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Abstract

We study the theoretical and empirical properties of a simple measure of market illiquidity,
namely the realized Amihud, which is defined as the ratio between the realized volatility and
trading volume and which refines the popular price impact measure proposed by Amihud
(2002). In our model, both price volatility, 𝜎 (𝑡), and market liquidity, _(𝑡), are assumed to
follow stochastic processes in continuous time. In this setting, characterized by stochastic
volatility and liquidity, we prove that the realized Amihud provides a precise measurement of
the inverse of integrated liquidity, that is, the integral of

∫ 1
0 _(𝑠) 𝑑𝑠 over fixed-length periods

(e.g., a day, a week, a month). We consider a number of alternative econometric specifications,
hence highlighting the main dynamic and distributional properties of the realized Amihud,
including jumps, clustering, and leverage effects.
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1 Introduction

In addition to being crucial to the quality of financial markets and resilience of the financial sys-
tem, market liquidity is important for capital market efficiency because “liquidity of investment
markets often facilitates, though it sometimes impedes, the course of new investment” (Keynes,
1936, p.102). However, market liquidity is an elusive concept because it includes everything that
determines “the degree to which an order can be executed within a short time frame at a price
close to the security’s consensus value” (Foucault et al., 2013, p.2). Thus, liquidity manifests itself
in at least two important ways: the transaction cost and the impact of transaction volumes on
security prices, which, in turn, depends on the market depth and price elasticity. The transaction
cost is often gauged by the bid-ask spread, while a popular measure for price impact is the Ami-
hud illiquidity measure (Amihud, 2002), which is the ratio between the daily absolute returns and
trading volume.

In this paper, we study the theoretical and empirical properties of a refinement of the clas-
sic daily Amihud, namely the realized Amihud, which is defined as the ratio between a realized
volatility measure and the daily trading volume. Figure 1 provides a simple illustration of the pre-
cision of the realized Amihud (black solid line) in relation to the daily Amihud (blue solid line).
Although both series follow similar dynamic patterns, the daily Amihud is a much noisier proxy
of the latent signal than the realized Amihud.
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Figure 1: Realized Amihud (black solid line) vs daily Amihud (blue dotted line, see Amihud, 2002) of SPY.
Sample period: January 3, 2006 – June 29, 2018. Both series are scaled by a factor of E+09.

This paper contributes to the literature in three ways. Our first contribution is outlining a sim-
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ple theoretical framework based on the trading mechanism introduced by Clark (1973), which fits
suitably into the theory of realized volatility, specifically here in the context of liquidity measure-
ment. This allows us to construct a simple framework to formally define a stochastic quantity,
namely the integrated illiquidity, which is the object of interest when employing the realized
Amihud. Hence, we can establish how precisely the integrated illiquidity is measured vis-a-vis the
classic daily Amihud. In developing the theory behind the realized Amihud, we consider a setting
where both spot volatility, 𝜎 (𝑡), and the instantaneous liquidity parameter, _(𝑡), are (possibly
correlated) continuous-time stochastic processes. We prove that the realized Amihud provides a
precise measurement of the integrated illiquidity, which is defined as the reciprocal of

∫ 1
0 _(𝑠)𝑑𝑠

over periods of unit length (e.g., a day, a week, or a month). Thanks to its intrinsic nonparametric
nature, the realized Amihud represents a simple measure of market resiliency, that is, the elastic-
ity of asset prices to trading volume, where the latter depends on the degree of disagreement in
the beliefs among traders.

A set of Monte Carlo simulations illustrates the finite sample accuracy of the realized Amihud
as a nonparametric measurement of integrated illiquidity, showing that sampling returns at 5-
minute frequencies normally reduces the contamination coming from microstructural frictions
stemming from other dimensions of illiquidity, such as the bid-ask spread or price staleness. In
the Monte Carlo simulations, we also explore the finite-sample properties of an alternative low-
frequency version of the classic daily Amihud, namely the high-low Amihud, which exploits the
information on volatility obtained by the daily range estimator of Parkinson (1980). The range
is simply based on the difference of two values, which can be easily obtained for many financial
securities, even on a daily basis: the highest and lowest price achieved by the financial security
during a given period. We show that the high-low Amihud provides estimates of the underlying
illiquidity process that are several times more precise than those obtained by the daily Amihud.
For this reason, the high-low Amihud can be considered a more efficient low-frequency alternative
to the daily Amihud.

Our second contribution is to derive a simple theory for jumps in illiquidity, which are gener-
ated by impactful news common to all traders such as earnings press releases for stocks or central
bank announcements for currencies. The natural interpretation of such jumps is the consensual
price change induced by new fundamental information for which little or no transaction volume
is needed to achieve it. We refer to them as information jumps. These events induce large volatility
but little to no volume, thus mechanically increasing the observed market illiquidity. Building on
the results of Barndorff-Nielsen and Shephard (2003, 2004, 2006), we develop a formal way to carry
out nonparametric statistical inference on information jumps and disentangle the illiquidity gen-
erated by information jumps from the baseline illiquidity associated with disagreement among
traders, which is the main driver of trading volume. In particular, we construct a test statistic
to detect significant jumps, and we construct the jump-robust version of the realized Amihud
estimator of illiquidity.

Our third contribution is to empirically study the properties of the realized Amihud. To do so,
we consider a comprehensive set of alternative econometric specifications with the goal of char-
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acterizing the main dynamic and distributional properties of the realized Amihud. These models
are inspired by those that are usually adopted in the context of volatility modeling. In particular,
we explore the (pseudo) long-memory features of the realized Amihud by estimating the hetero-
geneous autoregressive specification (HAR) model of Corsi (2009) in both a linear and nonlinear
context. Also, we consider a multiplicative error model (MEM) specification (Engle and Gallo,
2006) that allows for a direct prediction of illiquidity without resorting to nonlinear transforma-
tions to preserve positivity. The empirical analysis, which is based on the time series of the daily
realized Amihud of the main exchange traded fund (ETF) tracking the S&P 500 index (SPY), re-
veals a number of interesting and novel empirical features, shedding new light on the stochastic
features of illiquidity. Two main findings stand out that, reminiscent of two key terms used in the
volatility literature, we call illiquidity clustering and leverage effect. First, the empirical evidence
strongly suggests that the latent illiquidity process is a very persistent one that is characterized by
long periods of high illiquidity followed by long periods of low illiquidity. Second, when regress-
ing excess returns on the realized Amihud, we find that illiquidity negatively correlates with stock
returns at daily, weekly, and monthly frequencies, a phenomenon that we call illiquidity leverage.
After breaking down illiquidity in its expected and unexpected components, we find that it is the
unexpected part of illiquidity that is most correlated with returns. Note that both the illiquidity
clustering and leverage effects are much less evident when the noisy classic daily Amihud is em-
ployed, hence reiterating the importance of using a more precise illiquidity measure, such as the
realized Amihud.

Finally, we show that, despite its simplicity, our theory lends itself to several extensions that
succeed in explaining the financial markets’ behavior in reaction to major events such as the
cap removal of EUR/CHF on January 15, 2015. The theory prescribes that the observed illiquid-
ity would increase after the cap removal because the Swiss National Bank ceased to supply Swiss
francs in unlimited quantities, thus reducing the supply of extra trading volume to the market. By
carrying out the break analysis of Bai and Perron (1998), we find strong evidence that illiquidity
significantly increased after January 15, 2015, as a joint consequence of an increase in EUR/CHF
volatility and a reduction in trading volume of the same currency pair. Notably, we find an anal-
ogous pattern on the USD/CHF rate, suggesting that a liquidity shock in one market (or FX rate)
immediately spills over into another one.

Our paper adds to prior research on market liquidity by highlighting the main theoretical
and empirical properties of the realized Amihud measure. The literature in this field proposes
several measures of the trading impact on security prices. Ideally, to measure this, one would
need access to data on all orders submitted by traders in a centralized market. However, many
markets are decentralized and opaque, such as all the over-the-counter (OTC) markets, including
the FX market that we also study here. In this context, the Amihud measure is extremely useful for
approximating the trading impact on security prices at the aggregate level. Kyle (1985) provides
an insightful theoretical framework to explain how orders impact asset prices, as captured by his
lambda factor. Relying only on daily price and volume data, much more accessible than tick-by-
tick orders and transactions, the ILLIQ proxy proposed by Amihud (2002) offers a very practical
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measure to approximate Kyle’s lambda, which is easy to calculate and accurate when compared
with benchmark measures such as the effective spread and order flow price impact.1 Ranaldo
and Santucci de Magistris (2022) introduce the realized Amihud to empirically study the price
impact in the global FX market. We extend their work (i) by providing a theoretical foundation to
the realized Amihud, (ii) by introducing the notion of integrated illiquidity, and (iii) by studying
the appropriate econometric modeling that highlights its empirical features, including illiquidity
jumps, clustering, and leverage effects. Our work shares similarities with that of Collin-Dufresne
and Fos (2016), who extends the theoretical setting of Kyle (1985) by letting price impact and
price volatility both be stochastic. Compared with Collin-Dufresne and Fos (2016), our theory is
simpler but offers new insights into Amihud’s measure: in a market populated by traders with
different reservation prices, the realized Amihud measures the inverse of the integrated liquidity.
Furthermore, our contribution is both on the methodological side and on the econometric side.
On the methodological side, we propose an easy-to-compute measure of trading price impact
that relies on the ratio between two observable quantities based on transaction data, namely the
(realized) volatility and volume. In doing so, we extend the previous literature on low-frequency
liquidity measures predominantly based on the estimation of bid-ask spread approximation.2

This present paper is organized as follows: Section 2 outlines the theoretical setting. Section
3 reports the results of several Monte Carlo simulations. Section 4 introduces the notion of infor-
mation jumps and of the jump-robust realized Amihud. Section 5 presents the empirical analysis,
while Section 6 concludes the paper. Proof and additional empirical results are in the Appendix.

2 A Simple Theory of Illiquidity Measurement

Let us consider a world in which there is a traded asset. We assume that the market consists of a
finite number 𝐽 ≥ 2 of active participants who trade on the asset. Within a given trading period
of a certain unit length (e.g., an hour, a day, a week), the market passes through a sequence of
𝑖 = 1, . . . 𝐼 equilibria. The evolution of the equilibrium price is motivated by the arrival of new
information to the market. At intraperiod 𝑖 , the desired position of the 𝑗-th trader ( 𝑗 = 1, . . . , 𝐽 ) is
given by

𝑞𝑖, 𝑗 = _𝑖 (𝑝∗𝑖, 𝑗 − 𝑝𝑖), _𝑖 > 0, (1)

where 𝑝∗𝑖, 𝑗 is the reservation price of the 𝑗-th trader and 𝑝𝑖 is the current market price (both mea-
sured in logs). The equilibrium function in (1) is analogous to the theory of Clark (1973) and
Tauchen and Pitts (1983), which provides a stylized representation of the supply-demand mecha-
nism on the market at the intraday level.3 The reservation price of each trader might reflect some
of the following aspects: individual preferences, liquidity issues, asymmetries in information sets,

1For instance, Hasbrouck (2009) provides evidence on the accuracy of the Amihud measure for stocks while
Ranaldo and Santucci de Magistris (2022) does so for FX rates.

2Starting from the seminal work of Roll (1984), several papers propose other measures that estimate the bid-ask
spread, including Hasbrouck (2009), Corwin and Schultz (2012), and Abdi and Ranaldo (2017).

