regularization. Section3
reports the results of the simulation studies. In Sect. 4, we report and discuss the results of
the application to air pollution data. Section5 concludes.

2 Researchmethod

In this Section, we introduce the reader to the instruments and the proposed method for
handling three-way data. A further source of complexity arises from the presence of some
anomalous or switching time series: this issue has been addressed by defining a robust fuzzy
clustering method. In the next paragraphs, we provide a formal description of a three-way
data array (paragraph 2.1), then introduce DTW and its exponential transformation (para-
graph 2.2), the proposed robust method (paragraph 2.3) and the validity measure used, i.e.
the Fuzzy Silhouette index (paragraph 2.4).

2.1 The three-way data array

A three-way data array of type “same objects × same quantitative variables × times”, can
be algebraically formalized as follows (D’Urso, 2000, 2004, 2005b):

X ≡ {xi j t : i = 1, . . . , I ; j = 1, . . . , J ; t = 1, . . . , T } (1)

where the indices i , j and t stand, respectively, for the units, the quantitative variables and
the times and xi j t is the value of the j-th variable observed for the i-th unit at time t . In this
paper, we take into account the case in whichX is represented in the space of the “units” thus
�J+1 (J dimensions corresponding to the J variables plus one dimension corresponding to
the time). Thus, the matrix Xi ≡ {xi t : t = 1, . . . , T } represents the i-th multivariate time
series where xi t ≡ (xi1t , . . . , xi j t , . . . , xi J t ), i = 1, . . . , I , t = 1, . . . , T .

2.2 Dynamic time warping

The Dynamic Time Warping (DTW, Berndt 1994; Velichko and Zagoruyko 1970) allows
to find an optimal alignment between two given time sequences under certain restric-
tions. Properly, the sequences are warped in a nonlinear way to match each other. Let
Xi ≡ {xi1, . . . , xi t , . . . , xiT } and Xi ′ ≡ {xi ′1, . . . , xi ′ t ′ , . . . , xi ′ T ′ } two multivariate time

series for which T and T
′
could be not equal. The total distance between Xi and Xi ′ is com-

puted through the so-called “warping path” that “realigns” the time indices of themultivariate
time series so that each data point in Xi is compared to the “closest” data point in Xi ′ .

The warping path is defined as follows. Let

Φl = (ϕl , ψl), l = 1, . . . , L

be a set of realigned indices 1, . . . , T and 1, . . . , T
′
under the following constraints:

1. Boundary condition: Φ1 = (1, 1),ΦL = (T , T
′
);

2. Monotonicity condition: ϕ1 ≤ · · · ≤ ϕl ≤ · · · ≤ ϕL and ψ1 ≤ · · · ≤ ψl ≤ · · · ≤ ψL .
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The warping curve applied to the two multivariate time series Xi and Xi ′ realigns their
time indices through the functions ϕ andψ . The total dissimilarity between the two “warped”
multivariate time series is:

L∑

l=1

d(xi,ϕl , xi ′,ψl )ml,Φ (2)

where ml,Φ is a local weighting coefficient and d(., .) is, usually, the Euclidean distance for
multivariate time series.

Among several warping curves, DTW is the one that minimizes the total dissimilarity
betweenXi andXi ′ . By preserving the time ordering of the sequence, DTW goes beyond the
instantaneous features of time data and satisfies the following properties: it allows the com-
parison of multivariate time series of different lengths and does not require any assumption
concerning the properties of the multivariate time series. Moreover, it takes into account the
non-linear rate at which each component of a multivariate time series can vary.

Even if the DTW algorithm could be problematic with long time series, when used in the
Partitioning around Medoids (PAM) method, its computational burden is reduced since the
distance or the dissimilarity matrix is computed only once in the iterative process. We also
specify that, in this study, we used as constraints the Itakura parallelogram (Itakura, 1975).

2.2.1 The exponential transformation of the dynamic time warping based on the
Euclidean distance

As pointed out by García-Escudero and Gordaliza (2005), the medoids-based fuzzy methods
represent only a “timid” robustificationwith respect to centroids-based clustering techniques.
To cope with this issue, as suggested by Wu and Yang (2002) and D’Urso et al. (2018), we
apply the following exponential transformation:

dtwd2
exp

(Xi ,Xi ′ ) = 1 − exp{−β · [
D(Xi ,Xi ′ )

]2}i �=i ′ with i, i
′ = 1 . . . n, (3)

where
[
D(Xi ,Xi ′ )

]2 is the squared dissimilarity based on DTW between the i-th and the

i
′
-th time series, respectively.

Since β must be set as the inverse of somemeasure of data variability, we adapt in the context
of the entropy-based fuzzy clustering methods the β’s formulation proposed by D’Urso et al.
(2018) for the same scopes and denoted here by β̃. By considering a multiplicative factor, k,
we have:

β = k · β̃, with k ∈ {1, 2} (4)

where

β̃ =
⎡

⎢⎣

∑n
i=1

[
D(Xi , X̃q)

]2

n

⎤

⎥⎦

−1

(5)

and X̃q : q = arg min1≤i≤n
∑n

i ′=1

[
D(Xi , X̃i ′ )

]2
.

The dissimilarity based on the exponential transformation lies in the interval [0, 1] and is
sensitive to the β’s value: it tends to its maximum more rapidly as the β’s value increases.
The most important characteristic to note is that it assigns the outliers to the C clusters with
the same membership degree (approximately 1/C), treating them as fuzzy units.
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This smoothing effect on the membership degrees also depends on the characteristics
of the clusters. If they are well-separated, all units far from the medoids are candidates as
outliers; in the case of overlapping clusters or well-separated clusters but with a large number
of anomalous units, the method tends to assign approximately equal membership degrees to
the units that are only slightly separated from the bulk of data (D’Urso et al., 2018). As far
as the role of k is concerned, we refer to Sect. 3 for a more detailed analysis.

The next paragraph provides the mathematical formalization of the fuzzy C-medoids clus-
tering method with the entropy term and the exponential transformation of DTW, henceforth
called DTW-Exp-FCMd-E.

2.3 The robust DTW-based entropy fuzzy clusteringmethod

The robust DTW-based entropy fuzzy clustering method (DTW-Exp-FCMd-E) allows to
identify C prototypes, i.e. the subset of medoids (X1, . . . ,XC ) where C is the number of
clusters, and thematrix of the fuzzy coefficientsUn×C , byminimizing the following objective
function:

⎧
⎪⎨

⎪⎩

min : ∑n
i=1

∑C
c=1 uic dtwd2

exp(Xi , X̃c) + p
∑n

i=1
∑C

c=1 uicln(uic)

= ∑n
i=1

∑C
c=1 uic

(
1 − exp

{
−β

[
D(Xi , X̃c)

]2})
+ p

∑n
i=1

∑C
c=1 uicln(uic)

s.t.
∑C

c=1 uic = 1, uic ≥ 0.

(6)

Xi and X̃c are the multivariate time series of the i-th unit and the c-th medoid respectively,
while D(·) is the dissimilarity based on DTW for multivariate time series. The second addend
in the objective function represents the entropy regularization term: the Shannon entropy
(pre-multiplied by −1) is multiplied by the weight factor p that controls the contribution of
the regularization function to the clustering criterion and is called the degree of fuzzy entropy.
Therefore the total functional is optimized by both maximizing the internal cohesion and the
given measure of entropy.
The uic denotes the membership degree of the i-th unit to the c-th cluster. The solutions for
each uic, for i = 1, . . . , I and c = 1, . . . , C , is:

uic = 1

∑C
c′=1

⎡

⎢⎢⎣

exp

(
1

p

[
1 − exp

{
−β

[
D(Xi , X̃c)

]2}])

exp

(
1

p

[
1 − exp

{
−β

(
D(Xi , X̃c′ )

)2}])

⎤

⎥⎥⎦

(7)

Proof We consider the Lagrangian function:

L p(ui , λ) =
n∑

i=1

C∑

c=1

uic

[
1 − exp

{
−β

(
D(Xi , X̃c)

)2}]

+p
n∑

i=1

C∑

c=1

uicln(uic) − λ

(
C∑

c=1

uic − 1

)
(8)

where ui = (ui1, . . . , uic, . . . , uiC )′ and λ is the Lagrange multiplier. Therefore, we set the
first derivatives of (8) with respect to uic and λ equal to zero, yielding:

∂L p(ui , λ)

∂uic
= 0 ⇔

[
1 − exp

{
−β

(
D(Xi , X̃c)

)2}]
+ p [ln(uic) + 1] − λ = 0 (9)
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∂L p(ui , λ)

∂λ
= 0 ⇔

C∑

c=1

uic − 1 = 0 (10)

From (9) we obtain:

ln(uic) = 1

p

(
λ −

[
1 − exp

{
−β

(
D(Xi , X̃c

)2}])
− 1 (11)

and, then:

uic = exp

{
λ

p
− 1

p

([
1 − exp

{
−β

(
D(Xi , X̃c

)2}])
− 1

}
(12)

By considering (10):

exp

(
λ

p
− 1

)
= 1

∑C
c=1

(
1

exp
{
(1/p)

[
1−exp

{
−β(D(Xi ,X̃c)

2
}]}

) . (13)

and by replacing Eq. (13) in (12), we have the solution as in (7). 
�
The fuzzy clustering algorithm that minimizes the objective function is built by adopting

an estimation strategy based on the Fu and Albus heuristic algorithm (Fu and Albus, 1977;
Krishnapuram et al., 1999, 2001). Indeed, the alternating optimization estimation procedure
cannot be adopted because the necessary conditions cannot be derived by differentiating the
objective function with respect to the medoids.
The next paragraph describes the internal validity criterion used in this work to choose the
number of groups. It is a fuzzy extension of theAverage SilhouetteWidthCriterion, originally
defined to assess crisp data partitions.

