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Abstract: Can artificial intelligence (AI) raise productivity? If  we regard AI as a combination of 
software, hardware, and database use, then it can be modelled as a combination of the deployment of 
intangible and tangible assets. Since some are measured and some are not, then conventional product-
ivity analysis might miss the contribution of AI. We set out whether there is any evidence to support 
this view.
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I.  Introduction

What is the possible impact of AI on productivity growth? As described in Susskind 
(2020), AI is not new. Alan Turing told the London Mathematical Society in 1947 that 
he had conceived of a computing machine that could exhibit intelligence. A 1956 con-
ference at Dartmouth College, including Claude Shannon (the father of information 
theory), proposed studying ‘artificial intelligence’. At the same time, computing power 
has been improving apace, now linked together by the Internet. Is there anything special 
about AI?

The second wave of AI (Baruffaldi et al., 2020; Susskind, 2020) has, however, re-
kindled interest in this question. One way to see this is in trends in image recogni-
tion. Figure 1 shows the changing ability of machines to recognize images, with the 
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horizontal dotted line being human performance. Progress here has been very rapid and 
since around 2015 machines have been better than humans.

The idea that AI technology is potentially important gains additional support when 
considering the leading companies in today’s economy. Table 1 shows the world’s top 
ten companies by market capitalization. As is apparent, these companies are mostly 
‘hi-tech’. If  one thinks about the assets employed by these (mostly digital) companies, 
they are likely to be ‘knowledge-based’, centred on data, software, and AI. Indeed, 
company accounts reveal that the tangible capital value for Alphabet is $20 billion, 
Microsoft $5 billion, and Facebook $11 billion. These are clearly nowhere near their 
market values. What of their ‘intangible’ assets, including those derived from AI? They 
are typically very badly measured in company and national accounts, if  measured at all 
(Lev, 2001; Haskel and Westlake, 2017). Suppose for example, we capitalize the value of 
reported R&D since birth. The capitalized value of their R&D capital is for Alphabet 
$53 billion, Microsoft $85 billion, and Facebook $14 billion.1 Thus understanding their 
R&D is insufficient as well.

The major puzzle is that at the same time as this technology seems to be accelerating, 
productivity growth is slowing down. If  AI is a potentially general purpose technology, 
it should be showing up in productivity growth, yet such growth is slowing more or 
less everywhere. Perhaps AI is not productivity enhancing and productivity growth is 
over, slowed by falling technical progress and other growth headwinds, such as declin-
ing marginal improvements in education attainment (Gordon, 2016; Vollrath, 2020). 
Perhaps AI is productivity enhancing, but we will have to wait a while for it to show up 
(Brynjolfsson et al., 2021).

Figure 1: Imagine recognition by computers

Source: https://www.eff.org/ai/metrics#Vision

1 These estimates use a 20 per cent depreciation rate and the net stocks formula set out below.
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This paper attempts to shed some light on these questions. Our first task, if  we are 
to understand these top firms and, by extension, modern economies, is to understand 
their intangible assets. This leads to a way of understanding AI. Consider facial rec-
ognition, which has dramatically improved over the last half  decade (Figure 1). Facial 
recognition improvement is a combination of faster computers, running better soft-
ware, scanning larger databases. Thus we can think of AI as using a combination of 
tangible assets (hardware) with measured intangibles (software) and unmeasured intan-
gibles (databases). Our second task is therefore to set out a model that describes what 
happens when an economy invests in the combination of these assets, some of which 
are unmeasured. As we shall see, the model predicts the possibility of a rise in measured 
returns and a fall in measured total factor productivity (TFP) growth (as in the analysis 
by Brynjolfsson et al. (2021)). Third, we use a dataset that measures intangibles and try 
to uncover these effects.

Our main finding is that, on our data at least, there is indeed plenty of unmeasured 
investment but little sign of a ‘J-curve’ effect on TFP growth. The upward ‘swoosh’ 
of the effects of investments whose returns are long-lasting just is not there. That 
said, we are still in the early stages of pinning down AI in macroeconomic statistics, 
and the paper offers a framework and approach for capturing its impact in GDP and 
productivity growth.

The next section of this paper describes AI. We then set out our model of AI and 
returns on capital and growth, and then take it to the data in section V. Section VI sets 
out results and section VII summarizes.