3See also the survey in Karpoff (1987) and the empirical analysis in Andersen (1996).
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and different expectations about the fundamental values of the asset. In general, the reservation
price can deviate from the market price because of idiosyncratic reasons, inducing the 𝑗-th trader
to trade. The quantity exchanged for a unit change of 𝑝∗𝑖, 𝑗 − 𝑝𝑖 is given by the slope _𝑖 . The term
_𝑖 is a positive coefficient capturing the market depth at time 𝑖: The larger the _𝑖 , the larger quan-
tities of the asset can be exchanged for a given difference 𝑝∗𝑖, 𝑗 − 𝑝𝑖 . In other words, _𝑖 measures
the capacity of the market to allow large quantities to be exchanged at the intersection between
demand and supply, thus recalling the concept of market depth and resilience that reduces the
price impact of trading. The baseline assumptions of the model (linearity of the trading function
and constant number of active traders) are inevitably stylized. As for the form of the equilibrium
function in (1), note that the trades take place on short intraday intervals of length 𝛿 = 1/𝐼 and
are generally associated with small price variations. Therefore, it is not restrictive to assume the
equilibrium function is linear on small price changes and for a fixed number of traders during
such a short period.

By market clearing, that is
∑

𝑗 𝑞𝑖, 𝑗 = 0, we have that the average of the reservation prices clears
the market, that is, 𝑝𝑖 = 1

𝐽

∑𝐽

𝑗=1 𝑝
∗
𝑖, 𝑗 , and the log-return is 𝑟𝑖 := Δ𝑝𝑖 = 𝑝𝑖 − 𝑝𝑖−1. Furthermore, as

new information arrives, the traders adjust their reservation prices Δ𝑝∗𝑖, 𝑗 , resulting in a change
in the market price, which is given by the average of the increments of the reservation prices.
Consequently, the generated trading volume in each 𝑖-th subinterval is as follows:

a𝑖 =
_𝑖

2

𝐽∑︁
𝑗=1

|Δ𝑝∗𝑖, 𝑗 − Δ𝑝𝑖 |,

where Δ𝑝∗𝑖, 𝑗 = 𝑝∗𝑖, 𝑗 − 𝑝∗𝑖−1, 𝑗 . We assume the following dynamics for the reservation prices

𝑑𝑝∗𝑗 (𝑡) = ` 𝑗 (𝑡)𝑑𝑡 + 𝜎 𝑗 (𝑡)𝑑𝑊𝑗 (𝑡), 𝑗 = 1, . . . , 𝐽 , (2)

where
{
𝑊𝑗 (𝑡), 𝑗 = 1, . . . 𝐽

}
is a collection of independent Wiener processes. The term ` 𝑗 (𝑡) is a

predictable process with finite variations that might represent the long-term expectation of the 𝑗-
th trader about the asset and could be a function of fundamental quantities, such as interest rates
and macroeconomic variables. The term 𝜎 𝑗 (𝑡) is the stochastic (spot) volatility process of the 𝑗-th
trader. By letting 𝜎 𝑗 vary across traders, we introduce heterogeneity among them. This reconciles
with many realistic features, including the evidence of long-term memory in volatility, as obtained
by the superposition of traders operating at different frequencies, which, for instance, can be
seen with the heterogeneous autoregressive models of Müller et al. (1997) and Corsi (2009). We
assume that 𝜎 𝑗 (𝑡) > 0 is càdlàg with (almost surely) square integrable sample paths ∀𝑗 = 1, . . . , 𝐽 .
Analogously, _(𝑡) is assumed to evolve over time as a strictly positive càdlàg stochastic process.
This setup is coherent, with a representation of a frictionless market where each trader participates
through its reservation price to determine a new equilibrium price by carrying new information.

Consider an interval of unit length, for example, an hour, a day, or a month. For ease of
exposition and tractability, we assume that trades happen on an equally spaced and uniform grid,
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𝑖 = 1, 2, . . . 𝐼 . On the 𝑖-th discrete subinterval of length 𝛿 = 1
𝐼
, we have the following:

𝑝∗𝑖, 𝑗 =

∫ 𝛿𝑖

𝛿 (𝑖−1)
` 𝑗 (𝑠)𝑑𝑠 +

∫ 𝛿𝑖

𝛿 (𝑖−1)
𝜎 𝑗 (𝑠)𝑑𝑊𝑗 (𝑠). (3)

Following Barndorff-Nielsen and Shephard (2003), for a given 𝛿 > 0, we can define the re-
alized power variation of order one (or realized absolute variation) as 𝑅𝑃𝑉 =

∑𝐼
𝑖=1 |𝑟𝑖 |. Hence,

analogously to the illiquidity proxy in Amihud (2002), we can define the continuous-time version
of the Amihud illiquidity measure, namely the realized Amihud, as follows:

A := 𝑅𝑃𝑉

a
. (4)

This quantity gauges the price impact of trading, that is, the amount of volatility on a unit
interval (as measured by 𝑅𝑃𝑉 ) associated with the trading “dollar” volume a =

∑𝐼
𝑖=1 a𝑖 generated

in the same period. In other words, A measures the amount of volatility associated with a unit of
trading volume.4 In the model of Clark (1973), Epps and Epps (1976), and Tauchen and Pitts (1983)
volatility and trading volume (often used as a proxy for liquidity) are equilibrium outcomes of
information impact and are jointly related to an unobservable dynamic information flow variable.
By taking the ratio between volatility and volume, we decouple the information about market
illiquidity from that of the information flow.

The following proposition highlights the main determinants of realized Amihud as an illiq-
uidity measure.

Proposition 1. Consider the illiquidity measure defined in (4), the equilibrium relation in (1), and
the diffusive process for reservation prices in (2). Assume that 𝜎 𝑗 (𝑡) and _(𝑡) are strictly positive
càdlàg processes with (almost surely) square integrable sample paths ∀𝑗 = 1, . . . , 𝐽 . Assume 𝐽 = 2
active traders, as representative of the two aggregated sides of the market. As 𝐼 → ∞ (i.e., 𝛿 → 0)

𝑝 lim
𝐼→∞

A =
1
L , (5)

Furthermore, as 𝐼 → ∞
log(A) − log

(
1
L

)
√︃

2𝛿 (𝜋/2−1)𝑅𝑉
(𝜋𝛿/2)𝑅𝑃𝑉 2

𝑑→ 𝑁 (0, 1), (6)

where 𝑅𝑉 =
∑𝐼

𝑖=1 𝑟
2
𝑖 is the realized variance.

Proof. Proof in Appendix A.1. □

Proposition 1 shows that the realized Amihud is a measure of the reciprocal of the daily in-
tegrated liquidity L, namely the integrated illiquidity, and the precision of the measurement in-
creases as 𝐼 increases. Furthermore, the asymptotic distribution in (6) can be used to construct a

4Alternatively, one could employ the Amivest, which is defined as the reciprocal of Amihud, that is, as the ratio
of volume over volatility.
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confidence interval for L. In the next section, we run Monte Carlo simulations to assess the finite
sample performance of the realized Amihud in measuring illiquidity.

3 Monte Carlo Simulations

Resorting to the continuous-time framework outlined in Barndorff-Nielsen and Shephard (2002a,b),
we can precisely measure the variability of the asset price by computing RPV over intervals of
any length (e.g., hours, days, weeks, and months). Furthermore, the equilibrium theory presented
above allows us to relate this variability to the aggregate level of disagreement among investors,
in turn leading to the observed trading volume. An assessment of the quality of the measure-
ment of illiquidity based on the realized Amihud is carried out by Monte Carlo simulations. The
liquidity process, _(𝑡), is generated according to a Heston-type SDF:

𝑑_(𝑡) = ^_ (_(𝑡) − _0)𝑑𝑡 + [__(𝑡)1/2𝑑𝑊_ (𝑡),

where _0 = 50, 200, 500 represents the long-term mean in the low-, medium-, and high-liquidity
scenarios, respectively. The parameters ^_ = 0.5 and [_ = 0.1 determine the speed of the mean-
reversion and the volatility of liquidity, respectively. Similarly, also the reservation prices (and,
hence, equilibrium prices) is generated according to the diffusive process in (2), where the vari-
ance, 𝜎2

𝑗 (𝑡) with 𝑗 = 1, 2, evolves following the dynamics of the Heston model, that is, 𝑑𝜎2
𝑗 (𝑡) =

^𝜎 (𝜎2(𝑡) − 𝜎2
0 )𝑑𝑡 + [𝜎𝜎 (𝑡)𝑑𝑊𝜎,𝑗 (𝑡) with the parameters ^𝜎 = 0.2, 𝜎2

0 = 2, [𝜎 = 0.1.5 In the sim-
ulation of price and volume trajectories, we consider 𝑇 = 1, 000 transaction days and 𝐼 ∗ = 5, 760
intradaily intervals corresponding to a 15-second frequency over 24 hours. The RPV is then com-
puted aggregating absolute returns sampled at different frequencies: 1 hour; 30, 15, 10, 5 minutes;
and 30 and 15 seconds, that is, 𝐼 = [24, 48, 96, 144, 288, 1440, 2880, 5760] subintervals, respectively.

As a graphical illustration of the ability of the realized Amihud to precisely measure the latent
illiquidity process, the four graphs to the left of Figure 2 report the true liquidity signal (in red),
together with its estimates obtained with the realized Amihud sampling at different frequencies
(blue dots). As the sampling frequency increases, the variability around the true illiquidity signal
decreases, and it becomes negligible at the 1-minute frequency. In other words, by taking the ratio
between a increasingly refined (in 𝐼 ) measurement of daily volatility and daily trading volume, we
can obtain a very precise measurement of the day-by-day variations of the trade impact, which is
a relevant dimension of illiquidity. The graph to the right of Figure 2 confirms the accuracy of the
realized Amihud to capture the latent illiquidity process by showing the 95% confidence bands.
More precisely, we exploit the asymptotic distribution result in Proposition 1 and report the 95%
confidence bands around the true (log) illiquidity signal, logL, which is based on the realized
Amihud computed with 1-minute returns. As clearly observable, the true illiquidity series lies
within the confidence bands, thus confirming in finite samples the validity of the asymptotic

5The configuration of these parameters generates a persistent volatility process with daily percentage returns
typically ranging in the interval between -3% and +3%. In line with the empirical evidence displayed in Section 5, the
simulated liquidity process _(𝑡) also displays a persistent behavior.
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Figure 2: The realized Amihud at different frequencies and confidence intervals. The four figures on the
left report the true illiquidity limit 1

L (red solid line), and the realized Amihud (dots) obtained sampling
returns at different frequencies of 1 minute, 5, 15 and 30 minutes for 𝑇 = 200 days. The figure on the
right reports the true illiquidity signal (logL, red) and 95% confidence bands based on the realized Amihud
computed with 1-minute returns.

result in Proposition 1. Thus, the main message that arises from this analysis and Figure 2 is
that, in a frictionless market, the higher the sampling frequency is, the better the approximation
will be. Arguably, this result can drastically change when considering microstructure frictions
(in the form of bid-ask spreads and price discreetness). We will address this question in Section
3.1 below. As a further illustration to assess the finite-sample performance of the asymptotic
distributions of the realized Amihud, we construct quantile-quantile (QQ-) plots based on equation
(22). Figure 3 reports the QQ-plots based on the simulation experiment described above, where
𝐼 = 24, 76, 288, 1440. As 𝐼 increases, the fit of to the Gaussian distribution improves, and it is
already remarkable at 5-minute frequencies.

The summary of the results of the Monte Carlo simulations are presented in Table 1. The
realized Amihud provides accurate measurements of the true integrated illiquidity process (i.e.,
1
L ) in all scenarios (low-, medium-, and high-illiquidity levels) with a relative bias below 0.5% in
absolute value and a small RMSE, even for relatively moderate sampling frequencies (e.g., 5-10
minutes). As expected from Theorem (1), the RMSE decreases as 𝐼 increases (i.e., 𝛿 decreases).
In general the RMSE of the realized Amihud is much smaller compared with the RMSE achieved
by the daily Amihud. The latter can be considered an extreme case of illiquidity measurement
obtained with only one observation per trading period, that is, 𝐼 = 𝛿 = 1. In this case, the
illiquidity measure in (4) reduces to A𝐷 =

|𝑟 |
a

.
We also consider an alternative low-frequency version of the daily Amihud, that is, the high-

low Amihud that is obtained by exploiting the high-low price range as a proxy of volatility, see
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Figure 3: QQ-plot. Figure reports the QQ-plots and illustrates the approximation of log(A)−log( 1
L )√︂

2𝛿 (𝜋/2−1)𝑅𝑉
(𝜋𝛿/2)𝑅𝑃𝑉 2

to a

standard Gaussian random variable as in (6). We consider different sampling frequencies, namely 1 minute,
5 and 15 minutes, and 1 hour.