2.4 The fuzzy silhouette index

In order to choose the best solution in terms of the number of groups, in this study we adopt
the Fuzzy Silhouette (F S) index (Campello and Hruschka, 2006), one of the most known
cluster internal validity criteria based on the weighted average of the individual silhouettes
width, λi , as follows:

F S =
∑I

i=1(uip − uiq)α · λi∑I
i=1(uip − uiq)α

, λi = (bip − aip)

max{bip, aip} (14)

where aip is the average distance of object i to all other objects belonging to the same cluster
p (p = 1,…,C) and bip is the minimum (over clusters) average distance of the i-th unit to
all units belonging to the cluster q with q �= p. (uip − uiq)α is the weight of each λi , where
uip and uiq correspond to the first and second largest element of the i-th row of the fuzzy
partition matrix U, respectively; α ≥ 0 is an optional user-defined weighting coefficient.
Setting α = 0, it reduces to the crisp Silhouette measure.

A higher value of F S means a better assignment of the units to the clusters which implies
that, simultaneously, the intra-cluster distance is minimized while the inter-clusters distance
is maximized.

The next section shows our simulation results highlighting the strengths and weaknesses
of the proposed method.

123



Annals of Operations Research

3 Simulation study

This Section includes two simulation studies, the former explicitly defined to investigate
the performances of the proposed clustering method in a setting similar to the application
proposed; the latter implemented to investigate the performances in a more complex and
general setting.

3.1 First simulation

In this simulation study, 30 bivariate time series have been generated and clustered in 3 equally
sized groups, i.e. I = 30 and J = 2; in order to account for time series of different lengths,
those belonging to the first and second group have a length equal to T = 12, while those
belonging to the third group have a length T = 10. Moreover, a switching time series and 3
anomalous time series have been added, always fixing J = 2 and T = 12. This configuration
can be seen in Fig. 1, randomly selected from the 100 simulated. For both variables, the time
series belonging to the first and third clusters have similar longitudinal patterns, but different
cross-sectional features. Moreover, the first and third clusters are only well-separated in the
second dimension.
In detail, along the first dimension, the time series belonging to the three groups have been
generated according to the following scheme:

– First group: xt = t + wt for t = 1, 2, . . . , T and wt ∼ N (0, 1)
– Second group: yt = T + 1 − t + wt for t = 1, 2, . . . , T and wt ∼ U (0, 3)
– Third group: zt = yt + 5 + wt for t = 1, 2, . . . , (T − 2) and with wt ∼ N (0, 1).

The switching time series is “switching” between the first and the third group so that the first
T /2 observations have been generated from the same generative model of the first group, the
last T /2 from that of the third group.
The three outliers have been generated as follows:

– g1,t = sin(2π(t − 1)/T ) + wt with wt ∼ N (20, 25) for t = 1, 2, . . . , T /2 and g1,t =
cos(2π(t − 1)/T ) + wt with wt ∼ N (−5, 9) for t = (T /2) + 1, (T /2) + 2, . . . , T

– g2,t = cos(2π(t − 1)/T ) + wt with wt ∼ N (2, 4) for t = 1, 2, . . . , T
– g3,t = cos(2π(t − 1)/T ) + wt with wt ∼ N (−10, 25) for t = 1, 2, . . . , T .

Along the second dimension, the time series have been generated according to:

– First group: xt = T + 1 − t + wt for t = 1, 2, . . . , T and wt ∼ N (0, 1)
– Second group: yt = t + wt for t = 1, 2, . . . , T and wt ∼ U (0, 5)
– zt = yt − 10 − wt for t = 1, 2, . . . , T − 2 and with wt ∼ N (0, 1).

The switching time series is “switching” again between the first and the third group so that
the first T /2 observations have been generated from the same generative model of the first
group, the last T /2 from that of the third group.
The three outliers have been generated as follows:

– g1,t = sin(2π(t − 1)/T ) + wt + 20 with wt ∼ N (0, 1) for t = 1, 2, . . . , T
– g2,t = sin(2π(t − 1)/T ) + wt with wt ∼ N (−2, 4) for t = 1, 2, . . . , T
– g3,t = cos(2π(t − 1)/T ) + wt with wt ∼ N (−15, 25) for t = 1, 2, . . . , T

Both robust (DTW-Exp-FCMd-E) and non-robust (DTW-FCMd-E) methods have been
applied to the 100 simulated datasets, the latter easily obtained by replacing the exponential
transformation of DTW with the non-robust original DTW. For comparison purposes, the
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Fig. 1 The simulated scenario with respect to the first (on the left) and the second dimension (on the right)

fuzzy C-Medoids method based on the exponential transformation of DTW and the fuzziness
parameterm, henceforth referred to as DTW-Exp-FCMd, has also been applied, together with
its non-robust version, henceforth referred to as DTW-FCMd.
We applied all themethods by settingC = 3, according to the number of simulated groups. To
assess the impact of fuzziness parameters on the final partition, we ran the DTW-Exp-FCMd-
E and DTW-FCMd-E varying p ∈ {0.05, 0.10, 0.15, 0.20, 0.25} and k ∈ {1, 2} while the
DTW-Exp-FCMd and DTW-FCMd varying m ∈ {1.1, 1.3, 1.5, 1.7, 2} and, as usual, k = 1.
For each setting, we considered 100 random restarts and as themaximumnumber of iterations
100.
Furthermore, for fixed values of p and k, three different scenarios have been simulated starting
from a basic one with 3 natural clusters and then contaminating it with the presence of one
switching time series and an increasing number of outliers. Thus, the simulation schemes
are in order as follows: (i) 3 natural groups, 0 outliers and 0 switching time series (ii) 3
natural groups, 1 outlier and 1 switching time series and (iii) 3 natural groups, 3 outliers and
1 switching time series.
Robustness to outliers has been analysed by studying the effect of the anomalous and switch-
ing time series on the membership degrees in the final partition.
To this end, the 100 fuzzy partitions of the 30 bivariate time series (only those belonging to
the natural groups excluding the outliers and the switching time series) are compared with
the reference crisp partition, by means of the Fuzzy Adjusted Rand Index (ARI) (Campello,
2007), a well-known external validation criterion. Lying in the range [−1, 1], it is equal to 1
in the case of perfect correspondence between the two partitions. So, the higher is the value,
the better is the agreement between the two partitions.

The lower and upper bounds of the confidence interval for the mean of the Fuzzy ARI
index, at a confidence level of 95%, have been given in Table 1 for both DTW-FCMd-E and
DTW-Exp-FCMd-E.
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Table 1 The lower and upper bounds of the confidence interval for the mean of the Fuzzy ARI index, at a level
of 95% for DTW-FCMd-E, DTW-Exp-FCMd-E (with k = 1) and DTW-Exp-FCMd-E (with k = 2) considering
the three simulated scenarios: (i) 3 natural groups, 0 outliers and 0 switching time series (ii) 3 natural groups,
1 outlier and 1 switching time series and (iii) 3 natural groups, 3 outliers and 1 switching time series

p Outliers Switching DTW-FCMd-E DTW-Exp-FCMd-E DTW-Exp-FCMd-E
k = 1 k = 2

CI mean CI mean CI mean

Lower Upper Lower Upper Lower Upper

0.05 0 0 0.91 0.99 1.00 1.00 1.00 1.00

0.05 1 1 0.92 0.99 0.98 1.00 1.00 1.00

0.05 3 1 0.89 0.98 1.00 1.00 1.00 1.00

0.10 0 0 0.84 0.95 1.00 1.00 1.00 1.00

0.10 1 1 0.88 0.98 0.93 0.99 1.00 1.00

0.10 3 1 0.76 0.90 0.94 0.99 1.00 1.00

0.15 0 0 0.73 0.89 0.98 0.98 0.99 0.99

0.15 1 1 0.74 0.88 0.82 0.91 0.99 0.99

0.15 3 1 0.44 0.63 0.76 0.86 0.98 0.99

0.20 0 0 0.62 0.80 0.94 0.94 0.96 0.96

0.20 0 1 0.55 0.72 0.71 0.81 0.96 0.96

0.20 3 1 0.23 0.40 0.57 0.67 0.95 0.95

0.25 0 0 0.49 0.67 0.87 0.88 0.92 0.92

0.25 1 1 0.37 0.55 0.65 0.74 0.92 0.92

0.25 3 1 0.07 0.18 0.42 0.51 0.89 0.90

As expected, as the level of fuzziness increases, and, consequently, as the value of p
increases, the FuzzyARI index decreases because themembership degrees become smoother.
The presence of the outliers and one switching time series has a great effect on the identi-
fication of the natural groups as far as the non-robust method is concerned especially when
three outliers are added while it shows good behaviour in the first scenario without outliers
and a low value of p, as expected.
Both robust methods outperform the DTW-FCMd-E method but the one based on k = 2
performs the best: in fact, it is not only able to recover the natural structure of groups but is
also less sensitive to different values of the weight factor p. Moreover, looking at the width
of each confidence interval, particularly in the third scenario, one can notice that DTW-Exp-
FCMd-E with k = 2 is also much less variable.
Table 2 shows the same confidence intervals of the Fuzzy ARI index considering the DTW-
FCMdandDTW-Exp-FCMdmethods according to different values of the fuzziness parameter
m with reference to the same three scenarios. Although DTW-Exp-FCMd and DTW-Exp-
FCMd-E cannot be directly compared at all, i.e. given the same values of the fuzziness
parameter, one can notice that they behave almost the same; in fact, also DTW-Exp-FCMd
outperforms the non-robust version in almost all setups and is also more stable, thus showing
a performance similar to that of DTW-Exp-FCMd-E with k = 2.