II.  AI

The OECD describes AI as ‘machines performing human-like cognitive functions 
(e.g. learning, understanding, reasoning and interacting)’ (Baruffaldi et  al., 2020). 
Technologists add that AI methods require larger databases and faster computers than 
non-AI methods, emphasizing that AI delivers nonlinear improvements over legacy 
models and systems only once certain technical thresholds are met. Key developments 

Table 1: The world’s top companies (by market capitalization, 2018)

Company name Location Industry 31 March 2018 31 March 2009

   Market capitalization ($billion)

Apple USA Technology 851 94
Alphabet USA Technology 719 110
Microsoft USA Technology 703 163
Amazon.com USA Consumer services 701 31
Tencent China Technology 496 13
Berkshire Hathaway USA Financials 492 134
Alibaba China Consumer services 470 –
Facebook USA Technology 464 –
JBMorgan Chase USA Financials 375 100
Johnson & Johnson USA Healthcare 344 145

Source: Bloomberg and PWC, quoted in Haskel (2019).
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in AI began in the 1950s with narrow intelligence and are now progressing towards 
the goal of general intelligence. Urban (2015)2 discusses some examples of narrow AI, 
such as Google’s self-driving car, an email spam filter, recommendations on Amazon, 
Google search and translate, and chess playing. Much harder is ‘general AI’; recog-
nizing a picture of a cat, for example, as a cat (not a leopard) or using shadows to pick 
out the three-dimensionality in such a picture, as a human would, when a computer just 
sees shades of grey.

Documenting the spread of AI has been done in various places, mostly using 
keywords to search over patents, open source software, scientific publications, etc. 
Baruffaldi et al. (2020), for example, report the growth of scientific publications related 
to AI based on a keyword search with agreed keywords. As Figure 2 shows, this has 
accelerated in 2016.

Another use of AI is in software. Documenting the use of AI in opensource soft-
ware by searching GitHub repositories (where software projects are held) is one way of 
counting this. Figure 3 shows that, since 2013, substantial outsized growth in measures 
of AI software relative to all software.

Is AI a general purpose technology? WIPO (2019) looks at AI patents which specify 
the use of AI in a particular industry, finding that a wide spread of industries to which 
AI patents are applied: telecommunications (mentioned in 15 per cent of all identi-
fied patent documents), transportation (15 per cent), life and medical sciences (12 per 
cent), and personal devices, computing and human–computer interaction (HCI) (11 
per cent). The trends in such data are set out in Figure 4.

To many, AI means specific business processes and inventions: driverless cars, robots, 
machine learning. Some real world insight into the general use of the business appli-
cations of AI can be obtained from McKinsey, who survey firms using AI and group 

2 https://waitbutwhy.com/2015/01/artificial-intelligence-revolution-1.html

Figure 2: AI scientific publications

Source: Baruffaldi et al. (2020).
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them into industries. The 2019 snapshot suggests wide adoption of natural language 
capabilities, see Figure 5.

Likewise there is widespread adoption of robotics, see Figure 6.
Urban (2015) discusses what is required to make the transition from narrow to 

general AI. He suggests it will need a mix of improved hardware and software. For 
example, he cites estimates that the human brain performs 10 quadrillion (1016) calcula-
tions per second, whereas the world’s fastest supercomputer can manage 34 quadrillion 
(but requiring 720 square metres of space for processing and costing $390m). Another 
way to express this is that a $1,000 computer can perform at the speed of a mouse’s 
brain, about 1,000th of a human level, but if  Moore’s Law continues the speed should 
be matched by 2025. He also discusses developing artificial neural networks software 
as a way of mimicking human intelligence. Quite whether this will duplicate human 
intelligence as some transhumanists say, is controversial (Jones, 2016),3 but some in-
dication of the challenges involved can be seen by noting that simulating by software 
the neurons in a flatworm has only just been achieved. The flatworm has 302 neurons 
(Fessenden, 2014), but the human brain has 100 billion. Meanwhile, the Blue Brain pro-
ject (https://www.epfl.ch/research/domains/bluebrain/), to mimic by software a mouse 
brain (70 million neurons), is still ongoing. Nonetheless, the idea of treating AI as hard-
ware, software, and data seems to have some merit which we explore below.

3 http://www.softmachines.org/wordpress/wp-content/uploads/2016/01/Against_Transhumanism_ 
1.0.pdf

Figure 3: AI use in opensource software

Source: Baruffaldi et al. (2020, figure 3.4).
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Figure 4: AI patents by technology

Source: WIPO (2019, Figure 3.18).

Figure 5: AI use in business: natural language

Source: McKinsey quoted in Perrault et al. (2019, figure 4.3.3a).
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III.  Modelling AI and productivity

(i)  Summary

As we have seen, then, AI would seem to be a potentially important feature of the 
economy. But how can we measure it in a coherent way and then work out its effects? 
In what follows we follow the technologists and think of AI as a bundle of hardware, 
software, and databases. Thus, we:

 • treat spending on AI as an investment in a productive asset;
 • set out how such spending would show up in national accounts were it so 

measured;
 • show how omitting such spending affects measured TFP growth.