Parkinson (1980), among others. In particular, the high-low Amihud is defined as A𝐻𝐿 =
𝑟𝑎𝑛𝑔𝑒

a
,

where 𝑟𝑎𝑛𝑔𝑒 =
√︃

1
4 log(2) (𝑝𝐻𝑡 − 𝑝𝐿𝑡 )2 with 𝑝𝐻𝑡 and 𝑝𝐿𝑡 being the daily high and low log-prices, re-

spectively. The Monte Carlo simulations show that the high-low Amihud displays remarkable
properties. It is characterized by a small negative bias (around 5%) and is approximately three
times more efficient than the traditional daily Amihud. This suggests that the high-low Ami-
hud constitutes a viable alternative to the daily Amihud when when prices are available at low
frequency only.

3.1 Microstructure Frictions

It should be stressed that the asymptotic results (in the limit for 𝐼 → ∞) behind Proposition 1
are derived by abstracting them from microstructure frictions (namely microstructure noise), like
transaction costs in the form of bid-ask spread, clearing fees, or price discreteness, which are
intimately related and endogenous to the trading process.

In the simplified context provided by the model, the microstructure features linked to the
actual cost of trading (which is another dimension of illiquidity) in the form of a bid-ask spread
are not explicitly included, but they pose a relevant empirical issue. From a statistical point of
view, the microstructure noise dominates the volatility signal as 𝐼 → ∞, thus leading to distorted
measurements of the variance. In the literature on realized variance (see, among many others,
Bandi and Russell, 2008; Liu et al., 2015), it is common practice to resort to moderate sampling
frequencies, for example, 5-minute intervals, to reduce the impact of the microstructure noise
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Low Liquidity, _0 = 50
Percentage Relative Bias Relative RMSE

Realized Amihud High-Low Amihud Daily Amihud Realized Amihud High-Low Amihud Daily Amihud
1h 1.6445 -5.5453 -2.5699 0.2330 0.2924 0.7450

30min 0.4541 -5.5453 -2.5699 0.1504 0.2924 0.7450
15min 0.5667 -5.5453 -2.5699 0.1097 0.2924 0.7450
10min -0.0095 -5.5453 -2.5699 0.0901 0.2924 0.7450
5min 0.2309 -5.5453 -2.5699 0.0614 0.2924 0.7450
1min 0.0923 -5.5453 -2.5699 0.0291 0.2924 0.7450
30sec 0.1065 -5.5453 -2.5699 0.0201 0.2924 0.7450
15sec 0.0630 -5.5453 -2.5699 0.0142 0.2924 0.7450

Medium Liquidity, _0 = 200
Percentage Relative Bias Relative RMSE

Realized Amihud High-Low Amihud Daily Amihud Realized Amihud High-Low Amihud Daily Amihud
1h 3.6035 -3.9223 -2.4906 0.2326 0.2934 0.7547

30min 2.2201 -3.9223 -2.4906 0.1581 0.2934 0.7547
15min 0.5300 -3.9223 -2.4906 0.1084 0.2934 0.7547
10min 0.6963 -3.9223 -2.4906 0.0874 0.2934 0.7547
5min 0.2997 -3.9223 -2.4906 0.0615 0.2934 0.7547
1min 0.0216 -3.9223 -2.4906 0.0277 0.2934 0.7547
30sec -0.0456 -3.9223 -2.4906 0.0194 0.2934 0.7547
15sec 0.0045 -3.9223 -2.4906 0.0139 0.2934 0.7547

High Liquidity, _0 = 500
Percentage Relative Bias Relative RMSE

Realized Amihud High-Low Amihud Daily Amihud Realized Amihud High-Low Amihud Daily Amihud
1h 3.1471 -6.4177 -4.7968 0.2330 0.2918 0.7575

30min 1.6101 -6.4177 -4.7968 0.1616 0.2918 0.7575
15min 0.8523 -6.4177 -4.7968 0.1096 0.2918 0.7575
10min 0.6709 -6.4177 -4.7968 0.0898 0.2918 0.7575
5min 0.2646 -6.4177 -4.7968 0.0634 0.2918 0.7575
1min 0.0035 -6.4177 -4.7968 0.0279 0.2918 0.7575
30sec 0.0655 -6.4177 -4.7968 0.0200 0.2918 0.7575
15sec 0.0598 -6.4177 -4.7968 0.0146 0.2918 0.7575

Table 1: Illiquidity measurement. The table reports Monte Carlo simulations for the assessment of the
quality of illiquidity through the realized Amihud. It also reports the Monte Carlo relative percentage bias
and RMSE (both relative to 1

L ) for the realized Amihud reported in (4). In bold. the smallest RMSE is given.
As a reference, we also consider the daily Amihud measure, that is, A𝐷 =

|𝑟 |
a

, and the high-low Amihud,
A𝐻𝐿 =

𝑟𝑎𝑛𝑔𝑒

a
, where 𝑟𝑎𝑛𝑔𝑒 is scaled by

√︁
𝜋/2 to be comparable with the 𝑅𝑃𝑉 .

contamination on the volatility measurement. This approach can be carried over to the illiquidity
measurement, and its effectiveness in reducing the impact of microstructure noise contamination
is confirmed by the evidence reported in Table 2. In particular, we repeat the analysis of Table
1, but this time, we add the bid-ask spread to the equilibrium prices and a rounding mechanism
that generates price discreetness (rounding to cents or decimalization effect) and zero returns; for
more, see Bandi et al. (2020), among others. The results in Table 2 suggest that, in this setting,
we should avoid computing the realized Amihud by sampling at the highest possible frequencies
(e.g., from 15 to 30 seconds) because this leads to large estimation biases. Instead, sampling at
moderate frequencies (e.g., from 5 to 10 minutes) drastically reduces the bias while also leading
to a low RMSE, especially if compared with the daily Amihud, which is about 10 times larger
(0.069 compared with 0.733 for the medium liquidity scenario). In summary, the realized Amihud
based on 5-minute returns provides accurate measurements of the illiquidity associated with the
price impact even in settings characterized by other dimensions of illiquidity: the transaction
costs such as the bid-ask spread, and additional frictions such as staleness due to inherent price
discreetness and absence of new information. In the empirical analysis below, we work assuming
that sampling asset returns at 5-minute intervals is sufficient to achieve a precise measurement
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Low Liquidity, _0 = 50
Percentage Relative Bias Relative RMSE

Realized Amihud High-Low Amihud Daily Amihud Realized Amihud High-Low Amihud Daily Amihud
1h 1.8020 -4.8748 -0.7818 0.2176 0.3054 0.7711

30min 1.8298 -4.8748 -0.7818 0.1569 0.3054 0.7711
15min 1.6781 -4.8748 -0.7818 0.1151 0.3054 0.7711
10min 1.7789 -4.8748 -0.7818 0.0921 0.3054 0.7711
5min 2.9765 -4.8748 -0.7818 0.0725 0.3054 0.7711
1min 13.3029 -4.8748 -0.7818 0.1476 0.3054 0.7711
30sec 25.1862 -4.8748 -0.7818 0.2720 0.3054 0.7711
15sec 28.4629 -4.8748 -0.7818 0.3149 0.3054 0.7711

Medium Liquidity, _0 = 200
Percentage Relative Bias Relative RMSE

Realized Amihud High-Low Amihud Daily Amihud Realized Amihud High-Low Amihud Daily Amihud
1h 2.9646 -4.8349 -1.9522 0.2258 0.2812 0.7334

30min 1.5911 -4.8349 -1.9522 0.1587 0.2812 0.7334
15min 1.5683 -4.8349 -1.9522 0.1110 0.2812 0.7334
10min 1.8408 -4.8349 -1.9522 0.0930 0.2812 0.7334
5min 2.6054 -4.8349 -1.9522 0.0690 0.2812 0.7334
1min 12.0901 -4.8349 -1.9522 0.1276 0.2812 0.7334
30sec 22.9034 -4.8349 -1.9522 0.2355 0.2812 0.7334
15sec 25.5046 -4.8349 -1.9522 0.2640 0.2812 0.7334

High Liquidity, _0 = 500
Percentage Relative Bias Relative RMSE

Realized Amihud High-Low Amihud Daily Amihud Realized Amihud High-Low Amihud Daily Amihud
1h 1.8504 -5.9370 -1.3766 0.2463 0.2818 0.7248

30min 0.9157 -5.9370 -1.3766 0.1640 0.2818 0.7248
15min 0.9431 -5.9370 -1.3766 0.1097 0.2818 0.7248
10min 1.1633 -5.9370 -1.3766 0.0892 0.2818 0.7248
5min 2.2907 -5.9370 -1.3766 0.0676 0.2818 0.7248
1min 8.9761 -5.9370 -1.3766 0.0964 0.2818 0.7248
30sec 16.9324 -5.9370 -1.3766 0.1736 0.2818 0.7248
15sec 17.0739 -5.9370 -1.3766 0.1764 0.2818 0.7248

Table 2: Illiquidity measurement with microstructure noise. The table reports Monte Carlo simulations for
assessing the quality of illiquidity through the realized Amihud. The bid-ask spread is set at 0.15% relative
to the price level, which in line with the observed relative bis-ask spread of SPY (see Section 5). Table
reports the Monte Carlo relative percentage bias and RMSE (both relative to 1

L ) for the realized Amihud
reported in (4). In bold, the smallest RMSE is given. As a reference, we also consider the daily Amihud
measure, that is, A𝐷 =

|𝑟 |
a

, and the high-low Amihud, A𝐻𝐿 =
𝑟𝑎𝑛𝑔𝑒

a
, where 𝑟𝑎𝑛𝑔𝑒 is scaled by

√︁
𝜋/2 to be

comparable with the 𝑅𝑃𝑉 .

of the asset illiquidity.

4 Information Jumps

Now, we further explore the relationship between liquidity and volatility, focusing on the arrival
of large news common to all traders. Note that the increments of the reservation log-prices can
be disentangled as follows:

Δ𝑝∗𝑖, 𝑗 = 𝜙𝑖 +𝜓𝑖, 𝑗 , with 𝑗 = 1, . . . , 𝐽 ,

where𝜙𝑖 represents a fundamental information component common to all traders, stemming from
public information events, such as those associated with earnings press releases or central banks’
announcements. This could be related to events that trigger common directional expectations
among practitioners. The term 𝜓𝑖, 𝑗 represents the investor’s specific component of the reserva-
tion price, and it is assumed to follow the diffusive process in (2). Furthermore, the assumption of
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independence between 𝜙𝑖 and𝜓𝑖, 𝑗 across time and traders does not allow for reversal or spillover
effects, such as those studied in Grossman and Miller (1988), to investigate the mechanics of liq-
uidity provision. The same type of sequential trading behavior has been recently proven to be
responsible for crash episodes, as shown in Christensen et al. (2022), and associated with changes
in the level of investors’ disagreement around important news announcements (see, e.g., Boller-
slev et al., 2018).6 The detection of such informational events needs an accurate identification
econometric technique and granular (intraday) data. The recent advances in the literature on
jump processes help in this analysis. Similarly to Bollerslev et al. (2018), we rely on a simple setup
for the common news component, to separately identify it from the component of price variation
due to the disagreement among traders, which is responsible for generating the trading volume.
Other studies associating large price jumps with news announcements can be found in Andersen
et al. (2007), Chaboud et al. (2008), Lee (2011), Jiang et al. (2011). For this reason, we refer to the
term 𝜙𝑖 as information jumps.