From these comparisons, we argue that the multiplicative factor k of the β parameter is
necessary to ensure that the robust method based on the entropy achieves the same level of
performance as its competitor, i.e. the robust method based on the fuzziness parameter m.
This correction is needed to avoid the membership degrees matrix becoming blurrier as the
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Table 2 The lower and upper bounds of the confidence interval for the mean of the Fuzzy ARI index, at a
level of 95% for DTW-FCMd and DTW-Exp-FCMd considering the three simulated scenarios: (i) 3 natural
groups, 0 outliers and 0 switching time series (ii) 3 natural groups, 1 outlier and 1 switching time series and
(iii) 3 natural groups, 3 outliers and 1 switching time series

m Outliers Switching DTW-FCMd DTW-Exp-FCMd
CI mean CI mean

Lower Upper Lower Upper

1.1 0 0 0.72 0.87 1.00 1.00

1.1 1 1 0.73 0.88 1.00 1.00

1.1 3 1 0.64 0.81 1.00 1.00

1.3 0 0 0.60 0.77 1.00 1.00

1.3 1 1 0.38 0.56 1.00 1.00

1.3 3 1 0.24 0.41 0.95 1.00

1.5 0 0 0.75 0.86 0.98 0.98

1.5 1 1 0.49 0.64 0.99 0.99

1.5 3 1 0.64 0.79 0.97 1.00

1.7 0 0 0.74 0.84 0.93 0.94

1.7 1 1 0.63 0.75 0.94 0.95

1.7 3 1 0.57 0.69 0.96 0.96

2.0 0 0 0.87 0.91 0.83 0.83

2.0 1 1 0.58 0.70 0.85 0.85

2.0 3 1 0.42 0.51 0.87 0.87

number of noisy time series and the value of p increase. To investigate with more detail the
performances of the proposed methods, we also computed the average correct classification
rate (ACR) of the 30 bivariate time series over the 100 trials together with the average fuzzy
units rate (FCR) according to the different values of p (see Table 3, columns 1–2) and m (see
Table 4, columns 1–2) respectively, focusing on the most contaminated setup, the third one.

With this aim, the following cut-off value has been chosen to assign a multivariate time
series to a given cluster: for each of the thirty bivariate time series, if the uic >= 0.6, then the
i-th time series is assigned to cluster c, otherwise it becomes a fuzzy unit. Both the standard
methods (DTW-FCMd-E and DTW-FCMd) as well as the DTW-Exp-FCMd-E with k = 1
are not stable as the value of the fuzziness parameter increases. The partitions become too
blurred so that, for example, when p = 0.25 the average fuzzy units rate is equal to 0.81
for DTW-FCMd-E and 0.41 for DTW-Exp-FCMd-E with k = 1 respectively. The same
happens for the standard method DTW-FCMd. In contrast, DTW-Exp-FCMd-E with k = 2
and DTW-Exp-FCMd are both able to recover the natural structure in three groups without
being affected by the degree of fuzziness.
A second, no less relevant task is to analyse the capability of the robust method to correctly
identify the switching time series and the outliers too.
For this purpose, the same above cut-off value has been chosen. Therefore, the outliers are
correctly handled when uic < 0.6 for all c, i.e. when the series exhibits similar member-
ship degrees in all the C clusters. The switching time series is correctly identified when its
membership degrees are more or less equally distributed on two of the three clusters.
For each of the 100 trials in the third scenario, we computed the frequency of times out of
100 replications the clustering method identifies the switching time-series (SWF), no outlier
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Table 3 Average correct classification rate (ACR), average fuzzy units rate (FCR) with reference to the 30
bivariate time series over 100 replications, frequency of times over 100 replications the clustering method
identifies the switching time-series (SWF), no outliers (OUT0F), only 1 outlier (OUT1F), only 2 outliers
(OUT2F) and both 3 outliers (OUT3F), respectively

Model p ACR FCR SWF OUT0F OUT1F OUT2F OUT3F

DTW-FCMd-E 0.05 95.00 4.00 8.00 96.00 4.00 0.00 0.00

0.10 85.00 14.00 23.00 90.00 10.00 0.00 0.00

0.15 55.00 42.00 58.00 63.00 21.00 14.00 2.00

0.20 32.00 63.00 78.00 38.00 26.00 28.00 8.00

0.25 13.00 81.00 93.00 15.00 32.00 33.00 20.00

DTW-Exp-FCMd-E (k = 1) 0.05 100.00 0.00 15.00 0.00 16.00 81.00 3.00

0.10 97.00 2.00 44.00 0.00 0.00 63.00 37.00

0.15 85.00 14.00 75.00 0.00 0.00 7.00 93.00

0.20 70.00 29.00 94.00 0.00 0.00 0.00 100.00

0.25 57.00 41.00 99.00 0.00 0.00 0.00 100.00

DTW-Exp-FCMd-E (k = 2) 0.05 100.00 0.00 9.00 0.00 0.00 4.00 96.00

0.10 100.00 0.00 24.00 0.00 0.00 0.00 100.00

0.15 100.00 0.00 47.00 0.00 0.00 0.00 100.00

0.20 100.00 0.00 67.00 0.00 0.00 0.00 100.00

0.25 100.00 0.00 86.00 0.00 0.00 0.00 100.00

The sum of each row within the last four columns is equal to 100. The above rates refer to DTW-FCMd-E,
DTW-Exp-FCMd-E (k = 1) and DTW-Exp-FCMd-E (k = 2) according to the different values of p

Table 4 Average correct classification rate (ACR), average fuzzy units rate (FCR) with reference to the 30
bivariate time series over 100 replications, frequency of times over 100 replications the clustering method
identifies the switching time-series (SWF), no outliers (OUT0F), only 1 outlier (OUT1F), only 2 outliers
(OUT2F) and both 3 outliers (OUT3F), respectively

Model m ACR FCR SWF OUT0F OUT1F OUT2F OUT3F

DTW-FCMd 1.1 78.00 18.00 19.00 60.00 13.00 3.00 24.00

1.3 39.00 55.00 76.00 1.00 21.00 12.00 66.00

1.5 74.00 24.00 63.00 0.00 1.00 43.00 56.00

1.7 67.00 30.00 85.00 0.00 0.00 4.00 96.00

2.0 53.00 44.00 99.00 0.00 0.00 0.00 100.00

DTW-Exp-FCMd 1.1 100.00 0.00 7.00 0.00 0.00 77.00 23.00

1.3 98.00 2.00 33.00 0.00 0.00 0.00 100.00

1.5 99.00 0.00 69.00 0.00 0.00 0.00 100.00

1.7 100.00 0.00 95.00 0.00 0.00 0.00 100.00

2.0 100.00 0.00 100.00 0.00 0.00 0.00 100.00

The sum of each row within the last four columns is equal to 100. The above rates refer to DTW-FCMd and
DTW-Exp-FCMd according to the different values of m

(OUT0F), 1 outlier (OUT1F), 2 outliers (OUT2F) and 3 outliers (OUT3F), respectively. All
these results are shown in the same aforementioned Tables 3, 4. The first thing to note is that,
for lower values of p, the standard clustering method and the robust one with k = 1 fail to
correctly identify the outliers while the non-anomalous series are more often well-assigned
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Table 5 Average correct classification rate (ACR), average fuzzy units rate (FCR) with reference to the 30
bivariate time series over 100 replications, frequency of times over 100 replications the clustering method
identifies the switching time-series (SWF), no outliers (OUT0F), only 1 outlier (OUT1F), only 2 outliers
(OUT2F) and both 3 outliers (OUT3F), respectively

p ACR FCR SWF OUT0F OUT1F OUT2F OUT3F

0.05 100.00 0.00 22.00 0.00 0.00 0.00 100.00

0.10 100.00 0.00 55.00 0.00 0.00 0.00 100.00

0.15 100.00 0.00 86.00 0.00 0.00 0.00 100.00

0.20 100.00 0.00 98.00 0.00 0.00 0.00 100.00

0.25 100.00 0.00 100.00 0.00 0.00 0.00 100.00

The sum of each row within the last four columns is equal to 100. The above rates refer to DTW-Exp-FCMd-E
(k = 2) according to the different values of p and a cut-off value of 0.7

(see the ACR value). Increasing the value of p generates a seemingly strange behaviour: the
outliers and the switching time series are well-identified while the non-anomalous time series
are not. Actually, this is only due to the fact that, as p becomes larger, the boundaries between
clusters become more blurred and the switching series (or the outlier) becomes a fuzzy unit
too. But, as already shown by looking at the FCR, this implies the higher risk that many other
non-switching time series might become fuzzy too. After all, as already highlighted, this is
the main drawback of the robust clustering method with k = 1.
As far as the robust method with k = 2 is concerned, we argue that its performance increases
as the value of p increases, since the clustering method produces softer boundaries between
clusters andhencemembership degrees of outliers closer to 0.3while keeping themembership
degrees of non-outliers still high.
Essentially, this method is always able to correctly identify all 30 non-anomalous time series
and all three outliers. The same considerations hold for the robust clustering method based
on m, the DTW-Exp-FCMd. One can argue for a better performance of the latter to identify
the switching time series than the DTW-Exp-FCMd-E. Actually, by increasing the cut-off
value to 0.7 (see Table 5), one can notice that DTW-Exp-FCMd-E shows almost the same
performance than DTW-Exp-FCMd.