(ii)  AI as an intangible asset

The discussion above suggests that AI might be thought of as spending on software and 
databases. How long do the services from that spending last? If  that spending is ‘used 
up’ in, say, a year, it is then an intermediate expenditure, like air conditioning. Suppose, 
though, that it confers enduring benefits, e.g. a new algorithm that searches a new data-
base on customer behaviour and produces information on how better to advertise, and 
that information lasts for a couple of years before renewed behaviour has to be mod-
elled. In this case, such spending is investment which creates capital assets that provide a 
flow of long-lived services to be used in production (‘capital services’). The criterion of 
long-lasting benefits applies naturally to spending on long-lasting tangible assets, such 
as buildings, vehicles, and equipment. But if  benefits are long-lived (and appropriable), 

Figure 6: AI use in business: robots

Source: McKinsey quoted in Perrault et al. (2019, figure 4.3.3b).
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then we should treat in the same way firms’ expenditures on intangibles such as soft-
ware and data, as well as other assets such as R&D, product, brand, and organizational 
development. The Corrado et al. (2005, 2009; hereafter CHS) framework, set out in 
Table 2, expanded national accounts business investment to treat the part of spending 
on ‘intangibles’ that was long-lived as investment, and split such intangible spending 
into three broad groups. They are (i) computerized (digitized) information (software 
and databases), (ii) R&D, design, and other non-science-based new product develop-
ment costs, and (iii) brand equity, firm-specific training, and business process reorgan-
ization. AI investment fits most naturally into group (i), though the development of 
new, original algorithms falls in R&D, and applications of existing tools might also be 
found in market research and IT consulting services (included in organization capital). 
In any event, AI investments likely are complementary to these and other assets, e.g. 
a company using AI may also undergo process reorganization and product expansion 
and/or diversification.

Like tangibles, intangible assets can decline in value. Tangible assets might decline 
in value due to ‘wear and tear’, i.e. a physically induced decline, and/or ‘obsolescence’, 
i.e. a better product is invented, which is more like a market-based decline. Intangible 
assets might be less subject to ‘wear and tear’, but are likely subject to market-based 
declines: a database goes out of date as consumers change behaviour, trained workers 
leave the firm, investment cannot be fully appropriated, etc. For both these reasons then 
the ‘capital stock’ is likely to experience (economic) depreciation (OECD, 2009).

Table 2: Asset types

Tangible investment
Treated as investment 
in National Accounts?

Intangible 
investment

Treated as investment in 
National Accounts?

Building and structures Yes Computerized 
information

 

IT equipment 
(computer hardware, 
communications 
equipment)

Yes Software 1993 SNA. Most OECD countries 
implements by 2000, but using 
various methods

Non-computer 
machinery, equipment, 
and weapons systems

Yes Databases 1993 SNA. Very uneven 
implementation

Vehicles Yes Innovative property  
  R&D and mineral 

exploration
2008 SNA. UK implements in 
2014

  Creating 
entertainment, literary, 
or artistic originals

1993 SNA. US implements in 
2013

  Design No
  Economic 

competencies:
 

  Training No
  Market research and 

branding
No

  Business process 
re-engineering

No

Note: SNA is System of National Accounts.
Source: CHS and authors’ summary of national accounts conventions.
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To build capital stocks then, we start by deflating nominal investment data to obtain 
real investment for asset a, Ia

t , being Ia
t = PIa

t · Ia
t /PIa

t,m where PIa
t,m is the measured price 

index which may or may correspond to the ‘true’ price index, PIa
t , depending on, for 

example, quality adjustment. With this, we can then measure, for each intangible asset 
type a, its net asset stock Ra

t  in period t given by

Ra
t = Ia

t + (1 − δR
a )R

a
t−1 (1)

where δR
a  is its depreciation rate and we assume depreciation is geometric.4

Finally, note that Table 2 shows that not all intangible investment is counted as in-
vestment by statistical agencies—training and market research, for example. Rather, 
such spending is treated as an intermediate. We study the consequences for growth and 
capital returns next.

IV.  AI as an investment: consequences for TFP growth

We can get a sense of how important it might be to add these assets by looking at 
growth with and without their inclusion. A formal model is in the Appendix; here we 
attempt to describe our work with the minimum of equations.

(i)  Outline model and economic interpretation

Value added, Q, is produced in the economy by inputs labour, L, tangible capital, K, and 
intangible capital, R, used with efficiency AQ. Output growth in this economy is then

dq = σQ
L dl + σQ

K dk + σQ
R dr + daQ

 (2)

where du is change in natural log of variable u and and σQ
X  are rental payments to 

input X as a share of Q; the market is assumed competitive so that rental payments 
equal output elasticities of the inputs L, K, R. The term daQ captures changes in the 
efficiency with which inputs are used plus any effects of input growth over and above 
those captured by their input shares (e.g. ‘spillovers’ due to the partial appropriability 
of intangibles).