In other words, when a common large news hits the market, the reservation prices all change
in the same direction, thus leading to a new equilibrium price. This generates price volatility
with little or no associated trading volume, so the realized Amihud is expected to be subject to
a large positive shock. Ideally, we would like to disentangle this spike from the measurement of
illiquidity related with the disagreement among traders. We rely upon the theory of multipower
variation developed in Barndorff-Nielsen and Shephard (2003, 2004, 2006) to carry out inference
on information jumps in illiquidity. Following Barndorff-Nielsen and Shephard (2006), we assume
that 𝜙𝑖 is a compound Poisson process, namely 𝜙𝑖 =

∑N𝑖

𝑗=1 𝑐 𝑗 , where N𝑖 is a simple process (e.g.,
a Poisson) that counts the number of jump arrivals in the interval [𝑖 − 1, 𝑖], and it is finite for
all intervals 𝑖 . The terms 𝑐 𝑗 are nonzero random variables that determine the size of the jumps.
When N𝑖 = 0, then Δ𝑝∗𝑖, 𝑗 reduces to the stochastic volatility plus drift model, whose dynamics are
described in (2).

To carry out inference on jumps, we consider the multipower variation of order 1/2, namely

𝑀𝑃𝑉 =
𝐼

𝐼 − 1

𝐼∑︁
𝑖=2

|𝑟𝑖 |1/2 |𝑟𝑖−1 |1/2. (7)

Following Barndorff-Nielsen and Shephard (2004, 2006), MPV converges to S, even when 𝜙𝑖 ≠ 0,
that is

𝑝 lim
𝐼→∞

𝛿1/2`−2
1/2𝑀𝑃𝑉 = S, (8)

where `1/2 = 𝐸 [|𝑋 |]1/2 is a normalizing constant. Therefore, we can devise the test statistic, J ,
which is given by

J =

√︁
𝜋/2`2

1/2𝑅𝑃𝑉 −𝑀𝑃𝑉

𝐵𝑃𝑉
, (9)

6Perraudin and Vitale (1996) also consider jump times as moments at which significant information becomes
public knowledge.

13



where 𝐵𝑃𝑉 =

√︃
b
∑𝐼

𝑖=2 |𝑟𝑖 | |𝑟𝑖−1 | and b = \ ¤(`2
1 + 2`2

1/2`1 − 3`4
1/2)/`

2
1) is a scaling constant with

\ = 0.1032. Under the null hypothesis that 𝜙𝑖 = 0, J 𝑑→ 𝑁 (0, 1), we can use this result for testing
the presence of a significant information jump in a given day. Based on this, we can construct the
jump-robust realized Amihud as

AC =
𝑅𝑃𝑉𝐶

a
, (10)

where 𝑅𝑃𝑉𝐶 is the jump-robust realized power variation, given by

𝑅𝑃𝑉𝐶 = I(J ≤ 𝑞1−𝛼 )𝑅𝑃𝑉 + I(J > 𝑞1−𝛼 )�𝑀𝑃𝑉, (11)

where I(·) is the indicator function, 𝑞1−𝛼 denotes the (1 − 𝛼)-th quantile of a standard normal, 𝛼
is the significance level of the jump test, and �𝑀𝑃𝑉 =

√︁
2/𝜋`−2

1/2𝑀𝑃𝑉 .
In the following, we study the finite-sample size and power properties of the J -test by Monte

Carlo simulations by considering a frictionless process (Table 3) and a process characterized by
microstructure noise in the form of bid-ask spread and rounding effects (Table 4). We consider
three levels of nominal size, namely 𝛼 = 5%, 1%, 0.5%. In the frictionless setting, the best perfor-
mance in terms of empirical size and power is achieved sampling at the highest possible frequency
of 15-seconds. Furthermore, considering a setting where 𝜙𝑖 ≠ 0 allows us to study the power of
the test, that is, the ability to identify a jump if it occurs. In particular, we assume that 𝜙𝑖 follows
a compound Poisson process with an intensity equal to 5% (one jump every twenty days on aver-
age). Notably, the test correctly identifies jumps, that is, rejects the null hypothesis of no jumps,
in more than 90% of the cases when sampling at the highest frequencies.

The results are quite different when considering microstructure noise. In particular, round-
ing to the closest cent of the dollar generates a large number of zeros in the returns sampled
at the highest frequencies, as shown by Bandi et al. (2020). Kolokolov and Renò (2021) illus-
trate the detrimental effect of zeros on the quality of volatility estimates, especially when power
variation measures are adopted. In circumstances where zeros are the dominant feature of the
high-frequency returns (like for very illiquid stocks), the effect of the rounding on MPV is detri-
mental. In this case, MPV is associated with a large negative bias, and the jump test rejects the
null hypothesis very frequently. In this case, sampling at 10 to 15 minutes frequencies drastically
reduces the bias in MPV, thus leading to empirical sizes of the jump test closer to the theoretical
ones. At these frequencies, the power remains high and above 85% in all cases.

5 Empirical Analysis

We now illustrate how the liquidity conditions of financial markets can be studied by looking at
the temporal evolution of the realized Amihud. In particular, we consider the time series of the
realized Amihud of SPDR S&P 500 ETF (ticker SPY), which is the ETF tracking the S&P 500 index,
and of the EUR/CHF and USD/CHF foreign exchange (FX) rates. With a daily volume of 82.45
million shares in the period 2016–2021, SPY is the ETF with the largest trading volume in the
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Low Liquidity Power Size
5% 1% 0.5% 5% 1% 0.5%

1h 79.83% 75.35% 73.80% 10.31% 4.69% 3.52%
30min 84.71% 80.85% 79.55% 8.48% 3.16% 2.18%
15min 86.97% 83.54% 82.56% 7.68% 2.51% 1.56%
10min 88.83% 85.83% 84.40% 6.65% 2.02% 1.29%
5min 90.55% 87.55% 86.48% 6.25% 1.77% 1.10%
1min 92.67% 90.19% 89.16% 5.63% 1.35% 0.77%
30sec 93.35% 90.71% 89.77% 5.72% 1.33% 0.69%
15sec 93.52% 91.45% 90.67% 5.44% 1.18% 0.63%

Medium Liquidity Power Size
5% 1% 0.5% 5% 1% 0.5%

1h 79.87% 75.46% 73.96% 10.70% 4.89% 3.69%
30min 85.06% 81.18% 79.60% 8.72% 3.42% 2.31%
15min 87.82% 84.48% 83.05% 7.07% 2.42% 1.54%
10min 89.16% 86.04% 84.94% 6.98% 2.29% 1.30%
5min 90.47% 87.56% 86.65% 6.53% 1.92% 1.05%
1min 92.86% 90.29% 89.55% 5.66% 1.24% 0.68%
30sec 93.13% 90.97% 90.05% 5.47% 1.38% 0.81%
15sec 93.59% 91.15% 90.48% 5.77% 1.35% 0.73%

High Liquidity Power Size
5% 1% 0.5% 5% 1% 0.5%

1h 80.24% 76.05% 74.22% 10.48% 5.10% 4.10%
30min 84.04% 80.22% 78.79% 8.53% 3.32% 2.31%
15min 87.96% 84.13% 82.89% 7.51% 2.54% 1.64%
10min 89.04% 85.32% 84.49% 6.86% 2.23% 1.43%
5min 90.59% 88.03% 86.67% 6.46% 1.87% 1.12%
1min 92.40% 90.14% 89.25% 5.67% 1.29% 0.67%
30sec 93.22% 91.00% 90.02% 5.45% 1.35% 0.71%
15sec 93.69% 91.52% 90.64% 5.35% 1.21% 0.69%

Table 3: Jump test: power and size. The table reports Monte Carlo simulations for the assessment of the
power and size of the jump test. The empirical size and power of the jump test are computed at the 5%, 1%,
and 0.5% theoretical size levels, respectively.

world. For this reason, the realized Amihud of SPY can be considered a good proxy for the overall
liquidity condition on the equity market. As for the EUR/CHF and USD/CHF rates, our intent
is to consider another financial security with different characteristics, for example, the OTC and
dealership structure as well as a price setting for which it is not obvious to expect a (liquidity)
leverage effect. The Swiss franc also provides us with an interesting laboratory, given that the
peculiar behavior of both volume and volatility after the cap removal by the Swiss national bank
in January 2015. This circumstance makes it an interesting case study for assessing the evolution
of price impact measures around policy events that might change the structure of a financial
market. The analysis of the stock market illiquidity is presented in Section 5.1, while Section 5.2
presents the results of the analysis conducted on the currency market.
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Low Liquidity Power Size
5% 1% 0.5% 5% 1% 0.5%

1h 80.99% 76.34% 74.43% 10.98% 5.08% 3.98%
30min 84.94% 81.39% 79.92% 10.78% 4.70% 3.32%
15min 88.59% 85.77% 84.44% 11.04% 4.64% 3.28%
10min 90.49% 87.41% 86.32% 12.26% 4.74% 3.16%
5min 93.07% 90.78% 89.83% 20.64% 8.82% 6.44%
1min 98.96% 98.22% 97.87% 97.62% 93.02% 90.92%
30sec 99.70% 99.45% 99.32% 100.00% 100.00% 100.00%
15sec 99.96% 99.96% 99.94% 100.00% 100.00% 100.00%

Medium Liquidity Power Size
5% 1% 0.5% 5% 1% 0.5%

1h 81.21% 76.91% 75.55% 10.72% 5.16% 3.90%
30min 86.53% 82.76% 81.48% 10.12% 4.48% 3.22%
15min 89.81% 86.61% 85.37% 12.22% 4.96% 3.48%
10min 90.74% 87.90% 86.92% 13.52% 5.52% 3.76%
5min 94.07% 91.53% 90.66% 24.08% 11.30% 8.14%
1min 99.74% 99.27% 99.13% 97.84% 94.36% 92.30%
30sec 100.00% 99.94% 99.92% 100.00% 100.00% 99.98%
15sec 99.98% 99.98% 99.98% 100.00% 100.00% 100.00%

High Liquidity Power Size
5% 1% 0.5% 5% 1% 0.5%

1h 80.04% 75.75% 73.89% 10.96% 5.00% 3.88%
30min 84.32% 80.17% 78.93% 8.94% 3.50% 2.44%
15min 88.67% 85.07% 83.44% 8.84% 3.06% 1.90%
10min 89.99% 86.88% 85.93% 8.54% 2.72% 1.64%
5min 93.05% 90.22% 89.17% 10.76% 4.00% 2.56%
1min 99.27% 98.59% 98.34% 56.15% 36.61% 30.07%
30sec 99.70% 99.62% 99.54% 97.88% 92.80% 89.72%
15sec 100.00% 99.92% 99.92% 100.00% 100.00% 100.00%

Table 4: Jump test: power and size with microstructure noise. The table reports Monte Carlo simulations
for the assessment of the power and size of the jump test. The bid-ask spread is set at 0.15% relative to the
price level. The empirical size and power of the jump test are computed at the 5%, 1%, and 0.5% theoretical
size levels, respectively.

5.1 Illiquidity on the Equity Market

We consider the daily time series of the realized Amihud of SPY, which is computed as the ratio
between the daily RPV obtained from intradaily returns sampled at different frequencies (source
TAQ database) and the daily volume (expressed in dollars, source Bloomberg) on SPY for the
period January 3, 2006, to June 29, 2018.
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5.1.1 Sample Statistics

Table 5 reports the sample statistics of the RPV, volume, A (realized Amihud), AC (its jump-
robust version), and the jump-component of the realized Amihud, which is computed as AJ

𝑡 =
I(J>𝑞1−𝛼 ) (𝑅𝑃𝑉−�𝑀𝑃𝑉 )

a
. The table also contains the sample statistics for the classic daily Amihud (A𝐷 )

and of the high–low Amihud (A𝐻𝐿).7 The series are computed using returns sampled at several
frequencies (1, 5, 10, 15, and 30 minutes). In the last row, the table reports the number of significant
jumps identified with the test in (9).