Lastly, to give more insight to the reader, we show two examples of obtained partitions
focusing on the three most interesting methods: the standard DTW-FCMd-E and the robust
methods DTW-Exp-FCMd-E with k = 2 and DTW-Exp-FCMd.
To this purpose, we show two possible typical situations, when p = 0.15 and m = 1.5, in
the Tables 6 and 7 respectively. The former reports the case in which the standard clustering
method fails to assign all units while the robust ones are able to identify both non-anomalous
units as well as switching time series and outliers. In fact, the last three units are all fuzzy
units, as expected by using the exponential transformation.
The latter reports another possible configuration in which even the standard method is able
to correctly assign units to the cluster they belong to but outliers are incorrectly assigned to
a cluster. The switching time series is assigned to the two clusters it belongs to but one needs
a cut-off value greater than 0.75 to be identified as switching. This is not the case with the
robust methods that well assign all 34 units instead.
In addition, focusing on the most contaminated setup, we ran DTW-FCMd-E and DTW-Exp-
FCMd-E with 100 Random restarts and a number of iterations equal to 100 by setting C = 2.
We computed the number of times the two clustering methods chose the correct number of
groups based on the Fuzzy Silhouette (FS) index.
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Table 6 Example of a Membership degree matrix for the DTW-FCMd-E and DTW-Exp-FCMd-E (k = 2)
with p = 0.15 and for DTW-Exp-FCMd with m = 1.5

Unit DTW-FCMd-E DTW-Exp-FCMd-E (k = 2) DTW-Exp-FCMd

Medoid 1 Medoid 2 Medoid 3 Medoid 1 Medoid 2 Medoid 3 Medoid 1 Medoid 2 Medoid 3

4 7 10 1 20 26 1 20 26

1 0.34 0.33 0.33 1.00 0.00 0.00 1.00 0.00 0.00

2 0.35 0.34 0.31 0.99 0.00 0.01 1.00 0.00 0.00

3 0.36 0.33 0.32 0.99 0.00 0.00 1.00 0.00 0.00

4 1.00 0.00 0.00 0.99 0.00 0.01 1.00 0.00 0.00

5 0.36 0.34 0.30 0.99 0.00 0.01 1.00 0.00 0.00

6 0.35 0.33 0.32 0.99 0.00 0.00 1.00 0.00 0.00

7 0.00 1.00 0.00 0.99 0.01 0.01 1.00 0.00 0.00

8 0.35 0.35 0.30 0.99 0.00 0.00 1.00 0.00 0.00

9 0.37 0.32 0.32 0.99 0.00 0.01 1.00 0.00 0.00

10 0.00 0.00 1.00 0.99 0.00 0.01 1.00 0.00 0.00

11 0.26 0.56 0.18 0.00 0.99 0.00 0.00 1.00 0.00

12 0.20 0.64 0.17 0.00 1.00 0.00 0.00 1.00 0.00

13 0.20 0.66 0.14 0.00 0.99 0.00 0.00 1.00 0.00

14 0.29 0.58 0.13 0.00 0.99 0.00 0.00 1.00 0.00

15 0.16 0.73 0.11 0.00 0.99 0.00 0.00 1.00 0.00

16 0.31 0.49 0.20 0.00 0.99 0.00 0.00 1.00 0.00

17 0.16 0.65 0.19 0.00 0.99 0.00 0.00 1.00 0.00

18 0.27 0.57 0.16 0.00 0.99 0.00 0.00 1.00 0.00

19 0.23 0.60 0.17 0.00 0.99 0.00 0.00 1.00 0.00

20 0.14 0.72 0.14 0.00 1.00 0.00 0.00 1.00 0.00

21 0.28 0.26 0.46 0.01 0.00 0.99 0.00 0.00 0.99

22 0.32 0.28 0.40 0.01 0.00 0.99 0.00 0.00 0.99

23 0.29 0.27 0.43 0.01 0.00 0.99 0.01 0.00 0.99

24 0.31 0.32 0.36 0.01 0.00 0.99 0.00 0.00 0.99

25 0.39 0.26 0.36 0.01 0.00 0.99 0.00 0.00 0.99

26 0.24 0.29 0.47 0.00 0.00 1.00 0.00 0.00 1.00

27 0.27 0.26 0.47 0.01 0.00 0.99 0.00 0.00 0.99

28 0.26 0.29 0.44 0.01 0.00 0.99 0.00 0.00 1.00

29 0.34 0.27 0.38 0.01 0.00 0.99 0.01 0.00 0.99

30 0.34 0.26 0.41 0.01 0.00 0.99 0.01 0.00 0.99

SW 0.34 0.33 0.32 0.57 0.01 0.42 0.55 0.03 0.42

OUT1 0.38 0.61 0.01 0.33 0.34 0.33 0.32 0.35 0.34

OUT2 0.37 0.30 0.33 0.32 0.38 0.29 0.34 0.41 0.26

OUT3 0.92 0.03 0.05 0.33 0.33 0.33 0.33 0.33 0.33

As can be seen by looking at the results in Table 8, for p = 0.05, the standardmethod chooses
the correct number of groups C = 31 only 18 times out of 100 and in general this percentage

1 If the FS associated with C = 3 is greater than the FS associated with C = 2, the selected C is 3, otherwise
2.
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Table 7 A second example of a Membership degree matrix for DTW-FCMd-E and DTW-Exp-FCMd-E
(k = 2) with p = 0.15 and for DTW-Exp-FCMd with m = 1.5

Unit DTW-FCMd-E DTW-Exp-FCMd-E (k = 2) DTW-Exp-FCMd

Medoid 1 Medoid 2 Medoid 3 Medoid 1 Medoid 2 Medoid 3 Medoid 1 Medoid 2 Medoid 3

7 18 21 6 18 23 6 18 23

1 1.00 0.00 0.00 0.99 0.00 0.00 1.00 0.00 0.00

2 1.00 0.00 0.00 0.99 0.00 0.01 1.00 0.00 0.00

3 1.00 0.00 0.00 0.99 0.00 0.01 0.99 0.00 0.00

4 1.00 0.00 0.00 0.99 0.00 0.00 1.00 0.00 0.00

5 1.00 0.00 0.00 0.99 0.00 0.00 1.00 0.00 0.00

6 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

7 1.00 0.00 0.00 0.99 0.00 0.01 1.00 0.00 0.00

8 1.00 0.00 0.00 0.99 0.00 0.00 1.00 0.00 0.00

9 1.00 0.00 0.00 0.99 0.00 0.00 1.00 0.00 0.00

10 1.00 0.00 0.00 0.99 0.00 0.01 1.00 0.00 0.00

11 0.00 1.00 0.00 0.00 0.99 0.00 0.00 1.00 0.00

12 0.00 1.00 0.00 0.00 0.99 0.00 0.00 1.00 0.00

13 0.00 1.00 0.00 0.00 0.99 0.00 0.00 1.00 0.00

14 0.00 1.00 0.00 0.00 0.99 0.00 0.00 1.00 0.00

15 0.00 1.00 0.00 0.00 0.99 0.00 0.01 0.99 0.00

16 0.00 1.00 0.00 0.00 0.99 0.00 0.00 1.00 0.00

17 0.00 1.00 0.00 0.00 0.99 0.00 0.00 1.00 0.00

18 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00

19 0.00 1.00 0.00 0.00 0.99 0.00 0.00 1.00 0.00

20 0.00 1.00 0.00 0.01 0.99 0.00 0.01 0.99 0.00

21 0.00 0.00 1.00 0.00 0.00 0.99 0.00 0.00 1.00

22 0.00 0.00 1.00 0.01 0.00 0.99 0.00 0.00 0.99

23 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00

24 0.00 0.00 1.00 0.01 0.00 0.99 0.00 0.00 1.00

25 0.00 0.00 1.00 0.01 0.00 0.99 0.01 0.00 0.99

26 0.00 0.00 1.00 0.01 0.00 0.99 0.01 0.00 0.99

27 0.00 0.00 1.00 0.01 0.00 0.99 0.00 0.00 0.99

28 0.00 0.00 1.00 0.01 0.00 0.99 0.00 0.00 1.00

29 0.00 0.00 1.00 0.01 0.00 0.99 0.00 0.00 1.00

30 0.00 0.00 1.00 0.01 0.00 0.99 0.01 0.00 0.99

SW 0.75 0.00 0.25 0.65 0.01 0.34 0.61 0.03 0.36

OUT1 0.00 1.00 0.00 0.33 0.34 0.33 0.32 0.35 0.33

OUT2 0.00 1.00 0.00 0.33 0.38 0.30 0.34 0.40 0.26

OUT3 0.00 0.00 1.00 0.33 0.33 0.33 0.33 0.33 0.33

is not greater than 0.28, considering the different values of p. In contrast, the robust method
with k = 2 always chooses the correct number of groups.
Simulation results clearly showed the excellent performance of the proposed robust clustering
method based on entropy regularization and a value of k = 2; as a further result, it provides
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Table 8 The percentage of times
the clustering methods
DTW-FCMd-E and
DTW-Exp-FCMd-E (k = 2)
choose the correct number of
groups, i.e. C = 3, based on the
F S index

0.05 0.10 0.15 0.20 0.25

DTW-FCMd-E 18 28 26 16 9

DTW-Exp-FCMd-E (k = 2) 100 100 100 100 100

Fig. 2 The simulated scenario with respect to the first (on the left) and the second dimension (on the right)

almost the same level of performance as its competitor, the robust clusteringmethod based on
the fuzziness parameterm. Moreover, robust methods in general allow to distinguish between
outliers and switching time series since in the latter case the membership degrees are not
equally distributed over all C clusters as in the former case.