As a matter of measurement, however, at least some intangibles are expensed. Thus, 
both their output and inputs are ignored when measuring value added in which case 
output growth in this measured economy is

dv = σV
L dl + σV

Kdk + dtNoIntan
m  (3)

4 What is the justification of the geometric assumption, especially as one might assume that knowledge, 
e.g. a mathematical formula, is long-lasting? Let us describe the probability that a given asset type will survive 
in productive use from t to t + 1 as a ‘survival’ or ‘discard’ function. Let us describe the productivity of an 
asset as it ages, conditional on survival, as a ‘decay’ function. Hulten and Wycoff (1981) showed that when a 
decay function implying long-lasting productivity (conditional on survival) is interacted with a discard func-
tion with a high early failure rate and age cohorts are aggregated, the result is a convex geometric-like profile 
with relatively rapid depreciation.
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where dtNoIntan
m  is calculated as a residual. This gives a relation between dtNoIntan

m , da, and 
the other terms

dtNoIntan
m = daQ︸︷︷︸

tech,spillovers

− ωQ
N (dn − dv)︸ ︷︷ ︸

missingnewintanoutput

+ σQ
R dr︸ ︷︷ ︸

intanginput

+(σQ
X − σV

X)dx︸ ︷︷ ︸
K,Lsharemismeas  (4)

where dn is changes in the output of new intangibles and ωQ
N  their share in Q and x cap-

tures the K and L inputs (but not the R input).
What is the economic interpretation of equation (4)? Consider a bank which keeps 

money safely and also provides an ‘app’ to customers. The bank’s inputs to the output 
of ‘keeping money safe’ consist of security guards, L, and a bank vault, tangible capital, 
K. But the bank also produces the app, whose input is lines of software code, which is 
intangible capital, R. Treating the intangibles as an intermediate good means ignoring 
the output component that is the app, i.e. using V and not Q, and the input component 
that is the flow of intangible capital services, i.e. ignoring σQ

R dr.
These effects are captured in equation (4). The left-hand side is total factor product-

ivity (TFP) as measured, that is, using V as output, and L and K as input. The terms 
on the right say what this mismeasured term will capture. First, it captures any change 
in AQ, which could be a change in underlying technical change or efficiency. Second, it 
captures the missing intangible output, in the bank example, a new app. Third, it cap-
tures the missing input of intangibles and finally, because output is mismeasured, so 
are the shares.

(ii)  What does a slowdown in measured TFP growth (dtNoIntan
m ) 

indicate?

Equation (4) shows that a slowdown in dtNoIntan
m  can occur for a number of reasons. 

First, daQ might slow: a slowdown in underlying technical progress, for example. In 
an important book Robert Gordon (Gordon, 2016) has argued that technical progress 
consists of, essentially, one big wave around industrialization, electricification, trans-
portation, and IT, that has now run its course. Such an argument has some support in 
that the slowdown in productivity growth has been common across countries (Bergeaud 
et al., 2016).

Second, the second set of terms on the right-hand side of equation (4) capture the 
‘J-curve’ effect due to in Brynjolfsson et al. (2021).5 Suppose in the early stages of AI 
we have substantial investment in databases, software, hardware, and the like that is 
unmeasured. Then dn > dv: intangible investment is growing faster than value added 
(i.e. too little output counted). This can render dtNoIntan

m  < 0 even though nothing has 
happened to daQ. As that initial burst of investment falls off, this effect falls, and in-
tangible stocks and their payments share start to grow, i.e. σQ

R dr rises. Thus dtNoIntan
m  re-

covers. Brynjolfsson et al. (2021) makes some assumptions on the path of unmeasured 

5 This equation is the same as their A10. This can be seen by using their A4 to substitute into A10 to give, 
in our notation daQ = (Y/Q)(dtNoIntan

m )− σQ
R dr + ωQ

N dn. Substituting our equation (3) into this expression and 
using the fact that Y/Q = 1 − ωQ

N  gives our equation (4).
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intangible investment and rates of return to examine this. We use our data on intan-
gibles, measured and unmeasured, to see if, on our data at least, unmeasured intan-
gibles are significant enough to give such effects.

Finally, the framework helps shed some light on some other findings, namely, the 
divergence between the TFP of ‘leader’ companies and ‘laggards’ in similar sectors re-
ported in Andrews et al. (2016). This could be due to leaders having faster underlying 
da. Or, it could be due to leaders receiving more unmeasured intangible capital services 
than laggards (more dr); Corrado et al. (2021) find evidence that suggests more intan-
gibles are indeed part of the story.

In what follows, we attempt to examine evidence on productivity.

V.  Data

This section documents the missing investment and whether it can account for the fall 
in measured TFP. We start with measuring investment, and ask whether that investment 
does or does not cover AI. We then seek to measure the real capital stock and services 
this investment provides and the TFP implications.

(i)  Cross-country data

To investigate this we gather country-industry-year data, described more fully in 
Corrado et al. (2019). Our data is from 1995 to 2017 and covers the US plus 10, pri-
marily Western, European countries, namely Austria (AT), Germany (DE), Denmark 
(DK), Spain (ES), Finland (FI), France (FR), Italy (IT), Netherlands (NL), Sweden 
(SE), and United Kingdom (UK). Our industries are the 11 NACE A21 industry 
sectors that represent most non-agricultural private business activity in the two 
geographies: mining, manufacturing, construction, wholesale and retail trade, trans-
portation and storage, accommodation and food services, finance and insurance, pro-
fessional services, administrative services, and other services. We drop agriculture, 
public administration, health, and education since they are dominated by subsidies 
and public-sector involvement. We also ended up dropping Industry S, Other service 
activities, since it is poorly measured.