As expected, the variability of the realized Amihud is much smaller than that of the daily
Amihud (by about 9 or 10 times), and this holds, irrespective of the sampling frequency used to
compute the estimator. In turn, the variability of the A𝐻𝐿 is approximately three or four times
lower than that of A𝐷 . All series display positive skewness and excess kurtosis compared with the
reference value of the normal distribution. Interestingly, the kurtosis of the RPV is much larger
than that of the realized Amihud. This suggests that RPV and trading volume tend to spike on
the same days, so that dividing RPV by trading volume drastically reduces the observed kurtosis.
Finally, volatility and volume are strongly correlated (around 85%); a somewhat expected result.
However, the correlations of A with RPV and trading volume are smaller, about 22% and -28%
(Pearson), signaling that liquidity interrelates with volatility and trading volumes, but still differs
from them. The realized Amihud (computed with returns sampled at the 5-minute frequency) is
positively correlated with both the daily and high–low Amihud. In particular, the correlation is
much stronger with the latter, suggesting that A𝐻𝐿 is a more precise (or less noisy) measure of
the illiquidity signal compared with A𝐷 .

5.1.2 Modeling Realized Amihud

Figure 4 displays the time series of the realized Amihud computed by employing returns sam-
pled at the 5-minute frequency (black solid line), the daily Amihud (blue dotted line), and the
high–low Amihud (yellow dashed line). Notably, the three series share very similar dynamic
patterns, suggesting that they are all nonparametric measures of the same underlying stochastic
quantity. However, the daily Amihud displays much more variability than the realized Amihud.
Interestingly, the high–low Amihud, although being based on low-frequency data available at the
daily horizon, displays a range of variability of an order close to that of the realized Amihud.

Looking at the time series features of the realized Amihud, its persistent nature can be seen.
Indeed, it is evident that long periods with low illiquidity are followed by protracted periods of
high illiquidity. Within the volatility literature, this is a well-established phenomenon known as
volatility clustering. Because a similar pattern applies to the realized Amihud, we refer to it as
illiquidity clustering. Figure 5 reports the empirical autocorrelation function (ACF) of the daily
and realized Amihud. The realized Amihud displays strong persistence, as measured by the slow

7To interpret these measures as the amount of daily price volatility associated with one dollar of trading volume,
in the empirical application, we multiply A𝐷 by the constant

√︁
𝜋/2 and A by the constant 𝛿1/2√︁𝜋/2. This guarantees

that A, A𝐷 , and A𝐻𝐿 are on the same scale.
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Variance
1min 5min 10min 15min 30min Daily

RPV 0.311 0.312 0.314 0.317 0.335 0.547
Volume – – – – – 1.029

A 2.433 2.420 2.427 2.491 2.722 –
AC 2.262 2.419 2.456 2.553 2.804 –
AJ 0.053 0.030 0.042 0.063 0.149 –
A𝐷 – – – – – 9.541
A𝐻𝐿 – – – – – 3.755

Skewness
RPV 3.871 3.650 3.700 3.820 3.824 3.476

Volume – – – – – 1.984
A 1.306 1.294 1.200 1.152 1.038 1.245
AC 1.203 1.277 1.184 1.139 0.963 –
AJ 1.765 3.160 3.720 3.569 3.342 –
A𝐻𝐿 – – – – – 1.453

Kurtosis
RPV 28.728 24.426 25.352 26.867 26.072 22.381

Volume – – – – – 8.839
A 5.322 5.210 4.855 4.669 4.419 5.015
AC 4.942 5.210 4.889 4.696 4.115 –
AJ 7.741 13.490 18.639 18.161 16.162 –
A𝐻𝐿 – – – – – 6.497

# of significant jumps 1896 386 314 343 413 –

Correlation Matrix
RPV Volume A AC

𝑡 AJ A𝐷 A𝐻𝐿

RPV – 0.8860 0.2264 0.2377 -0.1005 0.1171 0.1991
Volume 0.8470 – -0.1498 -0.1356 -0.1272 0.0374 -0.0316

A 0.2200 -0.2788 – 0.9937 0.0575 0.2250 0.6328
AC 0.2375 -0.2582 0.9906 – -0.0544 0.2198 0.6215
AJ -0.1568 -0.1267 -0.0470 -0.1680 – 0.0472 0.1015
A𝐷 0.1109 0.0239 0.1510 0.1443 0.0328 – 0.6662
A𝐻𝐿 0.1830 -0.1340 0.5997 0.5892 0.0171 0.5917 –

Table 5: Descriptive statistics. The table reports the sample statistics for the RPV, daily volume, the realized
Amihud (A), the Amihud’s jump-robust version (AC), the jump component (AJ ), the classic daily Amihud
(AD ), the high–low Amihud (AHL), as well as the number of significant jumps detected by the J test
at the 1% significance level. The variance is scaled by a factor of E+04, while for the volume is scaled by
a factor of E-16.. In the bottom panel, the table reports the Pearson–Spearman (upper/lower triangular
matrix) correlations across the variables considered.

decay rate of the ACFs that remain very high even after 50 lags, whereas the autocorrelation of the
daily Amihud is much less persistent. Concerning the daily Amihud, this is the typical behavior of
persistent time series contaminated by additive noise, as indicated, for instance, by Hurvich and
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Figure 4: Illiquidity measurements. Realized Amihud (black solid line), daily Amihud (blue dotted line),
and high–low Amihud (yellow dashed line) of SPY. Sample period: January 3, 2006 – June 29, 2018. Both
series are scaled by a factor of E+09.

Ray (2003) and Hurvich et al. (2005) in the context of stochastic volatility estimation. Altogether,
the evidence outlined in Figures 4 and 5 justifies the use of well-established volatility models for
predicting illiquidity.

We consider both linear and nonlinear dynamic specifications for the realized Amihud. In
particular, we consider a parametric model pertaining to the class of multiplicative error models
(MEM) – as introduced by Engle (2002) and Engle and Gallo (2006). Inspired by the heterogenous
autoregressive (HAR) model of Corsi (2009), we consider the MEM-AHAR model,8 as follows

A𝑡 = `𝑡𝜖𝑡 , (12)

where `𝑡 is the conditional mean of the process, and it follows asymmetric HAR dynamics as
follows

`𝑡 = 𝜔 + 𝛼𝑑A𝑡−1 + 𝛼𝑤Ā𝑤,𝑡−1 + 𝛼𝑚Ā𝑚,𝑡−1 + 𝛾𝐷𝑡−1A𝑡−1, (13)

where Ā𝑤,𝑡−1 =
1
5
∑5

𝑖=1 A𝑡−𝑖 , Ā𝑚,𝑡−1 =
1
22
∑22

𝑖=1 A𝑡−𝑖 , and 𝐷𝑡−1 is a dummy variable taking value of
1 if the return is negative and 0 otherwise; this accounts for an asymmetric response of illiquidity

8Appendix B reports a complete description of various alternative MEM and linear specifications, as well as their
estimates on the sample under investigation.
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Figure 5: Autocorrelation. Empirical autocorrelation function of the daily Amihud (left panel) and of the
realized Amihud (right panel).

to good or bad news. This is analogous to the GJR-GARCH(1,1) model by Glosten et al. (1993)
that captures the illiquidity leverage effect. The term Y𝑡 denotes the innovation term, which is
a non-negative random variable whose density is Gamma with a unit mean and variance equal
to 1

𝜗
. A sufficient condition for positivity of `𝑡 is that all coefficients in (13) are positive, while

imposing 𝛼𝑑 + 𝛼𝑤 + 𝛼𝑚 + 𝛾/2 < 1 ensures stationarity. Estimations are carried out using the
maximum likelihood (ML), and we impose stationarity and positivity conditions upon estimating
the models on the data.

Table 6 reports the estimation results of the MEM-AHAR model on the daily Amihud, high–low
Amihud, and on the realized Amihud based on 5-minute returns (including the jump-robust ver-
sion). Focusing on the last column of Panel a), the coefficients of `𝑡 for the realized Amihud are
all positive and strongly significant at a 1% significance level, with a value of persistence around
93.6%, as measured by 𝛼𝑑 + 𝛼𝑤 + 𝛼𝑚 + 𝛾/2. In the HAR framework, the coefficients 𝛼𝑑 , 𝛼𝑤 and 𝛼𝑚

summarize the impact trading at different frequencies, here induced by heterogeneity among mar-
ket participants on market illiquidity. The results do not change when adopting the jump-robust
realized Amihud. On the other hand, when noisier proxies of illiquidity are employed, such as in
the daily Amihud or the high–low Amihud, the parameter associated with daily past illiquidity,
that is, 𝛼𝑑 , is estimated on the lower bound, while the parameter 𝛼𝑤 is significant only for the
high–low Amihud. The only significant parameter is 𝛼𝑚 , indicating that a substantial smoothing
is required on the daily Amihud to disentangle the expected illiquidity signal from its noisy ex-
post measurement. Analogous evidence is found in the volatility literature when employing the
realized GARCH model of Hansen et al. (2012) instead of the classic GARCH model on squared
returns. In other words, the model assigns a small weight to the innovation term when the lat-
ter contains a substantial degree of measurement error. Furthermore, the implied persistence
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Panel a) Estimation results
Daily Amihud High-Low Amihud Jump-robust Amihud Realized Amihud

𝜔 0.0160𝑎 0.0052𝑎 0.0030𝑎 0.0029𝑎
(0.0022) (0.0011) (0.0007) (0.0007)

𝛼𝑑 0.0000 0.0000 0.1265𝑎 0.1358𝑎
(0.0234) (0.0227) (0.0225) (0.0225)

𝛼𝑤 0.0011 0.3146𝑎 0.3808𝑎 0.3865𝑎
(0.0494) (0.0476) (0.0401) (0.0396)

𝛼𝑚 0.6595𝑎 0.5549𝑎 0.4087𝑎 0.3983𝑎
(0.0661) (0.0466) (0.0381) (0.0373)

𝛾 0.0297 0.0546𝑎 0.0399𝑎 0.0371𝑎
(0.0235) (0.0103) (0.0071) (0.0069)

𝜗 1.4608𝑎 12.0371𝑎 24.7189𝑎 26.5139𝑎
(0.0361) (0.3188) (0.5895) (0.5591)

Panel b) Ljung-Box statistics (p–value)

LB(1) 0.0045 0.2788 0.6561 0.7265
LB(5) 0.0453 0.0213 0.1608 0.2813
LB(10) 0.0714 0.0980 0.0001 0.0000

Table 6: MEM-AHAR estimated coefficients with robust standard errors (White, 1980) and 𝑝-value of the
Ljung-Box statistics. Superscript a, b and c denote the 1%, 5%, and 10% significance levels, respectively.
Sample period: January 3, 2006 – June 29, 2018.

obtained by the estimates of the MEM-AHAR coefficients on the daily and high-low Amihud is
67.5% and 89.7%, respectively. These values are much lower than those obtained on the realized
Amihud, which is in line with the evidence of the ACFs reported in Figure 5. Finally, the esti-
mate of 𝜗 (which is reciprocal of the variance of Y) for the daily Amihud is found to be around 16
times smaller than that of the realized Amihud. This implies that the variability of the innovation
term is 16 times larger when employing the daily Amihud rather than the realized Amihud. This
proportion is drastically reduced (approximately to half) when employing the high–low Amihud.

Overall, the results presented in Table 6 remain valid, even when alternative model specifica-
tions are employed; for more, see Tables 9 and 10 in Appendix B. In particular, the distribution
of the innovation term seems to be well described by a Gamma distribution, while more sophis-
ticated distributional choices9 do not provide a remarkable improve in the fit.10 This is due to
the fact that the realized Amihud does not display extreme distributional features (see Table 5)
because the ratio between volatility and volume drastically reduces the observed kurtosis. Finally,
Panel b) of Table 6 reports the 𝑝-value for the Ljung-Box statistics. All model specifications cor-

9See the mixture MEM of Caporin et al. (2017) presented in Appendix B.1
10Figure 8 in the Appendix reports the probability-integral transform based on various MEM model specifications,

here displaying a remarkable fit of the empirical distribution, even with simple MEM specifications.
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rectly capture the persistent features of the series at hand because of the HAR-type specification
for `𝑡 ; for instance, see Caporin et al. (2016, 2017).