3.2 Second simulation

We considered the following simulation plan to evaluate the proposed clustering method in
a more complex scenario with longer time series. Therefore, we simulated again 30 bivariate
time series clustered in 3 equally sized groups, i.e. I = 30 and J = 2, with length T = 200
for all time series. Moreover, a switching time series and 3 outliers trajectories have been
added, always fixing J = 2 and T = 200. This configuration can be seen in Fig. 2, randomly
selected from the 100 simulated.
Along the first dimension, the time series have been generated from the following scheme:

– First group: xt = cos(8π(t −1)/T )+at +wt for t = 1, 2, . . . , 200; where at belongs to
the sequence of the T equally-spaced values in the interval [1, 6] and wt ∼ N (0, 0.25)

– Second group: yt = cos(4π(t − 1)/T ) + wt for t = 1, 2, . . . , 200 and with wt ∼
N (−2, 0.25)

– Third group: zt = sin(15π(t − 1)/T ) + wt for t = 1, 2, . . . , 200 and with wt ∼
N (0, 0.5).
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The switching time series is “switching” between the first and the third group so that the first
T /2 observations have been generated from the same generative model of the first group, the
last T /2 from that of the third group.
The three outliers have been generated, respectively, from:

– A randomwalkwith drift g1,t = −0.01+g1,t−1+wt with σwt = 0.05 for t = 2, . . . , 201
– A random walk with drift g2,t = 0.01+ g2,t−1 +wt with σwt = 0.05 for t = 2, . . . , 201
– g3,t = 6.025 − 0.025 · t + at with at ∼ N (0, 0.04) and for t = 1, 2, . . . , 200.

Along the second dimension, the time series have been generated from the following scheme:

– First group: xt = cos(8π(t −1)/T )+at +wt for t = 1, 2, . . . , 200 where at belongs to
the sequence of the T equally-spaced values in the interval [0, 7] and wt ∼ N (0, 0.25)

– Second group: yt = cos(4π(t −1)/T )+at +wt for t = 1, 2, . . . , 200 here at belongs to
the sequence of the T equally-spaced values in the interval [1, 7] with decreasing order
and wt ∼ N (−1, 0.25)

– Third group: zt = sin(5π(t − 1)/T ) + wt for t = 1, 2, . . . , 200 with wt ∼ N (1, 0.25).

The switching time series is again “switching” between the first and the third group. The
three outliers have been generated, respectively, from:

– A randomwalk with drift g∗
1,t = −0.05+g∗

1,t−1+wt with σwt = 0.1 for t = 2, . . . , 201;
then, we shifted it by 5 so that g1,t = g∗

1,t + 5;
– A random walk g2,t = g2,t−1 + wt with σwt = 0.5 for t = 2, . . . , 201;
– A random walk with drift g3,t = 0.01+ g3,t−1 + wt with σwt = 0.5 for t = 2, . . . , 201.

In this second simulation, DTW-Exp-FCMd-E has been applied to the 100 simulated datasets
and, for comparison purposes, in addition to its non-robust version, i.e. DTW-FCMd-E, and
the fuzzy C-Medoids method based on the exponential transformation of DTW and the
fuzziness parameter m, i.e. DTW-Exp-FCMd, we considered further benchmarks: a) the
fuzzy C-medoids based on the fuzziness parameter m and a generalization of the dissimi-
larity introduced by D’Urso and Maharaj (2009b), based on auto and cross-correlations as
implemented in the R package mlmts (Ángel López-Oriona andVilar, 2023) fixing themax-
imum lag to 50, henceforth referred to as COR-FCMd and b) the fuzzy clustering procedure
proposed by He and Tan (2018) implemented in the R package mlmts, fixing the rate of
retained variability to 0.94, henceforth referred to as VPCA-FCM.
In this simulation,weapplied all themethodsbyvaryingC ∈ {2, 3, 4}, p ∈ {0.015, 0.02, 0.03, 0.05}
for DTW-FCMd-E, p ∈ {0.05, 0.10, 0.15, 0.20} and k ∈ {1, 2} for DTW-Exp-FCMd-E2

while, for the models based on the “m” coefficient, varying m ∈ {1.1, 1.3, 1.5, 1.7}.
ForDTW-FCMd-E,DTW-Exp-FCMd-E,DTW-Exp-FCMdandVPCA-FCM, data have been
standardized according to Coppi et al. (2010).
For each setting, we considered 100 random restarts (except for VPCA-FCM) and as the
maximum number of iterations 100. Furthermore, for fixed values of p and k, the same three
scenarios have been simulated starting from the basic one with 3 natural clusters and then
contaminating it with one switching time series and an increasing number of outliers.
For fixed values of p and k, the final partition, and therefore the optimal number of clusters
among the solutions with 2, 3 and 4 groups, has been chosen bymeans of the Fuzzy silhouette
index (Campello and Hruschka, 2006).
Robustness against outliers has been tested by comparing the fuzzy partitions of the 30
bivariate time series with the reference crisp partition by means of the fuzzy ARI (Campello
and Hruschka, 2006)

2 The different choice for p depends on the scaling of the dissimilarity matrix.
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Fig. 3 Distribution of the Fuzzy Adjusted Rand Index for DTW-FCMd-E method according to the three
simulated scenarios, with p ∈ {0.015, 0.02, 0.03, 0.05}

Themain evidences from the simulation can be inferred by observing the distribution of fuzzy
ARI across the methods and scenarios as the degree of fuzziness increases. To this end, we
show the corresponding plots in Figs. 3, 4, 5, 6, 7, and 8. While the performance in case of no
outliers, or with one outlier and a switching time series is almost the same for all clustering
techniques (but DTW-FCMd-E more sensitive to p), if we consider the third scenario, the
best performance is associated with DTW-Exp-FCMd-E with k = 2 and VPCA-FCM, that
could be considered a competitor. Both methods are more stable with respect to the degree
of fuzziness.
Furthermore, in Tables 9 and 10, we computed the number of times, over 100 simulated data
sets, the F S index leads to choose the correct number of groups,i.e. C = 3, for all clustering
techniques and for all scenarios.
We can state that, in the first and second scenarios, for almost all methods, except for VPCA-
FCM, in 100% of the cases the choice of the best C is correctly identified while, in the third
scenario, the best performance is associated with our robust method with K = 2, which
shows the highest percentages. For VPCA-FCM, we should point out that the lower values
in the second and third scenarios are motivated by the fact that the method tends to choose
C = 4, where the additional cluster acts as a noise cluster since, often, it includes only one
unit that is one of the outliers.

We conclude by highlighting that the choice of the best value of the fuzziness parameter
p, as well as of k,3 strictly depends on the scaling of the dissimilarity used and the degree of
separation among groups; thus in practical applications, we recommend taking into account
all these issues and selecting the best combinations of C , p and k based on some internal
validation criterion.

3 In both simulations, however, the best performance is associated with k = 2.
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Fig. 4 Distribution of the Fuzzy Adjusted Rand Index for DTW-Exp-FCMd-E method according to the three
simulated scenarios, with k = 1 and p ∈ {0.05, 0.10, 0.15, 0.20}

Fig. 5 Distribution of the Fuzzy Adjusted Rand Index for DTW-Exp-FCMd-E method according to the three
simulated scenarios, with k = 2 and p ∈ {0.05, 0.10, 0.15, 0.20}
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Fig. 6 Distribution of the Fuzzy Adjusted Rand Index for DTW-Exp-FCMd method according to the three
simulated scenarios, with m ∈ {1.1, 1.3, 1.5, 1.7}

Fig. 7 Distribution of the FuzzyAdjusted Rand Index for COR-FCMdmethod according to the three simulated
scenarios, with m ∈ {1.1, 1.3, 1.5, 1.7}
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Fig. 8 Distribution of the FuzzyAdjustedRand Index forVPCA-FCMmethod according to the three simulated
scenarios, with m ∈ {1.1, 1.3, 1.5, 1.7}