Our building blocks of data are value added, hours, and capital investment and the 
relevant deflators and labour costs. These are sourced from Eurostat. When we con-
struct gross value added (GVA) we then include capitalized non-national accounts 
intangibles investment. We compute net stocks by cumulating real investment as in 
equation (1), with depreciation rates as in Table 3. We then compute ex post rental rates 
for each capital asset so that adjusted nominal value added less labour costs equals 
total rental costs. Capital services growth is then a rental price-weighted Törnqvist-
weighted index of capital asset growth rates. Labour composition is taken from 
EU-KLEMS. Finally, we aggregate across countries using industry-specific purchasing 
power parities (PPPs). Hence each aggregate displayed is a bottom-up summation at 
the asset-industry-country-year level.
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(ii)  How much AI is included as investment already?

Software, data, and databases in the System of National Accounts (SNA)
As set out in Edquist et al. (2020b), in the SNA (European Commission et al., 2008), 
assets (entities that give their owner an economic benefit over a period of time) are 
separated into ‘produced’ and ‘non-produced’ assets, with non-produced as those as-
sets not produced as output from a production process. The issue is important in our 
context because the SNA distinguishes between data and databases. As Ahmad and 
Schreyer (2016) note, this matters because the SNA argues that databases consist of 
two components:

 (i) the supporting software or database management system (DBMS), which pro-
vides or facilitates access to the data: counted as a produced asset; and

 (ii) embodied data, counted as a non-produced asset.

Data are a non-produced asset because if  data (or information/knowledge in the form 
of data) were a produced asset then accounts would potentially have to capitalize all 
forms of information/knowledge, an infeasibly large undertaking. Thus, investment in 
databases is recommended to include (a) the cost of the underlying DBMS, which is 
software; and (b) costs associated with the preparing and transferring of data to the 
format/structure required by the database, including costs of digitization. This suggests 
that since (a) is already in software database improvement is already captured. That 
said, recent work by the Office for National Statistics (McCrae and Roberts, 2019), has 
sought to improve estimates of UK investment by extending coverage of own-account 
activity to better capture database investment; see also experimental estimates from 
Statistics Canada (2019).

It is the case, however, that a key aspect of AI activity not addressed in the SNA 
is data analytics or data science, which is the process of creating or extracting know-
ledge from data. Is this captured in R&D? In the UK, respondents to the R&D survey 
are asked about software development but not database development or data science/

Table 3: Geometric depreciation rates for market sector intangibles

Asset type Depreciation rate

Computerized information
1.  Software 0.315
2.  Data and databases 0.315
Innovative property
3.  R&D 0.15
4.  Entertainment, literary, and artistic originals 0.20
5.  Mineral exploration 0.075
6.  Design and other new product development 0.20
Economic competencies
7.  Brands 0.55
8.  Organizational capital  
(a) Manager/strategic capital 0.40
(b) Purchased services 0.40
9.  Employer-specific human capital 0.40

Note: Line 6 includes new financial products.
Source: Corrado et al. (2012).
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analytics. Since software expenditures are already capitalized, reported software de-
velopment expenditures are then excluded from R&D to avoid double-counting. So if  
firms report data science activities to be a form of R&D, but not software, they are in 
R&D.

Edquist et al. (2020a) look across Europe to see whether occupations typically counted 
as software-investment building might also be ‘database-building’. Software occupa-
tions in the UK are mostly in occupations such as IT specialist managers, IT project 
and programme managers, IT business analysts, architects, and systems designers, pro-
grammers and software development professionals, web design and development pro-
fessionals, IT operations technicians, IT user support technicians, IT engineers. Data 
for Europe are hard to obtain consistently, but they estimate that perhaps around 55 per 
cent of employment engaged in data capital formation is already accounted for in the 
measurement of own-account investment in software and databases in most European 
countries. The remaining half  is, in most cases, unmeasured, and the investment uncapi-
talized. In addition, the unmeasured element is growing faster than measures recorded 
in the national accounts in a number of countries. That said, the UK is one country that 
has incorporated these measures into its National Accounts.

AI counted in other data
AI measured in software occupations would pick up AI produced internally by the 
firm. Some such expertise might be bought in, and so to some extent AI, in the form 
of data analytic services, might be bought in as part of management and computer-
related consulting services. It might also be included as part of R&D in the computing 
industry. Corrado et al. (2019), following Byrne and Corrado (2017), show some US 
AI indicators in Figure 7, namely computer design consulting services and computer 
equipment/software/data-processing R&D. Such indicators are growing very fast in re-
cent periods. We do not have data on computer design consulting services for Europe, 
but industry-level R&D data in Europe is stable relative to GDP. Consistent then with 
EU KLEMS patterns (see O’Mahony and Timmer, 2009), ICT investment rates are 
relatively higher and faster-growing in the US.