5.1.3 Illiquidity and Stock Market Excess Returns

Following Amihud (2002), we carry out an analysis on the impact of illiquidity on stock market
excess returns. As in Amihud (2002), the realized Amihud can be disentangled into two compo-
nents: the expected illiquidity, as measured by the estimated conditional mean of the MEM-AHAR
model, ˆ̀𝑡 , and the unexpected illiquidity, as measured by the residual component Ŷ𝑡 . In particular,
Table 7 reports the results of a simple regression analysis of the stock market excess returns (as
measured by the difference between the returns of SPY and the risk free rate the U.S. 3-month
treasury bills in our case) on illiquidity, that is:

𝑟𝑒𝑡 = 𝛽0 + 𝛽1A𝑡 + 𝑢𝑡 ,

or on its components
𝑟𝑒𝑡 = 𝛽0 + 𝛽1 ˆ̀𝑡 + 𝛽2𝜖𝑡 + 𝑢𝑡 .

Panel a) Total Illiquidity
Daily Amihud High–Low Amihud Realized Amihud

daily weekly monthly daily weekly monthly daily weekly monthly

Constant 0.0363 0.0644 0.1515𝑎 0.0853 0.1016𝑐 0.1411𝑏 0.1747𝑎 0.1055𝑏 0.1337𝑎
(0.0359) (0.0436) (0.0492) (0.0605) (0.0530) (0.0579) (0.0489) (0.0511) (0.0510)

Illiquidity -0.6747 -1.2443 −3.0133𝑎 -1.6627 −1.9886𝑐 −2.7879𝑏 −3.6736𝑎 −2.1905𝑐 −2.7951𝑏
(0.9147) (1.0050) (1.1137) (1.3896) (1.1566) (1.2980) (1.0687) (1.1414) (1.2282)

Diagnostic
𝑅2 0.0007 0.0044 0.0533 0.0011 0.0056 0.0341 0.0034 0.0056 0.0314
𝑅2 adj. 0.0004 0.0028 0.0464 0.0008 0.0040 0.0271 0.0031 0.0040 0.0243
F-test (p-value) 0.2628 0.1865 0.0106 0.1195 0.1169 0.0521 0.0020 0.1165 0.0657

Panel b) Illiquidity decomposition
Daily Amihud High–Low Amihud Realized Amihud

Constant -0.0334 0.061 -0.0184 -0.0373 0.0471 0.0285 -0.0731 -0.0529 −0.1612𝑐
(0.0877) (0.0653) (0.0720) (0.0726) (0.0550) (0.0577) (0.0710) (0.0598) (0.0917)

Expected Illiquidity 0.7428 -1.1749 0.4537 0.8171 -0.8852 -0.4951 1.66 1.241 3.6338𝑐
(1.8686) (1.3687) (1.5292) (1.5508) (1.1404) (1.2079) (1.6072) (1.2600) (1.8563)

Unexpected Illiquidity -0.786 -1.274 −7.9535𝑎 −3.1602𝑐 −4.6013𝑐 −17.0426𝑎 −10.2752𝑎 −14.0262𝑎 −37.7907𝑎
(0.9224) (1.1798) (2.5456) (1.7577) (2.5736) (6.0024) (1.8958) (5.0226) (13.5283)

Diagnostic
𝑅2 0.0010 0.0044 0.0821 0.0025 0.0084 0.0748 0.0107 0.0254 0.1619
𝑅2 adj. 0.0003 0.0012 0.0687 0.0019 0.0052 0.0613 0.0101 0.0223 0.1496
F-test (p-value) 0.6132 0.6884 0.0076 0.0536 0.2004 0.0132 0.0000 0.0010 0.0000

Table 7: Analysis regressing stock market excess returns on illiquidity measures (the top of the table) and
on illiquidity decomposed into exepcted and unexpected components (the bottom of the table). The coeffi-
cients and Newey and West (1987) robust standard errors (in parenthesis) are multiplied by 100. Superscript
a, b and c denote the 1%, 5%, and 10% levels of significance, respectively.
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In Panel a), when employing the realized Amihud as the explanatory variable, the estimate of
𝛽1 suggests that illiquidity is in a significantly negative relationship with the excess return. This
holds true when aggregating at weekly and monthly (nonoverlapping) horizons. Notably, the 𝑅2

turns out to be particularly large at the monthly horizon, being above 16%. Contrary to this, the
relationship is less pronounced when employing the daily Amihud as the regressor. In particular,
𝛽1 is not significant at the daily and weekly frequencies, but it is significant when the aggregation
at monthly level is considered (in this case, the 𝑅2 is around 5%). Again, this signals the fact that
a less accurate measurement of illiquidity obtained via the daily Amihud masks the fundamental
relationship between returns and illiquidity. This is confirmed by the analysis on the decomposed
illiquidity in Panel b) of Table 7. Indeed, the expected illiquidity is never significant at the daily
and weekly frequencies (irrespective of the measure adopted), while the unexpected illiquidity
(as measured by the residuals of the MEM-AHAR model) is significantly and negatively related
with excess returns when the realized Amihud and high–low Amihud are employed. Instead, the
unexpected liquidity for the daily Amihud is only significant at the monthly horizon. This result
squares well with the idea that the residual term of the MEM-AHAR model estimated on the daily
Amihud is made of two components: the prediction error and the measurement error, where the
latter seems to dominate at the daily and weekly frequencies.

5.2 Illiquidity on the Currency Market: the Swiss Franc Cap Removal

Another way to assess the general validity of the realized Amihud is by considering another finan-
cial instrument and using a meaningful episode, which is a sort of natural experiment. Through
the lenses of the theory developed in Section 2, the announcement of the cap removal of the Swiss
franc by the Swiss National Bank (SNB) on January 15, 2015, represents an ideal natural frame-
work for conducting further testing. Starting from September 6, 2011, the SNB set a minimum
exchange rate of 1.20 francs to the euro (capping the franc’s appreciation), stating that ”the value
of the franc is a threat to the economy” and that it was ”prepared to buy foreign currency in un-
limited quantities.” This means that the SNB had a declared binding cap on the transaction price
that was removed on January 15, 2015.11

In terms of the trading model presented in Section 2, the SNB can be considered the special
(𝐽 + 1)-th trader. The SNB intervention strategy of selling CHF for EUR in potentially unlimited
quantities would be implemented if the average of the reservation prices of the remaining 𝐽 traders
ever fell below the cap, that is if 1

𝐽

∑𝐽

𝑗=1 𝑝
∗
𝑖, 𝑗 < log(1.2).12 Indeed, despite the cap on the transaction

price, the reservation prices of individual traders might well be below the 1.20 threshold. For
instance, a trader with a reservation price of 1.12 (as the agent with the actual lowest forecast in
Thomson Reuters survey before the SNB cap removal) is inclined to sell EUR for CHF.13 In other

11The SNB announcement was somehow unanticipated by market participants; see, e.g., Jermann (2017) and
Mirkov et al. (2016).

12There is empirical evidence that the SNB actually implemented this strategy by setting a huge ask volume
(namely a wall) at 1.20; see Breedon et al. (2018, Figure 3, p.10).

13The Thomson Reuters survey indicates a wide dispersion of the beliefs of professional market participants
around 1.20 for most of the capping period.
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words, the SNB buys (sells) foreign (domestic) currency to guarantee that the transaction price is
above the threshold, that is

𝑝
𝐸𝑈𝑅 |𝐶𝐻𝐹

𝑖
=

1
𝐽 + 1

𝐽+1∑︁
𝑗=1

𝑝
𝐸𝑈𝑅 |𝐶𝐻𝐹,∗
𝑖, 𝑗

≥ log(1.2), (14)

where 𝑝𝐸𝑈𝑅 |𝐶𝐻𝐹,∗
𝑖,𝐽+1 =

(
log(1.2) − 1

𝐽

∑𝐽

𝑗=1 𝑝
𝐸𝑈𝑅 |𝐶𝐻𝐹,∗
𝑖, 𝑗

)
× I

(∑𝐽

𝑗=1 𝑝
𝐸𝑈𝑅 |𝐶𝐻𝐹,∗
𝑖, 𝑗

< log(1.2)
)
, and I(·) is the

indicator function. The enforcement of the capping regime by the SNB generates extra trading
volume. In particular, the trading volume is as follows

a
𝐸𝑈𝑅 |𝐶𝐻𝐹

𝑖
=
_𝑖

2

𝐽∑︁
𝑗=1

|Δ𝑝𝐸𝑈𝑅 |𝐶𝐻𝐹,∗
𝑖, 𝑗

− 1
𝐽

𝐽∑︁
𝑗=1

Δ𝑝𝐸𝑈𝑅 |𝐶𝐻𝐹,∗
𝑖, 𝑗

| + 𝑣𝑆𝑁𝐵
𝑖 , (15)

where 𝑣𝑆𝑁𝐵
𝑖 is the trading volume generated by the central bank to maintain the cap on the FX

rate. Hence, the model prescribes a low volatility of the observed returns because of the implicit
constraint given by the capping and a larger volume because of the SNB interventions. This
implies that the realized Amihud is lower (higher) before (after) the removal of the FX capping
regime.
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Figure 6: Daily Amihud (blue dotted lines, see Amihud, 2002) vs. the realized Amihud (black solid lines) of
EUR/USD (Panel a) and USD/CHF (Panel b) exchange rates. Sample period: November 1, 2011 – September
30, 2021. Both series are scaled by a factor of E+11.

To empirically explore these model implications, we look at the daily time series of realized
Amihud of the EUR/CHF and the USD/CHF FX spot rates covering the period November 1, 2011,
to September 30, 2021. The time series are constructed from two distinct data sets. First, the CLS
Group — the largest payment system for the settlement of foreign exchange transactions — pro-
vides us hourly data on the traded volume on both the EUR/CHF and USD/CHF rates. Second,
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1-minute EUR/CHF and USD/CHF spot rates (bid, ask, high, low, and mid-quotes) are obtained
from Olsen Financial Technologies. Given that trading on FX rates is active 24 hours a day, we
consider the intradaily returns and volume solely between 8 a.m. and 8 p.m. (GMT time), thus
limiting the influence of possible noisy observations associated with overnight hours in which
there is minimal trading activity. Our final data set consists of 1, 943, 760 intradaily 1-minute re-
turns and 32, 396 hourly trading volume for a total of 2, 492 trading days. Once again, we consider
the returns sampled at both 5- and 10-minute frequencies to compute 𝑅𝑃𝑉 and 𝑅𝑃𝑉𝐶 , while the
daily volume is computed simply by aggregating the hourly volume.
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Figure 7: Break dates. The figures report the time series of RPV, volume, daily Amihud, and realized
Amihud for the EUR/CHF rate (black solid line). The red vertical line denotes the break date, which is
estimated by means of the Bai and Perron (1998) test for unknown break points. The test is performed with
15% trimming at the beginning and the end of the sample period and between break dates.

Figure 6 displays the time series of the realized Amihud (black solid lines) and daily Amihud
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(blue dashed lines) of the EUR/USD (Panel a) and USD/CHF (Panel b) rates. As for SPY, the illiq-
uidity clustering phenomenon is evident. High illiquidity characterizes the years after the onset
of the sovereign debt crisis (in the period between 2010 and 2012). This period of stress greatly
characterized the Swiss franc being considered a safe haven currency and giving it strong ap-
preciation pressures (Jordan, 2020). On January 15, 2015, after the announcement by the SNB,
we observe the highest peak of illiquidity, which remains very high for several months after this
event. For both rates, Figure 6 reconfirms that the classic daily Amihud is much noisier than the
corresponding realized version.