4 An application to real data: air pollution in the Province of Rome

A large number of anthropogenic activities result in the release of a significant number of
chemical substances into the atmosphere, some already present in small quantities, others
not at all, which are potentially harmful to man, flora and fauna if present in quantities
and/or with properties that alter normal atmospheric conditions. It is therefore particularly
important to analyse spatial (monitoring site characteristics) and dynamic trends in air (and
soil) concentrations of different types of pollutants. In this study, based on data availability
and their relevance to the serious health effects associated with long-term exposure, we
considered three pollutants: the particulate matter with diameter less than 10 micrometers
(PM10), the nitrogen oxide (NO) and nitrogen dioxide (NO2). Particulate matter (PM), in
general, is a highly heterogeneous collection of solid or liquid particles (aerosols) that remain
suspended in lower troposphere air for longer or shorter durations due to their characteristic
small size. Particles are of various sizes and contain a wide range of substances such as sand,
ash, dust, soot, silica, vegetable matter, metal compounds, salts, elements such as lead and
other heavy metals, inorganic and organic chemical compounds. Particulate matter is present
in the air as a result of both natural causes and human activities. It is a primary pollutant
(emitted directly by the various emission sources present in the area) in the former case
while in the latter it can be both a primary pollutant and a secondary pollutant (i.e. formed
by the chemical interaction of other substances which react to form an aerosol which is then
dispersed in the air). Because its presence in the air can adversely affect human health, it is
considered, along with nitrogen dioxide and ozone, a major cause of concern for air quality.
With reference to the nitrogen oxides, NO and NO2 are the two most relevant ones for air
pollution which originate in the lower layers of the atmosphere mainly from combustion
processes and, in urban areas, from car emissions and domestic heating.
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Table 9 Number of times, over 100 simulated data sets, the correct number of groups, i.e C = 3, is chosen
based on the maximization of the F S index, for DTW-FCMd-E and DTW-Exp-FCMd-E methods (with k = 1
and k = 2)

p Scenario 1 Scenario 2 Scenario 3

DTW-FCMd-E 0.015 85 76 37

0.020 82 69 32

0.030 75 60 29

0.050 45 28 13

DTW-Exp-FCMd-E k = 1 0.050 100 96 55

0.100 100 100 49

0.150 100 100 43

0.200 100 100 45

DTW-Exp-FCMd-E k = 2 0.050 100 100 80

0.100 100 100 81

0.150 100 100 83

0.200 100 100 88

Table 10 Number of times, over
100 simulated data sets, the
correct number of groups, i.e
C = 3, is chosen based on the
maximization of the F S index,
for DTW-Exp-FCMd,
COR-FCMd and VPCA-FCM
methods

m Scenario 1 Scenario 2 Scenario 3

DTW-Exp-FCMd 1.1 100 99 81

1.3 100 100 61

1.5 100 100 65

1.7 100 100 75

COR-FCMd 1.1 100 100 68

1.3 100 100 52

1.5 100 100 15

1.7 100 100 7

VPCA-FCM 1.1 71 14 19

1.3 83 54 15

1.5 99 75 9

1.7 98 72 11

Although NO2, like NO, is a primary pollutant, it is also one of the most important secondary
pollutants, i.e. it results from the reaction of different chemical species in the atmosphere and
is therefore not emitted directly. NO2 is an acidic and highly corrosive gas and prolonged
exposure to elevated levels may contribute to the development of asthma and may increase
susceptibility to respiratory infections. NO is a colourless, tasteless and odourless gas, much
less toxic than NO2. However, they play a role in the formation of both smog and acid rain.
In this study, we consider the daily mean concentrations (in µg/m3) of PM10, NO and NO2,
measured at 234 monitoring stations belonging to the Province of Rome, with reference to
the year 2022, i.e the array dimension is I = 23, J = 3 and T = 365.

4 Two monitoring stations, Civitavecchia−Via Morandi and Civitavecchia−Via Roma, have been excluded
for unavailability of data.
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Table 11 Monitoring stations and
associated type (U-urban,
S-suburban, R-rural, I-industrial,
B-background, T-traffic)

Station Type

Allumiere RB

Arenula UB

Bufalotta UB

Castel di Guido RB

Ciampino UT

Cinecitta UB

Cipro UB

Civitavecchia UB

Civitavecchia Porto

Civitavecchia -Villa Albani UT

Colleferro Europa I, SB

Colleferro Oberdan I, SB

Corso Francia UT

Fermi UT

Fiumicino Porto

Fiumicino-Villa Guglielmi UB

Guidonia ST

Largo Magna Grecia UT

Malagrotta SB

Preneste UB

Tenuta del Cavaliere SB

Tiburtina UT

Villa Ada UB

Missing values, for each time series, have been replaced by simple moving averages using
the function na_ma() implemented in the R package imputeTS. The data from the moni-
toring stations are collected, processed and disseminated by the Regional Air Quality Centre
(downloaded from https://www.arpalazio.net/main/aria/sci/basedati/chimici/chimici.php).
Table 11 shows the monitoring stations and their type (U-urban, S-suburban, R-rural, I-
industrial, B-background, T-traffic) while the time series of daily pollution concentrations
for each monitoring station are shown in Fig. 9 (each with a different y-scale).

The multivariate time series have been pre-processed by applying the following stan-

dardization as proposed in Coppi and D’Urso (2006) so that zi j t = (xi j t −x . j t )√ ∑
i (xi j t −x . j t )

2

I

, i =

1, . . . , I , j = 1, . . . , J t = 1, . . . , T . We applied both DTW-FCMd-E and DTW-Exp-
FCMd-E (with k = 2) clustering methods to the transformed data The best solution, i.e. the
optimal number of clusters C, has been chosen based on the combination of C and the p that
maximizes the Fuzzy Silhouette index. In this regard, we computed the FS index for each
combination ofC ∈ {2, . . . 6} and p ∈ {0.05, 0.08, 0.10, 0.12, 0.15} for DTW-Exp-FCMd-E
(with k = 2) while p ∈ {0.08, 0.13, 0.16, 0.20, 0.24} for DTW-FCMd-E (to account for the
different magnitude of the dissimilarity measure).
Looking at the two plots in Fig. 10 referred to as the DTW-FCMd-E on the left and DTW-
Exp-FCMd-E on the right, it is observed that, in both cases, the FS index exhibits a slight
increase with p, attaining its maximum value when C = 2.
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Fig. 9 Time series showing the daily mean concentrations of the three pollutants at each monitoring station
(different y-scale)

Consequently, we choose the solution with two groups and p = 0.12 for DTW-Exp-FCMd-E
and p = 0.20 for DTW-FCMd-E.

The membership degrees matrix for both cases has been reported in Table 12. The column
subheadings correspond to the medoid units of the clusters.

As can be observed, both methods result in similar partitions with identical medoids,
specifically Arenula and Guidonia, the former being situated in an urban area and the latter
in a suburban one. Figure 11 displays the corresponding time series for each pollutant, based
on standardized data. As expected, they vary in terms of trend and fluctuations and NO2

clearly exhibits a significant difference in magnitude.
However, for the purposes of this analysis, it should be noted that the two partitions are

nearly identical, except for three stations, namely Allumiere, Fermi and Tiburtina, where
the membership degrees show significant differences. The robust method assigns almost
identical membership degree to both clusters while the non-robust method assigns a clear
high membership to one of the two clusters.
From Fig. 12, which displays the time series of the medoids and the three stations for each
pollutant, it is clear that Allumiere, Fermi and Tiburtina exhibit an atypical and ambiguous
behaviour (or magnitude) for at least one of the three pollutants, qualifying them as outlying
stations. This leads to the conclusion that the non-robust method fails to identify outlying
units. Rather, it assigns them to a cluster with a high membership degree.

It is worth noting that both partitions are quite fuzzy. This is due to the complexity of the
features space involved in the clustering process. Infact, many units show fuzzy behaviour,
four of them (Allumiere, Colleferro Oberdan, Fermi and Tiburtina) are anomalous. Using
a cut-off value for the degree of membership of 0.7, the crisp partition for both methods is
shown in the maps in Fig. 13.

With the only scope of showing the advantages and effectiveness of our proposed
methodology in several real cases, we also report the best solutions based on the FS index
when another type of standardization is used for pre-processing the data. In detail, the
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Fig. 10 Fuzzy Silhouette index based on the combination of C and the p values
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Table 12 Membership degrees matrix for DTW-FCMd-E and DTW-Exp-FCMd-E (k = 2)

Station DTW-FCMd-E DTW-Exp-FCMd-E (k = 2)
Arenula Guidonia Arenula Guidonia

Allumiere 0.00 1.00 0.46 0.54

Arenula 1.00 0.00 1.00 0.00

Bufalotta 0.44 0.56 0.43 0.57

Castel di Guido 0.00 1.00 0.22 0.78

Ciampino 0.18 0.82 0.26 0.74

Cinecittà 0.60 0.40 0.60 0.40

Cipro 0.86 0.14 0.91 0.09

Civitavecchia 0.03 0.97 0.11 0.89

Civitavecchia Porto 0.05 0.95 0.23 0.77

Civitavecchia Villa Albani 0.07 0.93 0.25 0.75

Colleferro Europa 0.08 0.92 0.28 0.72

Colleferro Oberdan 0.58 0.42 0.51 0.49

Corso Francia 1.00 0.00 0.77 0.23

Fermi 1.00 0.00 0.52 0.48

Fiumicino Porto 0.01 0.99 0.12 0.88

Fiumicino Villa Guglielmi 0.32 0.68 0.27 0.73

Guidonia 0.00 1.00 0.00 1.00

Largo Magna Grecia 1.00 0.00 0.89 0.11

Malagrotta 0.01 0.99 0.03 0.97

Preneste 0.68 0.32 0.73 0.27

Tenuta del Cavaliere 0.16 0.84 0.10 0.90

Tiburtina 0.94 0.06 0.60 0.40

Villa Ada 0.25 0.75 0.19 0.81

Membership degrees of the medoids are shown in bold type

standardization is based on the following formula as suggested in Coppi et al. (2010):

zi j t = xi j t −x . j .√ ∑
i (xi j t −x . j .)

2

I T

, i = 1, . . . , I , j = 1, . . . , J t = 1, . . . , T . Both membership

degreesmatrices for the best solutionC = 2, with p = 0.07 for DTW-FCMd-E and p = 0.08
for DTW-Exp-FCMd-E (k = 2), are reported in Table 13 with column subheadings corre-
sponding to the medoid units of the clusters while the maps of the crisp partition based on
the same cut-off as above are shown in Fig. 14.