Finally, we should mention that we will, of course, obtain different results if  we de-
flate intangibles differently. To guard against this, we use the same deflators for all coun-
tries. See the Appendix.

VI.  Results

(i)  Missing investment

Figure 8 shows shares of tangible and intangible investment across countries from 1997 
to 2017. As the graph shows, intangible investment is generally trended upwards and 
the US invests considerably more intangible investment then the EU. This immediately 
suggested accounting for intangible investment might potentially be important.

As we have discussed, national accounts do indeed measure intangible investment. 
Figure 9 plots national accounts intangible investment and the additional investment 
suggested by CHS set out in Table 2. As the graph shows, the non-national accounts 
intangible share is higher than the national accounts intangible share, reflecting the fact 
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that expenditure on items such as training and design are large. However, the trend is 
towards relatively more intensive national accounts intangibles measurement.

Figure 8: Intangibles and tangibles trends

Note: NonAgBusiness. Industry-specific value added PPPs for EU.
Source: Authors’ calculations from  www.intaninvest.net.

Figure 7: Indicators of AI product development in the United States (per cent of GDP)

Source: Authors’ elaboration of data developed and described in Byrne and Corrado (2017).
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Artificial intelligence and productivity 449

Finally, Figure 10 shows growth in real investment for tangibles, intangibles, and 
software. Notice that, particularly in the US, software spending grows particularly 
strongly at the end of the period. If  artificial intelligence is included in such spending 
this is suggestive. The position seems much more volatile in Europe.

Figure 9: National accounts and non-national accounts intangibles

Note: NonAgBusiness. Industry-specific value added PPPs for EU.
Source: Authors’ calculations from  www.intaninvest.net.

Figure 10: Investment

Source: Authors’ calculations from www.intaninvest.net
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In summary, then, we see quite marked differences across countries. In the US, in-
tangible investment has been strong, with software investment growing particularly 
strongly relative to the other forms of investment since 2013. In Europe, by contrast, 
intangible investment, and in particular software, does not seem to have grown particu-
larly differently.

(ii)  Biases to TFP growth

To start our examination of total factor productivity, Figure 11 shows growth ac-
counting for the EU and US for the years 1997–2007 and 2010–17 (we omit the reces-
sion years of 2008 and 2009). As the top panel shows, labour productivity and TFP 
were growing at a healthy rate in the run up to the financial crisis. The contributions of 
both tangible and intangible capital deepening were higher in the US than in Europe, 
and their contributions exceeded those of labour composition. In the period following 
the financial crisis, the situation changed. As is well known, labour productivity growth 
slowed substantially by around 0.5 percentage points per annum (pppa) in Europe and 
2pppa in the US. US TFP growth also slowed: if  anything European TFP growth was 
around the same. Intangible capital deepening slowed very strongly in the US, and 
somewhat in Europe.

Figure 12 shows the biases to measured TFP growth for the EU and the US respect-
ively: these are the terms on the right of equation (4), second line. A positive number in-
dicates that measured TFP growth is too big. Recall that the ‘J curve’ hypothesis is that 
measured TFP growth after the financial crisis is too small and then rises, suggesting 

Figure 11: Growth accounting

Source: Authors’ calculations from Eurostat and www.intaninvest.net
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that after the financial crisis the bias line should dip and then perhaps rise. At least 
for the EU, there is not much support for this hypothesis. Note first that the biases are 
small, at most around 0.2 per cent per annum, but less than this for most of the sample. 
On average, in the EU the bias is slightly positive but seems to show no particular trend.

Turning to the US, there is a hint of a J-curve effect after the mid-2000s. The bias, 
which was almost 0.4 per cent per annum fell steadily to around –0.2 per cent per annum 
in 2011, with the spike in the financial crisis years which presumably reflects mismeas-
ured utilization and the like. Since then, the bias has been moving back towards being 
positive. This then suggests that the pre-crisis TFP growth slow-down, which has been 
noted by a number of authors, may be somewhat overstated. That said, the effects do 
not appear to be all that large.

What is the intuition behind this apparent finding that the positive ‘swoosh’ of the ‘J’ 
appears quite quickly? We can get some insight into this from Figure 13, which shows 
the different components of the mismeasurement on the right-hand side of equation 
(4). These are the capitalization effect, the errors-in-shares effect, and the mismeasured 
capital payments effect. What is notable is that the mismeasured capital payments ef-
fect comes in very strongly and quite quickly. The intuition here would seem to be the 
following. As set out in equation (3), intangibles depreciate quite quickly. That means 
that a burst in intangible investment rapidly builds up the intangible stock, and the 
rental price on that stock is relatively large (the per-period rental price of capital has 
to be large for capital that depreciates to compensate the capital owner for renting out 
an asset whose value will fall quickly). As a result, the missing rental payments effect 
comes in very quickly following even unmeasured intangible investment. That means 
that the second half  of the ‘J’ appears rather quickly after the initial dip.