Figure 7 reports the result of Bai and Perron (1998)’s testing procedure to identify the date
of a level break (if any) in a time series of RPV, volume, daily Amihud, and realized Amihud of
EUR/CHF. The test considers the possible presence of one or more structural changes occurring
at unknown dates: in particular, Bai and Perron (1998) propose a procedure designed to estimate
the break dates, while testing for the presence of structural changes at the same time. We apply
the Bai and Perron (1998) test with 15% trimming at the beginning and the end of the sample
period and between the break dates (see also Casini and Perron, 2019, for a review and up-to-date
recommendations about the procedure).14 The series are characterized by strong persistence, and
the procedure of Bai and Perron (1998) is robust to autocorrelation and heteroskedasticity. In all
cases, the test identifies a significant break date on January 14, 2015, thus suggesting that the level
of the series changes before and after this break date. The results for USD/CHF are reported in the
Appendix and are analogous to those reported for EUR/CHF. In addition to significantly impacting
a single currency pair, this result suggests that impotant events such as currency regime changes
can affect commonality in the liquidity of financial securities.

Estimation Results
EUR/CHF USD/CHF

Realized Amihud RPV Volume Daily Amihud Realized Amihud RPV Volume Daily Amihud

𝑐𝑜𝑛𝑠𝑡1 0.0109𝑎 0.0016𝑎 1.0159𝑎 0.0129𝑎 0.0279𝑎 0.0039𝑎 1.4617𝑎 0.0300𝑎
(0.0015) (0.0002) (0.0390) (0.0008) (0.0013) (0.0002) (0.0384) (0.0010)

𝑐𝑜𝑛𝑠𝑡2 0.0248𝑎 0.0027𝑎 0.6205𝑎 0.0422𝑎 0.0345𝑎 0.0038𝑎 1.1315𝑎 0.0352𝑎
(0.0008) (0.0001) (0.0120) (0.0010) (0.0008) (0.0001) (0.0153) (0.0007)

Diagnostic

𝑅2 0.3127 0.1009 0.2168 0.1638 0.0714 0.0004 0.1112 0.0076
D-W statistics 0.6384 0.6558 1.0136 1.7513 0.7912 0.9394 1.2655 1.8778

Table 8: Level estimation (robust standard errors in parenthesis) before and after the date January 14,
2015, for the EUR/CHF and USD/CHF FX rates. Superscripts a, b, and c denote the 1%, 5%, and 10% levels
of significance, respectively. To account for heteroskedasticity and autocorrelation, the standard errors
are computed based on the HAC estimator by following the automatic method in Andrews (1991) for the
selection of the number of lagged autocovariances. Sample period: November 1, 2011 – September 30, 2021.

Table 8 reports the estimates of the mean of the series under investigation before and after the
break date, which has been found on January 14, 2015. The results reported in the table strongly
support the prescriptions of the theory. More specifically, the level of volatility (volume) signifi-
cantly increases (decreases), thus leading to an increase of illiquidity (as measured by both daily

14We are grateful to Alessandro Casini for having shared with us the MATLAB codes for the break test.
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and realized Amihud) on EUR/CHF. In a similar way, this shock also affects the other currency
pair USD/CHF, which was not directly exposed to the capping on the EUR/CHF rate.

6 Conclusion

Liquidity is crucial to the well-functioning of financial markets and depends on how transaction
volumes impact asset prices. A widely used measure to approximate this impact is the Amihud
measure (Amihud, 2002). In the present paper, we have studied the theoretical and empirical
properties of a refinement of the classic Amihud measure. We call it realized Amihud and it is
defined as the ratio between the realized volatility and trading volume. Building on the simple
trading mechanism introduced by Clark (1973), we develop the theory of realized volatility in the
context of measuring market liquidity. Similar to the spot volatility, the instantaneous liquidity
parameter, _, is assumed to vary over time based on a dynamic process in continuous time; that
is, liquidity is stochastic.

The result that clearly emerges from our study is that the realized Amihud provides a precise
measurement of the inverse of integrated liquidity, that is, the integral L =

∫ 1
0 _(𝑠)𝑑𝑠 , over periods

of fixed length (e.g., a day, a week, or a month). Because of its intrinsic nonparametric nature, the
realized Amihud represents an alternative to well-known measures of illiquidity, which typically
require the estimation of a parametric model. We propose another version in which price disper-
sion is measured by the high-low range. Its advantage is to be based on the highest and lowest
prices achieved by a financial security during in certain time interval that are widely available
even on a daily basis. Compared to the others, the range-based version is less accurate than the
realized Amihud but more than the classic version. By employing the theory of multipower vari-
ation in Barndorff-Nielsen and Shephard (2003, 2004, 2006), we also provide a test statistic for
detecting significant information jumps, which has good results in terms of both power and size
(as seen in the results of the Monte Carlo simulations).

The empirical analysis based on more than a decade of representative data for the stock and
currency markets illustrates the merits of the realized Amihud, unveiling features like illiquidity
jumps, clustering and leverage effects. It also points to a sensible reduction of the noise in measur-
ing illiquidity that might hide important structural relationships, such as that between illiquidity
and excess returns.
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A Proofs

A.1 Proof of Proposition 1

The proof of Proposition 1 proceeds as follows. By the properties of the super-position of inde-
pendent processes, the limit for 𝛿 → 0 (or 𝐼 → ∞) of 𝑅𝑃𝑉 is as follows:

𝑝 lim
𝐼→∞

𝛿1/2𝑅𝑃𝑉 =

√︂
2
𝜋
S, (16)

where S =
∫ 1

0 𝜎 (𝑠)𝑑𝑠 is the integrated average standard deviation and where the latter is de-

fined as 𝜎 (𝑡) = 1
𝐽

√︃∑𝐽

𝑗=1 𝜎
2
𝑗
(𝑡). Indeed, similar to Barndorff-Nielsen and Shephard (2002b), Δ𝑝𝑖 =

1
𝐽

∑𝐽

𝑗=1 Δ𝑝
∗
𝑖, 𝑗 is equivalent in law to

∫ 𝛿𝑖

𝛿 (𝑖−1) 𝜎 (𝑡)𝑑𝑊
∗(𝑡), where 𝜎 (𝑡) = 1

𝐽

√︃∑𝐽

𝑗=1 𝜎
2
𝑗
(𝑡). The aggre-

gated volume on a unit (daily) interval is a =
∑𝐼

𝑖=1 a𝑖 , and letting 𝐼 → ∞, we get

𝑝 lim
𝐼→∞

𝛿1/2a =
L
2

√︂
2
𝜋
S, (17)

with S = 1
𝐽

∑𝐽

𝑗=1
∫ 1

0 𝜍 𝑗 (𝑠)𝑑𝑠 , where 𝜍 𝑗 (𝑡) =

√︃
(𝐽 − 1)2𝜎2

𝑗
(𝑡) +∑

𝑠≠ 𝑗 𝜎
2
𝑠 (𝑡) and L =

∫ 1
0 _(𝑠)𝑑𝑠 de-

notes the integrated liquidity. Hence, we get

𝑝 lim
𝐼→∞

A =
2S
LS

, (18)

which reflects the ratio of the total average standard deviation carried by each trader. If 𝐽 = 2,
then S = 2S, so that equation (5) in Proposition 1 follows directly, that is, 𝑝 lim𝐼→∞ A = 1

L .
Furthermore, by straightforward application of Barndorff-Nielsen and Shephard (2003, p.260),

we get
log

(√︁
𝜋𝛿/2 · 𝑅𝑃𝑉

)
− log (S)√︃

𝛿 (𝜋/2−1)𝑅𝑉
(𝜋𝛿/2)𝑅𝑃𝑉 2

𝑑→ 𝑁 (0, 1), (19)

and
log

(√︁
𝜋𝛿/2 · 𝑣

)
− log (SL)√︃

𝛿 (𝜋/2−1)𝑅𝑉
(𝜋𝛿/2)𝑅𝑃𝑉 2

𝑑→ 𝑁 (0, 1). (20)

where 𝑅𝑉 is the realized variance and is defined as 𝑅𝑉 =
∑𝐼

𝑖=1 (𝑟𝑖)2; for more, see, among others,
Andersen and Bollerslev (1998). Following Barndorff-Nielsen and Shephard (2002a,b) and taking
the limit for 𝛿 → 0 (i.e., 𝐼 → ∞), we get 𝑝 lim𝐼→∞ 𝑅𝑉 = 1

𝐽 2V , where V =
∑𝐽

𝑗=1 V𝑗 is the variation
of the asset price on the unit interval generated by the aggregated individual components of 𝑟 . The
term V𝑗 =

∫ 1
0 𝜎 𝑗 (𝑠)2𝑑𝑠 is the integrated variance associated with the 𝑗-th trader’s specific compo-

nent. By combining (19) and (20) and noticing that log(A) = log
(√︁

𝜋𝛿/2 · 𝑅𝑃𝑉
)
−log

(√︁
𝜋𝛿/2 · 𝑣

)
,

the result in (6) follows. ■
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A.2 Traders homogeneity

Analogous results are obtained if 𝐽 ≥ 2 assuming homogeneity of traders, that is, 𝜎 𝑗 = 𝜎 ∀𝑗 =
1, 2, . . . , 𝐽 . In particular, the following proposition highlights the main determinants of the realized
Amihud as an illiquidity measure under homogeneity of traders when 𝐽 ≥ 2.

Proposition 2. Consider the illiquidity measure defined in (4), the equilibrium relation in (1), and
the diffusive process for reservation prices in (2). Assume that 𝜎 𝑗 and _(𝑡) are strictly positive càdlàg
processes with (almost surely) square integrable sample paths with 𝜎 𝑗 (𝑡) = 𝜎 (𝑡) ∀𝑗 = 1, . . . , 𝐽 . As
𝐼 → ∞ (i.e., 𝛿 → 0)

𝑝 lim
𝐼→∞

A =
2

𝐽
√
𝐽 − 1L

, (21)

Furthermore, as 𝐼 → ∞
log(A) − log

(
2

L 𝐽
√

(𝐽−1)

)
√︃

𝐽𝛿 (𝜋/2−1)𝑅𝑉
(𝐽−1) (𝜋𝛿/2)𝑅𝑃𝑉 2

𝑑→ 𝑁 (0, 1), (22)

where 𝑅𝑉 =
∑𝐼

𝑖=1 (𝑟𝑖)2 is the realized variance.

The proof of Proposition 2 follows the same steps as the proof of Proposition 1 in Section A.1.
In this case, S = 𝐽

√
𝐽 − 1S, so that

𝑝 lim
𝐼→∞

A =
2

𝐽
√
𝐽 − 1L

. (23)

In this case, it follows that in the limit for 𝐼 → ∞, the realized Amihud is inversely proportional
to the integrated illiquidity and to the number of active traders in the market. By relaxing the
assumption of homogeneity, A would converge in probability to the integrated illiquidity times
the ratio of two measures of integrated volatility, namely 2S

S
, that is, a weighted average of the

price variability carried by each trader. Furthermore,

log
(√︁

𝜋𝛿/2 · 𝑣
)
− log

(
S 𝐽

√
𝐽 − 1L

)√︃
𝛿 (𝜋/2−1)𝑅𝑉

((𝐽−1)𝜋𝛿/2)𝑅𝑃𝑉 2

𝑑→ 𝑁 (0, 1), (24)

so that
log(A) − log

(
2

L 𝐽
√

(𝐽−1)

)
√︃

𝐽𝛿 (𝜋/2−1)𝑅𝑉
(𝐽−1) (𝜋𝛿/2)𝑅𝑃𝑉 2

𝑑→ 𝑁 (0, 1). (25)

■
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B Modeling Realized Amihud

In this section, we propose an econometric specification to characterize the dynamic evolution and
distributional features of the realized Amihud. First, we consider parametric models belonging
to the class of multiplicative error models (MEM), as introduced by Engle (2002) and Engle and
Gallo (2006).