Looking at the results in Table 13, also with the help of the maps, we can see that in
this case the partitions are very different and the effect of some outlying and\or switching
time series leads to the identification of a different medoid for the first group. Even though
Arenula and Fiumicino Villa Guglielmi are both classified as urban background stations, it
can be argued that the robust method is not only able to identify as fuzzy units the anomalous
time series (such as Fermi), but it is also more accurate in distinguishing between the group
of stations located inside the ring road highway that surrounds the city of Rome and those
outside; the non-robust method, instead, selects as medoids two units that are both located
outside the ring road highway. It is worth noting that in all cases the solutions identify many
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Fig. 11 Time series of medoids (standardized data)
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Fig. 12 Time series of the medoids and the three outliers, i.e Allumiere, Fermi and Tiburtina (standardized
data)
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Fig. 13 Map of the crisp partition for aDTW-FCMd-E and bDTW-Exp-FCMd-E (k = 2). Pink identifies units
belonging to the first cluster, green those belonging to the second cluster, blue fuzzy units while the medoids
are coloured dark pink and dark green respectively. (Color figure online)

series showing a fuzzy behaviour, which supports the usefulness of the fuzzy approach for
complex data, such as those used in this work.

5 Conclusion

The clustering of complex data, especially three-way data arrays, is one of the most discussed
topics in the literature, with new methods and applications being proposed in a wide variety
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Table 13 Membership degrees matrix for DTW-FCMd-E and DTW-Exp-FCMd-E (k = 2) according to the
second type of data standardization

Station DTW-FCMd-E DTW-Exp-FCMd-E (k = 2)

Fiumicino Villa Guglielmi Malagrotta Arenula Malagrotta

Allumiere 0.00 1.00 0.11 0.89

Arenula 0.99 0.01 1.00 0.00

Bufalotta 0.76 0.24 0.77 0.23

Castel di Guido 0.00 1.00 0.01 0.99

Ciampino 0.81 0.19 0.28 0.72

Cinecittà 0.96 0.04 0.80 0.20

Cipro 0.97 0.03 0.99 0.01

Civitavecchia 0.30 0.70 0.05 0.95

Civitavecchia Porto 0.87 0.13 0.24 0.76

Civitavecchia Villa Albani 0.76 0.24 0.28 0.72

Colleferro Europa 0.51 0.49 0.30 0.70

Colleferro Oberdan 0.98 0.02 0.51 0.49

Corso Francia 1.00 0.00 0.72 0.28

Fermi 1.00 0.00 0.60 0.40

Fiumicino Porto 0.27 0.73 0.02 0.98

Fiumicino Villa Guglielmi 1.00 0.00 0.31 0.69

Guidonia 0.38 0.62 0.05 0.95

Largo Magna Grecia 1.00 0.00 0.92 0.08

Malagrotta 0.00 1.00 0.00 1.00

Preneste 0.97 0.03 0.95 0.05

Tenuta del Cavaliere 0.14 0.86 0.01 0.99

Tiburtina 0.99 0.01 0.61 0.39

Villa Ada 0.66 0.34 0.36 0.64

Membership degrees of the medoids are shown in bold type

of research fields. To address the specific problem of robustness against outliers in clustering
techniques, this paper proposes a robust fuzzy C-medoids method based on entropy regu-
larization. To this purpose, as suggested in the seminal paper of Wu and Yang (2002), we
introduce in the objective function a suitable robust dissimilarity measure based on the expo-
nential transformation of the original DTW. The fuzzy framework allows greater flexibility
accounting for the complexity of the features space. It allows a time series to be assigned to
more than one group, considering potential switching behaviours. The outliers act as fuzzy
units being assigned to the C clusters with approximately the same membership degree.
Specifically, fuzziness is controlled by the entropy regularization term so that the minimiza-
tion of the functional is regularized by maximizing the total amount of information (Coppi
and D’Urso, 2006). Moreover, it also inherits the same nice properties of its baseline, since it
can manage time series of different lengths thanks to DTW and selects as cluster prototypes
a subset of observed time series typical of a partition around medoids approach.
The performance of the proposed clustering method has been evaluated through simulations
involving scenarios with different types of contamination. Based on the simulation results,
we conclude that the robust method has a good performance even when compared with other
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Fig. 14 Map of the crisp partition for a DTW-FCMd-E and b DTW-Exp-FCMd-E (k = 2) according to the
second type of data standardization. Pink identifies units belonging to the first cluster, green those belonging
to the second cluster, blue fuzzy units, while the medoids are coloured dark pink and dark green respectively.
(Color figure online)

benchmark methods when some fewer time series markedly deviate from all others assuming
anomalous behaviour. In particular, the robust method with k = 2 is able to neutralize the
effect of the anomalous series recovering the true clustering structure as well as being much
less affected by the value of the weight factor p. The proposed robust fuzzy clusteringmethod
has been applied to real data by using a dataset consisting of the daily time series of the mean
concentrations of three air pollutants throughout 2022 in the Province of Rome. As in the
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case of simulated data, the application to real data shows the effectiveness and robustness of
the proposed clustering procedure.
Therefore, we believe the paper meets a twofold objective: dealing with the issue of clus-
tering complex data such as multivariate time series and neutralizing the negative effect of
anomalous time series that can lead to erroneous assignments of the units to a group.
Furthermore, as already highlighted, this study defines a comprehensive and unified method-
ological framework that exploits the single advantages of each approach resulting in an
improvement in terms of overall information gain. Also in light of these promising results,
we argue that there are still interesting methodological challenges for further research. For
instance, other robust approaches like those based on the noise cluster and the trimming
procedure could be adapted to the fuzzy C-medoids clustering method with entropy regu-
larization and based on DTW. As a further development, we would take into account other
types of dissimilarities among the warped series, like those considering the inter-correlation
structure.
Furthermore, one might be interested in defining other validity measures than the F S index
to provide an alternative internal validity criterion for choosing the correct number of groups
even in the presence of outliers.

Funding Open access funding provided by Università degli Studi di Roma La Sapienza within the CRUI-
CARE Agreement. All authors certify that they have no affiliations with or involvement in any organization
or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this
manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of this
article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alonso, A. M., & Maharaj, E. A. (2006). Comparison of time series using subsampling. Computational
statistics & data analysis, 50(10), 2589–2599.

Alonso, A. M., D’Urso, P., Gamboa, C., & Guerrero, V. (2021). Cophenetic-based fuzzy clustering of time
series by linear dependency. International Journal of Approximate Reasoning, 137, 114–136.

Berndt, D. (1994). Using dynamic time warping to find patterns in time series. In AAAI-94 workshop on
knowledge discovery in databases.

Bezdek, J. (1981). Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers.
Bezdek, J. C. (1974). Numerical taxonomy with fuzzy sets. Journal of Mathematical Biology, 1(1), 57–71.
Caiado, J., & Crato, N. (2010). Identifying common dynamic features in stock returns. Quantitative Finance,

10(7), 797–807.
Caiado, J., Crato, N., & Peña, D. (2006). A periodogram-based metric for time series classification. Compu-

tational Statistics & Data Analysis, 50(10), 2668–2684.

123

http://creativecommons.org/licenses/by/4.0/


Annals of Operations Research

Caiado, J., Crato, N., & Peña, D. (2009). Comparison of times series with unequal length in the frequency
domain. Communications in Statistics-Simulation and Computation®, 38(3), 527–540.

Campello, J. R., & Hruschka, E. R. (2006). A fuzzy extension of the silhouette width criterion for cluster
analysis. Fuzzy Sets and Systems, 157(21), 2858–2875.

Campello, R. J. (2007). A fuzzy extension of the rand index and other related indexes for clustering and
classification assessment. Pattern Recognition Letters, 28(7), 833–841.

Cerqueti, R., D’Urso, P., De Giovanni, L., Mattera, R., & Vitale, V. (2022). Ingarch-based fuzzy clustering of
count time series with a football application. Machine Learning with Applications, 10, 100417.

Coppi, R., & D’Urso, P. (2006). Fuzzy unsupervised classification of multivariate time trajectories with the
Shannon entropy regularization. Computational Statistics & Data Analysis, 50(6), 1452–1477.

Coppi, R., D’Urso, P., & Giordani, P. (2010). A fuzzy clustering model for multivariate spatial time series.
Journal of Classification, 27(1), 54–88.

De Luca, G., & Zuccolotto, P. (2011). A tail dependence-based dissimilarity measure for financial time series
clustering. Advances in Data Analysis and Classification, 5(4), 323–340.

De Luca, G., & Zuccolotto, P. (2017). Dynamic tail dependence clustering of financial time series. Statistical
Papers, 58(3), 641–657.

Disegna, M., D’Urso, P., & Durante, F. (2017). Copula-based fuzzy clustering of spatial time series. Spatial
Statistics, 21, 209–225.

Dunn, J. (1974). A fuzzy relative of the Isodata process and its use in detecting compact well-separated clusters.
Journal of Cybernetics, 3, 32–57.

Durante, F., Pappadà, R., & Torelli, N. (2015). Clustering of time series via non-parametric tail dependence
estimation. Statistical Papers, 56(3), 701–721.

D’Urso, P. (2000).Dissimilaritymeasures for time trajectories. Journal of the Italian Statistical Society, 9(1–3),
53–83.

D’Urso, P. (2004). Fuzzy C-means clustering models for multivariate time-varying data: Different approaches.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12(3), 287–326.

D’Urso, P. (2005). Fuzzy clustering for data time arrays with inlier and outlier time trajectories. IEEE Trans-
actions on Fuzzy Systems, 13(5), 583–604.