Figure 12: Bias to TFP

Note: Market sector exAgHeEd.
Source: Authors’ calculations from Eurostat and www.intaninvest.net.
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All this suggests that investments in artificial intelligence will have a more substantial 
‘J effect’ the more they are mismeasured and the lower their depreciation rate. Now, it 
might be that current AI investments are not substantially mismeasured for the simple 
reason that we might still be too early in the AI investment cycle. As the earlier graphs 
showed, the ‘second wave’ of AI might be comparatively recent and so it might be too 
early to pick up the mismeasurement involved. It might also be that we have mismeas-
ured depreciation rates. At the moment, in our system AI-related investments are given 
the high depreciation rates the literature has found are appropriate to intangibles. But 
it may, of course, be the case that artificial intelligence investment has a much lower 
depreciation rate.

VII.  Summary

This paper has reviewed the question of whether investment in AI might or might not 
raise productivity. While there seems to be plenty of evidence that such investments are 
large and ongoing, the immediate puzzle is that productivity, far from speeding up, is 
slowing down. The leading hypothesis to explain this puzzle is the ‘J-curve’ effect.

Under this hypothesis, investment in AI is mismeasured. Measured output is there-
fore too low, and hence TFP growth appears to be falling. In the fullness of time, when 
such investment returns to steady-state levels, the bias to measured output disappears, 
but by then a capital stock corresponding to the asset of intangible knowledge in arti-
ficial intelligence is built up, and the mismeasurement then is the lack of attributing 
payments to that stock, and TFP growth is too high.

Figure 13: Bias to TFP, component parts

Note: Market sector exAgHeEd.
Source: Authors’ calculations from Eurostat and www.intaninvest.net.
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We have set out a framework to illustrate this effect and used a cross-country-indus-
try-year data set for the US and European economies to examine it. To look for unmeas-
ured investment, we have used the CHS approach, which brings into national accounts 
unmeasured investment in intangible assets which are likely complementary to artificial 
intelligence, such as design, training, and business process re-engineering. We have also 
seen that at least some artificial intelligence investment is likely in software investment 
and is thus already counted. Thus we have harmonized the deflation of software and 
hardware investment to facilitate comparison across different countries.

At least on these data, we do not find much support for the J-curve view. There is, in-
deed, plenty of unmeasured investment, but the trend in such investment does not seem 
to be sufficient to give an effect. In particular, the high depreciation rates mean that 
the missing capital payments which bias TFP growth up follow quickly after a burst of 
intangible investment, meaning that the upward-sloping part of the J curve, at least on 
our data, appears very quickly, too quickly to account for a sustained TFP growth slow-
down following the financial crisis. That said, we are in the early stages of measuring 
AI, and since much of it is taking place within firms on their own account, the detection 
of such investment is extremely difficult. Nonetheless, the framework presented here 
and the direction travelled by numerous statistical agencies towards increased collection 
of this type of investment we believe constitute useful steps forward.

Appendix

(i)  Depreciation rates

For convenience, Table 3 reports the geometric depreciation rates for market sector in-
tangibles. The values in Table 3 are relatively high. Geometric depreciation rates used 
to calculate tangible capital stocks in, for example, EU KLEMS, are typically numbers 
like 0.033 (non-residential structures), 0.01 (residential structures), 0.12 (machinery), 
and 0.15 (transport equipment) (Timmer et al., 2007)). These estimates are supported 
by direct business survey estimates of intangible depreciation rates for the United 
Kingdom (Awano et al., 2010).

(ii)  Industries

Table 4 sets out our industry coverage.

Deflators
We will obtain different results across countries if  use a different deflator for capital 
goods. For non-computer tangible goods, such as buildings, deflators are uncontrover-
sial, but for computers and intangible investment matters are more difficult. For com-
puters, the main issue is quality adjustment, that is, ensuring $100 of spending today is 
the ‘same’ as $100 spent 10 years ago. Software and databases pose similar challenges 
(likewise, other intangible categories, see Byrne and Corrado (2017)). Figure 14, taken 
from Ahmad et al. (2017), shows how price indices used by national statistical agencies 
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Figure 14: Average growth, 2010–15, in ICT price index, by country

Source: National statistical agencies, compiled by OECD, reported in Ahmad et al. (2017).