B.1 A mixture MEMmodel

Following the same approach adopted by Caporin et al. (2017), it is possible to construct a MEM
model featuring a component responsible for generating large and unexpected moves in illiq-
uidity. In particular, following Caporin et al. (2017), we model A according to an AMEM with
a mixture specification, namely AMEM-Mix. In the AMEM-Mix, A𝑡 is given by the product of
three elements:

A𝑡 = `𝑡𝑍𝑡𝜖𝑡 , (26)

where `𝑡 is the conditional mean, and it follows asymmetric MEM (AMEM) dynamics:

`𝑡 = 𝜔 + 𝛼A𝑡−1 + 𝛽`𝑡−1 + 𝛾𝐷𝑡−1A𝑡−1, (27)

where 𝐷𝑡−1 is a dummy variable taking a value of 1 if the return is negative and 0 otherwise; it
accounts for an asymmetric response of illiquidity to good or bad news. The term 𝜖𝑡 denotes the
innovation term, whose density (conditional on the information set F𝑡−1) is

𝑓 (𝜖𝑡 |F𝑡−1) =
1

Γ(𝜗)𝜗
𝜗𝜖𝜗−1

𝑡 𝑒−𝜗𝜖𝑡 , 𝜖𝑡 > 0, 𝜗 > 0. (28)

This means that 𝜖𝑡 |F𝑡−1 is a gamma-distributed random variable with unit mean and variance
equal to 1

𝜗
. Finally, the mixing term, 𝑍𝑡 , is assumed to be independent of 𝜖𝑡 and distributed as a

compound Poisson random variable

𝑍𝑡 =


𝑑^ 𝑁𝑡 = 0,∑𝑁𝑡

𝑗=1𝑌𝑗,𝑡 𝑁𝑡 > 0,
(29)

where the expected number of arrivals at time 𝑡 (𝑁𝑡 ) is governed by a Poisson random variable
with a time-varying intensity, ^𝑡 , and 𝑑^ is a positive function of ^𝑡 such that 𝐸 [𝑍𝑡𝜖𝑡 |F𝑡−1] = 1 and
𝐸 (A|F𝑡−1) = `𝑡 . Furthermore, 𝑌𝑗,𝑡 |F𝑡−1 ∼ Γ(𝑑^, Z ). By the Poisson distribution, the probability of
observing a 𝑗 ≥ 0, conditioning F𝑡−1, is

𝑃𝑟 (𝑁𝑡 = 𝑗 |F𝑡−1) =
𝑒−^𝑡^ 𝑗

𝑡

𝑗 ! , 𝑗 = 0, 1, 2, . . . . (30)
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Similar to Chan and Maheu (2002), we specify the dynamics of ^𝑡 as

^𝑡 = 𝜙1 + 𝜙2(^𝑡−1 − 𝜙1) + 𝜙3b𝑡−1, (31)

where the innovations, b𝑡 , are defined as the error in predicting 𝑁𝑡 as new information becomes
available in F𝑡 . In other words, b𝑡 = 𝐸 (𝑁𝑡 |F𝑡 ) − 𝐸 (𝑁𝑡 |F𝑡−1), and in terms of model parameters

b𝑡 =

∞∑︁
𝑗=0

𝑗𝑃𝑟 (𝑁𝑡 = 𝑗 |F𝑡 ) − ^𝑡 . (32)

The conditions𝜙1 > 0 and 1 > 𝜙2 > 𝜙3 > 0 are sufficient to ensure positiveness and stationarity of
^𝑡 , see Chan and Maheu (2002). A similar dynamics for the intensity has been adopted by Maheu
and McCurdy (2004) and Maheu et al. (2013) for stock returns and by Caporin et al. (2016) for
the realized variance. Finally, the filtered probability needed to compute 𝐸 (𝑁𝑡 |F𝑡 ) is obtained via
Bayes’ rule, as follows:

𝑃𝑟 (𝑁𝑡 = 𝑗 |F𝑡 ) =
𝑓 (A𝑡 |𝑁𝑡 = 𝑗, F𝑡−1)𝑃𝑟 (𝑁𝑡 = 𝑗 |F𝑡−1)

𝑓 (A𝑡 |F𝑡−1)
, (33)

where the density of A𝑡 conditional on 𝑁𝑡 = 𝑗 and F𝑡−1 is

𝑓 (A𝑡 |𝑁𝑡 = 𝑗, F𝑡−1) =


1
A𝑡

(
𝜗A𝑡

𝑑^`𝑡

)𝜗
𝑒

(
−𝜗A𝑡
𝑑^`𝑡

)
Γ(𝜗) , 𝑁𝑡 = 0

2
A𝑡

(
A𝑡

`𝑡

𝜗Z

𝑑^

) (
𝑗Z+𝜗

2

)
1

Γ( 𝑗Z )Γ(𝜗)K 𝑗Z−𝜗

(
2
√︃

A𝑡

`𝑡

𝜗Z

𝑑^

)
, 𝑁𝑡 = 𝑗 > 0,

(34)
where K(·) is the modified Bessel function of a second kind, while the denominator in (33) is
given by the following:

𝑓 (A𝑡 |F𝑡−1) = 𝑒−^𝑡𝑔A𝑡
+

∞∑︁
𝑗=1

𝑒−^𝑡^ 𝑗
𝑡

𝑗 ! 𝑤A𝑡
, (35)

where 𝑔A𝑡
and 𝑤A𝑡

are 𝑓 (A𝑡 |𝑁𝑡 = 𝑗, F𝑡−1, 𝛼, 𝛽,𝛾) for 𝑗 = 0 and 𝑗 > 0, respectively. Therefore,
the conditional density of A𝑡 is a mixture of gamma and kappa distributions, whose weights are
governed by the Poisson probabilities and by ^𝑡 . The density is available in closed form, thus
allowing us to estimate the model parameters by maximum likelihood. In the following analysis,
we distinguish between the AMEM-Mix model with time-varying Poisson intensity (i.e., AMEM-
Mix^𝑡 ) and with constant intensity (i.e., AMEM-Mix^ ), that is, ^𝑡 = 𝜙1.

B.2 Estimation results

Table 9 reports the parameter estimates (and goodness of fit tests) for several AMEM and AMEM-
Mix specifications estimated on daily and realized Amihud series of SPY, where the realized Ami-
hud series is computed using returns sampled at 5- and 10-minute frequencies. Panel a) of Table 6
shows the coefficients from the specifications under consideration, which are all estimated using
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maximum likelihood. As suggested by Engle and Gallo (2006), we allow `𝑡 to follow asymmetric
GARCH-type or asymmetric HAR-type process with asymmetric response to negative returns.
Panel b) of Table 6 displays the results of a number of diagnostics tests on the residuals and Pois-
son intensity innovations, that is, the 𝑝-values of the Ljung-Box test (at 1, 5, and 10, lags). Table
10 reports the parameter estimates of the linear and log-linear models. Looking at the estimates
of the AMEM models in Table 9, we notice that the parameter 𝛼 in the volatility literature is gen-
erally found in the range between 0.02 and 0.1 (Bauwens et al., 2012, ch. 1), while we find values
in the range between 0.175 and 0.217 for the realized Amihud, signaling that illiquidity is more
responsive to news than volatility. Instead, when the AMEM model is estimated on the daily
Amihud, the estimates of 𝛼 are significantly reduced because the daily Amihud is a more noisy
proxy of the signal compared with the realized Amihud, so the model assigns a smaller weight to
the parameter governing the news. Analogous evidence is found in the volatility literature when
employing the realized GARCH model of Hansen et al. (2012) rather than a classic GARCH model
on squared returns.

As for the parameter 𝛾 , it enters the model with the expected positive sign and is signifi-
cant across all models, pointing at a more heavily reaction of illiquidity against negative returns
rather than against positive returns. Altogether, by adopting the general view that uncertainty
arises when new information reaches the market, we can state that illiquidity is strongly related
to uncertainty among investors (as measured by volatility) and that this is responsible for the
illiquidity persistence. Conversely, the estimates of the parameter 𝛽 is around 0.78 across models.
This is in the lower bound of the interval of estimates of 𝛽 typically found for volatility (accord-
ing to Bauwens et al., 2012, ch. 1, it is usually close to the upper limit of the interval 0.75–0.98).
Finally, it is important to emphasize the behavior of the coefficient 𝜗 in the various AMEM and
AMEM-Mix specifications, whose reciprocal is an estimate of the residuals variance. Notably, 𝜗
increases when moving from the simplest AMEM specifications to the sophisticated AMEM-Mix.
Indeed, in the models with the mixtures, a significant part of the variability of the illiquidity is
explained by mixture component 𝑍𝑡 . This finding testifies the need for a model that can assign
the correct probability to large realizations of the illiquidity measure. As expected, the value of
the log-likelihood function is larger for the AMEM-Mix specifications when compared with then
simpler AMEM.

As for the Poisson intensity, the process ^𝑡 is very persistent (𝜙2 is around 0.998), signaling
that the number of arrivals strongly depend on its past realizations.
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B.3 Linear specifications

We also consider linear specifications based on the HAR model of Corsi (2009). In particular, the
linear asymmetric HAR (linear AHAR) model is given by

A𝑡 = 𝜔 + 𝛼𝑑A𝑡−1 + 𝛼𝑤Ā𝑤,𝑡−1 + 𝛼𝑚Ā𝑚,𝑡−1 + 𝛾𝐷𝑡−1A𝑡−1 + Y𝑡 , (36)

and the log-linear AHAR (log-linear AHAR) specification given by

logA𝑡 = 𝜔 + 𝛼𝑑 logA𝑡−1 + 𝛼𝑤 log Ā𝑤,𝑡−1 + 𝛼𝑚 log Ā𝑚,𝑡−1 + 𝛾𝐷𝑡−1 logA𝑡−1 + Y𝑡 , (37)

Panel a) Estimation results
Daily Amihud High–Low Amihud Realized Amihud

Loglinear AHAR Linear AHAR Loglinear AHAR Linear AHAR Loglinear AHAR Linear AHAR

𝜔 −1.6182𝑎 0.0148𝑎 −0.3237𝑎 0.0057𝑎 −0.2024𝑎 0.0027𝑎
(0.2231) (0.0025) (0.0663) (0.0015) (0.0439) (0.0006)

𝛼𝑑 -0.0275 −0.0838𝑎 0.0304 -0.0152 0.1448𝑎 0.1171𝑎
(0.0227) (0.0283) (0.0207) (0.0223) (0.0259) (0.0261)

𝛼𝑤 0.0406 0.0556 0.3313𝑎 0.3534𝑎 0.3711𝑎 0.4208𝑎$
(0.0542) (0.0575) (0.0526) (0.0576) (0.0568) (0.0730)

𝛼𝑚 0.5244𝑎 0.7017𝑎 0.5428𝑎 0.5190𝑎 0.4253𝑎 0.3872𝑎
(0.0845) (0.0832) (0.0496) (0.0570) (0.0513) (0.0633)

𝛾 −0.0259𝑎 0.0561𝑏 −0.0210𝑎 0.0565𝑎 −0.0135𝑎 0.0366𝑎
(0.0100) (0.0214) (0.0032) (0.0107) (0.0024) (0.0067)

Panel b) Ljung-Box statistics (p–value)

LB(1) 0.9764 0.9260 0.5730 0.5507 0.5923 0.7050
LB(5) 0.8462 0.6273 0.2495 0.7036 0.0827 0.1768
LB(10) 0.4676 0.3781 0.0970 0.2749 0.0000 0.0000

Table 10: AHAR estimated coefficients with robust standard errors (White, 1980) and 𝑝-value of the Ljung-
Box statistics. Superscript a, b and c denote the 1%, 5%, and 10% significance levels, respectively. Sample
period: January 3, 2006 – June 29, 2018.
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B.3.1 PITs
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Figure 8: Probability integral transform (PIT) from MEM-HAR, AMEM(2,1) and mixture–AMEM . Sample
period: January 3, 2006 – June 29, 2018.
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B.4 The USD/CHF analysis
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Figure 9: Break dates. The figures report the time series of RPV, volume, daily Amihud, and realized
Amihud for the USD/CHF rate (black solid line). The red vertical line denotes the break date, which is
estimated by means of the Bai and Perron (1998) test for unknown break points. The test is performed with
15% trimming at the beginning and the end of the sample period and between break dates.
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