D’Urso, P. (2015). Fuzzy clustering. In C. Hennig, M. Meila, F. Murtagh, & R. Rocci (Eds.), Handbook of
cluster analysis. Chapman and Hall/CRC.

D’Urso, P., & Maharaj, E. A. (2009). Autocorrelation-based fuzzy clustering of time series. Fuzzy Sets and
Systems, 160(24), 3565–3589.

D’Urso, P., & Maharaj, E. A. (2012). Wavelets-based clustering of multivariate time series. Fuzzy Sets and
Systems, 193, 33–61.

D’Urso, P., Cappelli, C., Di Lallo, D., & Massari, R. (2013). Clustering of financial time series. Physica A:
Statistical Mechanics and its Applications, 392(9), 2114–2129.

D’Urso, P., De Giovanni, L., Massari, R., & Di Lallo, D. (2013). Noise fuzzy clustering of time series by
autoregressive metric. Metron, 71(3), 217–243.

D’Urso, P., De Giovanni, L., & Massari, R. (2015). Time series clustering by a robust autoregressive metric
with application to air pollution. Chemometrics and Intelligent Laboratory Systems, 141, 107–124.

D’Urso, P., De Giovanni, L., & Massari, R. (2016). Garch-based robust clustering of time series. Fuzzy Sets
and Systems, 305, 1–28. https://doi.org/10.1016/j.fss.2016.01.010

D’Urso, P., Maharaj, E. A., & Alonso, A. M. (2017). Fuzzy clustering of time series using extremes. Fuzzy
Sets and Systems, 318, 56–79.

D’Urso, P., Massari, R., Cappelli, C., & De Giovanni, L. (2017). Autoregressive metric-based trimmed fuzzy
clustering with an application to pm10 time series. Chemometrics and Intelligent Laboratory Systems,
161, 15–26.

D’Urso, P., De Giovanni, L., & Massari, R. (2018). Robust fuzzy clustering of multivariate time trajectories.
International Journal of Approximate Reasoning, 99, 12–38.

D’Urso, P., De Giovanni, L., & Massari, R. (2021). Trimmed fuzzy clustering of financial time series based
on dynamic time warping. Annals of Operations Research, 299(1), 1379–1395.

D’Urso, P., García-Escudero, L. A., De Giovanni, L., Vitale, V., & Mayo-Iscar, A. (2021). Robust fuzzy
clustering of time series based on b-splines. International Journal of Approximate Reasoning, 136, 223–
246.

D’Urso, P., De Giovanni, L., Alaimo, L.S., Mattera, R., Vitale, V. (2023). Fuzzy clustering with entropy regu-
larization for interval-valued data with an application to scientific journal citations. Annals of Operations
Research 1–24

D’Urso, P., De Giovanni, L., Maharaj, E. A., Brito, P., & Teles, P. (2023). Wavelet-based fuzzy clustering of
interval time series. International Journal of Approximate Reasoning, 152, 136–159.

Everitt, B., Landau, S., & Leese, M. (2001). Cluster Analysis (forth). London: Arnold Press.

123

https://doi.org/10.1016/j.fss.2016.01.010


Annals of Operations Research

Fu, K. S., & Albus, J. E. (1977). Syntactic pattern recognition, applications. Springer.
Gao, Y., Wang, D., Pan, J., Wang, Z., & Chen, B. (2019). A novel fuzzy c-means clustering algorithm using

adaptive norm. International Journal of Fuzzy Systems, 21, 2632–2649.
García-Escudero, L. A., & Gordaliza, A. (2005). A proposal for robust curve clustering. Journal of classifica-

tion, 22(2), 185–201.
García-Escudero, L. A., Gordaliza, A., & Matrán, C. (2003). Trimming tools in exploratory data analysis.

Journal of Computational and Graphical Statistics, 12(2), 434–449.
García-Escudero, L. A., Gordaliza, A., Matrán, C., & Mayo-Iscar, A. (2008). A general trimming approach to

robust cluster analysis. The Annals of Statistics, 36(3), 1324–1345.
He, H., & Tan, Y. (2018). Unsupervised classification of multivariate time series using VPCA and fuzzy

clustering with spatial weighted matrix distance. IEEE Transactions on Cybernetics, 50(3), 1096–1105.
Hwang, H., DeSarbo, W., & Takane, Y. (2007). Fuzzy Clusterwise generalized structured component analysis.

Psychometrika, 72(2), 181–198.
Itakura, F. (1975). Minimum prediction residual principle applied to speech recognition. IEEE Transactions

on Acoustics, Speech, and Signal Processing, 23(1), 67–72.
Kahali, S., Sing, J. K., & Saha, P. K. (2019). A new entropy-based approach for fuzzy c-means clustering and

its application to brain MR image segmentation. Soft Computing, 23, 10407–10414.
Krishnapuram, R., Joshi, A., Yi, L. (1999). A fuzzy relative of the k-medoids algorithm with application to

web document and snippet clustering. In International Fuzzy Systems Conference (FUZZIEEE99), Seoul,
IEEE (Vol. 3, pp. 281–1286).

Krishnapuram, R., Joshi, A., Nasraoui, O., & Yi, L. (2001). Low-complexity fuzzy relational clustering algo-
rithms for web mining. IEEE Transactions on Fuzzy Systems, 9(4), 595–607.

Lafuente-Rego,B.,D’Urso, P.,&Vilar, J.A. (2020).Robust fuzzy clustering based onquantile autocovariances.
Statistical Papers, 61(6), 2393–2448.

Li, R., Mukaidono, M. (1995). A maximum entropy approach to fuzzy clustering. In Proceedings of the fourth
IEEE conference on fuzzy systems (FUZZ-IEEE/IFES ’95) (pp. 2227—2232).

Li, R. P., & Mukaidono, M. (1999). Gaussian clustering method based on maximum-fuzzy-entropy interpre-
tation. Fuzzy Sets and Systems, 102(2), 253–258.

López-Oriona, A., D’Urso, P., Vilar, J. A., & Lafuente-Rego, B. (2022). Quantile-based fuzzy c-means clus-
tering of multivariate time series: Robust techniques. International Journal of Approximate Reasoning,
150, 55–82.

López-Oriona, A., D’Urso, P., Vilar, J. A., & Lafuente-Rego, B. (2022). Spatial weighted robust clustering
of multivariate time series based on quantile dependence with an application to mobility during Covid-
19 pandemic. IEEE Transactions on Fuzzy Systems, 30(9), 3990–4004. https://doi.org/10.1109/TFUZZ.
2021.3136005

López-Oriona, A., Vilar, J. A., &D’Urso, P. (2022). Quantile-based fuzzy clustering of multivariate time series
in the frequency domain. Fuzzy Sets and Systems, 443, 115–154.

López-Oriona, Ángel., & Vilar, J. A. (2023). Machine learning for multivariate time series with the R package
mlmts. Neurocomputing, 537, 210–235. https://doi.org/10.1016/j.neucom.2023.02.048

Maharaj, A. E., & D’Urso, P. (2011). Fuzzy clustering of time series in the frequency domain. Information
Sciences, 181(7), 1187–1211.

Maharaj, A. E., D’Urso, P., &Galagedera, D. U. (2010).Wavelet-based fuzzy clustering of time series. Journal
of classification, 27(2), 231–275.

Miyamoto, S., Mukaidono, M. (1997). Fuzzy c-means as a regularization and maximum entropy approach. In
Proc. of 7th International Fuzzy Systems Association World Congress (IFSA’97), II (pp. 86–92).

Otranto, E. (2008).Clustering heteroskedastic time series bymodel-based procedures.Computational Statistics
& Data Analysis, 52(10), 4685–4698.

Otranto, E. (2010). Identifying financial time series with similar dynamic conditional correlation. Computa-
tional Statistics & Data Analysis, 54(1), 1–15.

Piccolo, D. (1990). A distancemeasure for classifying ARIMAmodels. Journal of Time Series Analysis, 11(2),
153–164.

Velichko, V., & Zagoruyko, N. (1970). Automatic recognition of 200 words. International Journal of Man-
Machine Studies, 2, 223–234.

Vilar, J. A., Lafuente-Rego, B., & D’Urso, P. (2018). Quantile autocovariances: A powerful tool for hard and
soft partitional clustering of time series. Fuzzy Sets and Systems, 340, 38–72.

Wu, K., & Yang, M. (2002). Alternative c-means clustering algorithms. Pattern Recognition, 35(10), 2267–
2278.

Xiong, Y., & Yeung, D. Y. (2004). Time series clustering with ARMA mixtures. Pattern Recognition, 37(8),
1675–1689.

123

https://doi.org/10.1109/TFUZZ.2021.3136005
https://doi.org/10.1109/TFUZZ.2021.3136005
https://doi.org/10.1016/j.neucom.2023.02.048


Annals of Operations Research

Zhang, D. Q., & Chen, S. C. (2004). A comment on alternative c-means clustering algorithms. Pattern Recog-
nition, 37(2), 173–174. https://doi.org/10.1016/j.patcog.2003.08.001

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/j.patcog.2003.08.001

	Robust DTW-based entropy fuzzy clustering of time series
	Abstract
	1 Introduction
	2 Research method
	2.1 The three-way data array
	2.2 Dynamic time warping
	2.2.1 The exponential transformation of the dynamic time warping based on the Euclidean distance

	2.3 The robust DTW-based entropy fuzzy clustering method
	2.4 The fuzzy silhouette index

	3 Simulation study
	3.1 First simulation
	3.2 Second simulation

	4 An application to real data: air pollution in the Province of Rome
	5 Conclusion
	References