Table 4: Industry sectors

Sector Description

A Agriculture, forestry, and fishing

B Mining and quarrying

C Manufacturing

D Electricity, gas, steam, and air conditioning supply

E Water supply; sewerage, waste management, and remediation activities

F Construction

G Wholesale and retail trade; repair of motor vehicles and motorcycles

H Transportation and storage

I Accommodation and food service activities

J Information and communication

K Financial and insurance activities

L Real estate activities

M Professional, scientific, and technical activities

N Administrative and support activities

O Public administration and defence; compulsory social security

P Education

Q Human health and social work activities

R Arts, entertainment, and recreation

S Other service activities

T Activities of households

U Activities of extraterritorial organizations and bodies

Note: INTAN-Invest covers all but the dark-shaded industry sectors.
sectors. All shaded sectors (light and dark) are excluded from the data reported in this paper.
Source: NACE Rev. 2 A21 industry sectors as defined in Eurostat (2008).

D
ow

nloaded from
 https://academ

ic.oup.com
/oxrep/article/37/3/435/6374681 by U

N
IVER

SITA' D
EG

LI STU
D

I D
I R

O
M

A LA SAPIEN
ZA user on 17 January 2024



Artificial intelligence and productivity 455

differ quite substantially across countries. Thus we harmonize prices across countries, 
following Colecchia and Schreyer (2002).

(iii)  Derivation of equations

Model
A fuller model is as follows. The model has two sectors, an upstream, or knowledge-
producing/innovation, sector and a downstream, or knowledge-using/production, 
sector. The upstream sector takes freely available concepts or ideas—basic know-
ledge—and produces new ‘finished’ ideas or new commercial knowledge (e.g. blue-
prints), Nt. The downstream production sector uses a resulting stock of  commercial 
knowledge as an input to production. That is, the downstream sector rents the know-
ledge stock, R. Each sector has a production possibilities frontier following Jorgenson 
(1966) and a flow equation whereby, due to competition, revenue covers costs (we deal 
with imperfect competition below). Labour is denoted L, new tangible capital, which 
is investment, I, and the tangible capital stock is K. The downstream sector is a price-
taker for knowledge (so that any product market power is located in the innovation 
sector: this is similar to many models of  innovation, e.g. Romer (1990); Aghion and 
Howitt (2007)). All sectors pay PL and PK, being competitive factor prices for the 
services of  L and K.

Following the net stock equations above, the stock of  intangibles evolves as 
(∆R =N − δRRt–1) and stock of  tangible capital as (∆K = I − δKKt−1). Let us com-
bine the conventional inputs K and L by X and σX, σR are rental payments to inputs 
X and R as a share of  value added. A is shift in production function: a combination 
of  exogenous technical progress and true spillovers (i.e increase in knowledge freely 
available). du is change in natural log of  variable u.

The intangibles-producing N-sector has a flow payments and production relation 
given by

PNN = PXXN ; dn = σN
X dxN + daN

 (5)

The tangibles-producing I-sector has a flow payments and production relation given by

PII = PXXI ; di = σI
Xdxi + daI

 (6)

GDP and growth accounting when intangibles are intermediates
Suppose we treat intangibles as intermediates to the downstream intangible- and tangi-
ble-using production sector which produces consumption goods. So its flow payments 
include as costs the entire flow of new intangibles PNN, meaning that its value added 
subtracts PNN from its sales

PCVC ≡ PCC − PNN; dc = σC
X dxC + σC

NdnC + daC
 (7)

Counting economy-wide value added = sum of industry value-added, i.e.PV V ≡ PCVC 
+ PII + PN N, we have
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⇒
PVV︸︷︷︸
GDP

= PCC︸︷︷︸
consump

+ PII︸︷︷︸
invest

; dv = σV
X dx + daV

︸ ︷︷ ︸
output = share∗input + TFP (8)

and where da = σV
I daI + σV

CdaC. This is the usual model where value added equals con-
sumption and investment, TFP growth is value-added less share-weighted inputs.

GDP and growth accounting when intangibles are capital
Now, if  we treat the upstream intangibles-producing N-sector as producing capital, we 
must amend the downstream C-sector so that it rents the stock of intangibles R,

PCVC ≡ PCC; dc = σC
X dxC + σC

R drC + daC
 (9)

Letting economy-wide value added  =  sum of industry value-added, i.e. 
PQQ ≡ PCVC + PII + PNN, gives

PQQ︸︷︷︸
GDP

= PCC︸︷︷︸
consump

+ PII︸︷︷︸
taninvest

+ PNN︸︷︷︸
intaninvest

; dq =≡ ωQ
C dc + ωQ

I di + ωQ
N dn = σQ

X dx + σQ
R dr + daQ

︸ ︷︷ ︸
output = share∗input X + share∗input R + TFP  

(10)

Thus the implications of an intangible/AI economy can be derived from the comparison 
of the payment flow terms and growth accounting relations.

How growth changes in an intangible/AI economy
The sources of growth change as follows. Measured TFP with no intangibles, dtNoIntan

m , is 
measured output less value added share-weighted conventional K and L inputs (includ-
ing L and K in the N sector)

dtNoIntan
m = dv − σV

X dx; (11)

This gives a relation between dtNoIntan
m , da and the missing intangibles as set out in equa-

tion (4) in the text.
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